
Staging
15 Years Later

Walid Taha
Halmstad University, Halmstad, Sweden

Rice University, Houston, TX, USA

About “Walid”

94-99: PhD at OGI w/ Prof. Sheard
99-00: Post-doc at Chalmers, w/ Prof.
Hughes
00-02: Researcher, Yale, w/ Prof. Hudak
02-10: Assistant Professor at Rice
10-: Professor at Halmstad

Program
Transformation

Program
Generation

Program
Generation Staging and

Offline Partial
Evaluation

Staging a la 1997

Program Staged or Annotated Program
a = 1 a = 1
b = 2 b = 2
c = 3 c = 3
d = (x+a)-(b*c) d = run “(x+a) - `(lift (b*c))”
... at runtime ... at runtime (2nd stage)
d = (x+a)-(b*c) d = (x+1)-6

Since then

Implementations: MetaML,
MetaOCaml, Template Haskell, Java
Mint, BER MetaOCaml, ConCoqtion,
lightweight staging libraries, ...
Type systems and semantics: Lots!
Programming: Tag-less staged interp’s,
monadic staging, abstract interpretation

Today

Lots technical results amassed!
Semantics, type systems, formal
reasoning principles, implementation
techniques, programming case studies

Stepping back, what’s emerging picture?

This Talk

Staging as an optimization
Staging and partial evaluation
Things that stage well
The perfect language for staging
What staging types actually do
Conclusion and Challenges

Staging as an Optimization

Partial Evaluation

Traditional view

Given the program
 power(x,n) = if n=1 then
x else x*power(x,n-1)

Partial evaluate for n=2
power2(x) = x*x

Reusability and performance!

What happens in practice

Programmer writes
square(x) = x*x

cube(x) = x*x*x

fourthPower(x) = x*x*x*x

Eventually, programmer scratches head
Programmer says “Naaah”. Moves on

Staging as an optimization

Partial evaluation and staging can be
great optimizations, but they often work
best on programs that just don’t exist yet
Creating stageable programs is tricky,
and is still, in most cases, a big
investment. Usually, too big...

Staging and evaluation order

Staging is about very fine control over
evaluation order in programs
Traditional strategies

CBV, CBN only evaluate closed code
What if you want to be MORE strict?
Go under binders. Introduces open code

Staging and Partial Evaluation

Staging a la 1997

Program Staged or Annotated Program
a = 1 a = 1
b = 2 b = 2
c = 3 c = 3
d = (x+a)-(b*c) d = run “(x+a) - `(lift (b*c))”
... at runtime ... at runtime (2nd stage)
d = (x+a)-(b*c) d = (x+1)-6

Partial Evaluation a la 1985

Program Binding-Time Annotations
a = 1 a = 1
b = 2 b = 2
c = 3 c = 3
d = (x+a)-(b*c) d = run “(x+a) - `(lift (b*c))”
... at runtime Specialized Program
d = (x+a)-(b*c) d = (x+1)-6

The Paradox

Staging cannot do more than partial
evaluation (PE)
Staging is less automatic than offline
partial evaluation. It’s manual binding
time analysis

Staging vs. partial evaluation

Traditionally, when “a program did not
partial evaluate right”, it was hard to
figure out why. Manual staging seems to

help explain to users how partial
evaluation works
help users study the stageability of
algorithms

Things that stage well

Stylized Interpreters

What is an interpreter?

It’s a pattern!
Early input (program)
Late, varying input (the data)

PLs, DSLs, runtime reflection, FFTW
Hygienic macros, HDLs
Software libraries

Stylized how?

We need it to be stageable
Classic: “What not to do when writing
an interpreter for staging”, 1996
Denotationally compositional
“Looks like a translation if you squint”
Already in monadic or CPS style

Hands on tutorial exist

“Gentle introduction to multi-stage
programming (Parts I and II)”
“DSL implementation in MetaOCaml,
Template Haskell, and C++”

The perfect language for staging

MetaHaskell

Why Haskell?

Purely functional, no side effects
A safe, fully static type system exists

Lazy
Simplifies reasoning about staging

Monads
Very rich type system

What needs to be done?

Convince Simon Peyton Jones :-)
Need to identify research challenges

Gradual-typing based approach
Combine Template Haskell & MSP
Checking soundness w/ full typ. sys.
Runtime code generation

What staging types actually do

How staging types work

Types: s,t::= int | t*t | t+t | t^t | <t>
The curious facts
int ~/~ <int>, but we have <int>^int
<s * t> ~~ <s>*<t>
<s ^ t> ~~ <s> ^ <t>
and sometimes: <s+t> ~~ <s>+<t>

What staging types really do

The code type flows to the leaves
This provides a normal form

A lot like basic unit checking in physics
Provide a great basis for programming
with abstract interpretation

Conclusion

Summary

Staging is useful because it helps us
analyze the stageability of algorithms
Interpreters are the “killer app”
Haskell is the ideal staging language
Staged types flow to leaves of types
Stageability is like basic unit checking

Challenges

Existential questions (re indexed types)
Is staging (MSP) really necessary
Is it enough?

SML: Standard Macro Language
Extensible grammar, type system
Language independent

Challenges

Type safe staging w/shared mutable state
SOA: Separability-based type system
Question: Do we REALLY need it?

Type safe runtime code generation
Computer-aided stageability analysis
Compiler/architecture code-design

Challenges

Mathematical equations, esp. hybrid
differential equations. Example:

Preliminary results quite promising

Concrete milestone challanges

MSP-based FFT that beats FFT(E/W)
Matrix operations that beats BLAS
MSP-based BED formal tools
MSP-based NAS-parallel benchmarks
MSP-based TCE-engine benchmarks

