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o 94-99: PhD at OGI w/ Prof. Sheard

o 99-00: Post-doc at Chalmers, w/ Prof.
Hughes

o 00-02: Researcher, Yale, w/ Prof. Hudak
o 02-10: Assistant Professor at Rice
o 10-: Professor at Halmstad
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Since then
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o Implementations: MetaML,
MetaOCaml, Template Haskell, Java

Mint, BER MetaOCaml, ConCogqgtion,
lightweight staging libraries, ...

o Type systems and semantics: Lots!

o Programming: Tag-less staged interp’s,
monadic staging, abstract interpretation




Today
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o Lots technical results amassed!

o Semantics, type systems, formal
reasoning principles, implementation
techniques, programming case studies

o Stepping back, what’s emerging picture?




This Talk
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o Staging as an optimization

o Staging and partial evaluation

o Things that stage well

o The perfect language for staging
o What staging types actually do

o Conclusion and Challenges
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Partial evaluation

Main page From Wikipedia, the free encyclopedia
Contents
Featured content Not to be confused with partial application.
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Traditional view
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o Given the program

o power(x,n) = 1f n=1 then
X else x*power(x,n-1)

o Partial evaluate for n=2
o power2(x) = X*X

o Reusability and performance!




What happens 1n practice
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o Programmer writes

o square(x) = X*X

o cube(x) = X*X*X

o fourthPower (x) = X*X*X*X
o Eventually, programmer scratches head

o Programmer says “Naaah”. Moves on




Staging as an optimization
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o Partial evaluation and staging can be
great optimizations, but they often work
best on programs that just don'’t exist yet

o Creating stageable programs is tricky,
and is still, in most cases, a big
investment. Usually, too big...




Staging and evaluation order
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o Staging is about very fine control over
evaluation order in programs

o Traditional strategies
o CBV, CBN only evaluate closed code
o What if you want to be MORE strict?

o Go under binders. Introduces open code













The Paradox
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o Staging cannot do more than partial
evaluation (PE)

o Staging is less automatic than offline
partial evaluation. It’s manual binding
time analysis




Staging vs. partial evaluation
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o Traditionally, when “a program did not
partial evaluate right”, it was hard to
figure out why. Manual staging seems to

o help explain to users how partial
evaluation works

o help users study the stageability of
algorithms










What is an interpreter?
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o It’s a pattern!

o Early input (program)

o Late, varying input (the data)
o PLs, DSLs, runtime reflection, FFTW
o Hygienic macros, HDLs

o Software libraries




Styhzed how?
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o We need it to be stageable

o Classic: “What not to do when writing
an interpreter for staging”, 1996

o Denotationally compositional
o “Looks like a translation if you squint”

o Already in monadic or CPS style




Hands on tutorial exist
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o “Gentle introduction to multi-stage
programming (Parts I and 11)”

o “DSL implementation in MetaOCaml,
lemplate Haskell, and C++"










Why Haskell?
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o Purely functional, no side effects

o A safe, fully static type system exists
o Lazy

o Simplifies reasoning about staging

o Monads
o Very rich type system




What needs to be done?
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o Convince Simon Peyton Jones :-)
o Need to identify research challenges
o Gradual-typing based approach
o Combine Template Haskell & MSP

o Checking soundness w/ full typ. sys.
Runtime code generation







How stagmg types work
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o Types: s,t::=int!| t*5t/t+t| 't <t>

o The curious facts
o Int <int>, but we have <int>\int
o <§ F > ~~ <s>FL>
o <SA> ~~ <s> N <>

o and sometimes: <s+t> ~~ <s>+<t>




What staging types really do
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o The code type flows to the leaves
o This provides a normal form
o A lot like basic unit checking in physics

o Provide a great basis for programming
with abstract interpretation







Summary
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o Staging is useful because it helps us
analyze the stageability of algorithms

o Interpreters are the “killer app”

o Haskell is the ideal staging language
o Staged types flow to leaves of types

o Stageability is like basic unit checking




Challenges
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o Existential questions (re indexed types)
o Is staging (MSP) really necessary
o Is it enough?

o SML: Standard Macro Language
o Extensible grammar, type system

o Language independent




Challenges
o Type safe staging w/shared mutable state
o SOA: Separability-based type system
o Question: Do we REALLY need it?
o Type safe runtime code generation
o Computer-aided stageability analysis

o Compiler/architecture code-design







Concrete milestone challanges
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o MSP-based FFT that beats FFT(E/W)
o Matrix operations that beats BLAS

o MSP-based BED formal tools

o MSP-based NAS-parallel benchmarks
o MSP-based TCE-engine benchmarks




