

About “Walid”

mmmmm,w‘ A iy o IV bt s o 2y 893 Y e L e ¥ S "'u""l*u.,':',s,..- ~ gt TSt

o 94-99: PhD at OGI w/ Prof. Sheard

o 99-00: Post-doc at Chalmers, w/ Prof.
Hughes

o 00-02: Researcher, Yale, w/ Prof. Hudak
o 02-10: Assistant Professor at Rice
o 10-: Professor at Halmstad

- % D s o= 4 b gime L] A g Py . - - -
AT ISR A s L Tt G BT Prrar S BT ST SN Tty 5= OV ST CAI IR Vs et e SN S b A AR BN g i D s SR

Program
Generation

Staging and
Offline Partial
Evaluation

Since then

AT R IR e L Tt GRS P S AT S 459 5 OV S G IR e s O st ek AR TR g | e P e i T AR

o Implementations: MetaML,
MetaOCaml, Template Haskell, Java

Mint, BER MetaOCaml, ConCogqgtion,
lightweight staging libraries, ...

o Type systems and semantics: Lots!

o Programming: Tag-less staged interp’s,
monadic staging, abstract interpretation

Today

AT ISR A s L Tt G BT Prrar S BT ST SN Tty 5= OV ST CAI IR Vs et e SN S b A AR BN g i D s SR

o Lots technical results amassed!

o Semantics, type systems, formal
reasoning principles, implementation
techniques, programming case studies

o Stepping back, what’s emerging picture?

This Talk

AT ISR A s L Tt G BT Prrar S BT ST SN Tty 5= OV ST CAI IR Vs et e SN S b A AR BN g i D s SR

o Staging as an optimization

o Staging and partial evaluation

o Things that stage well

o The perfect language for staging
o What staging types actually do

o Conclusion and Challenges

Article Talk

The Free Encyclopedia

Partial evaluation

Main page From Wikipedia, the free encyclopedia
Contents
Featured content Not to be confused with partial application.

FUESESrenE In computing, partial evaluation is a technique for

e stz ey several different types of program|optimization by <,

BongioilaiWiipedia specialization. The most straightforward applicatio

w |Interaction is to produce new programs which A
Help the originals while being guaranteed to behave in the

About Wikipedia same way.

Traditional view

% n.!'mql : ii ., 5 E! e . ¥ 8 A Tty - L '“::K.'.’!oou-~~“"‘-;.. - JV“-JJﬂ--u‘Q;‘.&“;t"w ,”’w Yy % =

o Given the program

o power(x,n) = 1f n=1 then
X else x*power(x,n-1)

o Partial evaluate for n=2
o power2(x) = X*X

o Reusability and performance!

What happens 1n practice

_ % D PR, b gime . g o o . -
AT ISR A s L Tt G ST Prrmar S BT ST S Tty 5= OV SESCAI IR Vs e SNl st e A Ny W e el TS AR

o Programmer writes

o square(x) = X*X

o cube(x) = X*X*X

o fourthPower (x) = X*X*X*X
o Eventually, programmer scratches head

o Programmer says “Naaah”. Moves on

Staging as an optimization

bm.m' !\mb‘ " !!(‘5 - .-m'.‘- e T e o id. 44 3 TP L 0 ,vu-.dg-.u\..:l“ o
—a v, e

o Partial evaluation and staging can be
great optimizations, but they often work
best on programs that just don'’t exist yet

o Creating stageable programs is tricky,
and is still, in most cases, a big
investment. Usually, too big...

Staging and evaluation order

% MIB,WQI ii ., o5 (+ P Go ¥ 4 A gty e Zoanan, 18- 14 3 TPRRATR S o J"“-JJ‘--‘“‘Q:{A“ - % TR

AL 8w

o Staging is about very fine control over
evaluation order in programs

o Traditional strategies
o CBV, CBN only evaluate closed code
o What if you want to be MORE strict?

o Go under binders. Introduces open code

The Paradox

SRR A A L Tt G PG DA T 48 Tty oIV LT EAI I i et Lot PR I s

o Staging cannot do more than partial
evaluation (PE)

o Staging is less automatic than offline
partial evaluation. It’s manual binding
time analysis

Staging vs. partial evaluation

bm.m' !\mb‘ " !!(‘5 - .-m'.‘- e T e o id. 44 3 TP L 0 ,vu-.dg-.u\..:l“ o
—a v, e

o Traditionally, when “a program did not
partial evaluate right”, it was hard to
figure out why. Manual staging seems to

o help explain to users how partial
evaluation works

o help users study the stageability of
algorithms

What is an interpreter?

PSRRI A TPt SRS Promer g O DAe 18 5ty S I LRI e N st et A NNR e 0 e S b

o It’s a pattern!

o Early input (program)

o Late, varying input (the data)
o PLs, DSLs, runtime reflection, FFTW
o Hygienic macros, HDLs

o Software libraries

Styhzed how?

AT A DA L, Tt g S Prman e T T A Tty 5= OV S A1 I e ekl PSSP L L T S

o We need it to be stageable

o Classic: “What not to do when writing
an interpreter for staging”, 1996

o Denotationally compositional
o “Looks like a translation if you squint”

o Already in monadic or CPS style

Hands on tutorial exist

L = B it Lanlonke £ PUGA e el e oANR

o “Gentle introduction to multi-stage
programming (Parts I and 11)”

o “DSL implementation in MetaOCaml,
lemplate Haskell, and C++"

Why Haskell?

AT A DA L, Tt g S Prman e T T A Tty 5= OV S A1 I R e e T T ! -

o Purely functional, no side effects

o A safe, fully static type system exists
o Lazy

o Simplifies reasoning about staging

o Monads
o Very rich type system

What needs to be done?

_ % D PR, b gime . g o o . -
AT ISR A s L Tt G ST Prrmar S BT ST S Tty 5= OV SESCAI IR Vs e SNl st e A Ny W e el TS AR

o Convince Simon Peyton Jones :-)
o Need to identify research challenges
o Gradual-typing based approach
o Combine Template Haskell & MSP

o Checking soundness w/ full typ. sys.
Runtime code generation

How stagmg types work

RIS IR o M L Tt A P o oD e T 48Tty S OV ST A fames lanie L P e Tl

AT O

o Types: s,t::=int!| t*5t/t+t| 't <t>

o The curious facts
o Int <int>, but we have <int>\int
o <§ F > ~~ <s>FL>
o <SA> ~~ <s> N <>

o and sometimes: <s+t> ~~ <s>+<t>

What staging types really do

DA E KL A i L Tt SR Promer G AT S A Tty S N S L IR s e SN bk e MR

o The code type flows to the leaves
o This provides a normal form
o A lot like basic unit checking in physics

o Provide a great basis for programming
with abstract interpretation

Summary

A ISR A s L Tt g S Prman e AT $ A Tty 5= OV ST CAI I v e Vg e Lo P
£ b, %]

i I TS e

o Staging is useful because it helps us
analyze the stageability of algorithms

o Interpreters are the “killer app”

o Haskell is the ideal staging language
o Staged types flow to leaves of types

o Stageability is like basic unit checking

Challenges

AT A DA L, Tt g S Prman e T T A Tty 5= OV S A1 I Lot B PTNER e st n e SN

o Existential questions (re indexed types)
o Is staging (MSP) really necessary
o Is it enough?

o SML: Standard Macro Language
o Extensible grammar, type system

o Language independent

Challenges
o Type safe staging w/shared mutable state
o SOA: Separability-based type system
o Question: Do we REALLY need it?
o Type safe runtime code generation
o Computer-aided stageability analysis

o Compiler/architecture code-design

Concrete milestone challanges

_ % D PR, b gime . g o o . -
AT ISR A s L Tt G ST Prrmar S BT ST S Tty 5= OV SESCAI IR Vs e SNl st e A Ny W e el TS AR

o MSP-based FFT that beats FFT(E/W)
o Matrix operations that beats BLAS

o MSP-based BED formal tools

o MSP-based NAS-parallel benchmarks
o MSP-based TCE-engine benchmarks

