ISSN 2186-7437

NIl Shonan Meeting Report

No. 211

Theory and Algorithms in Graph
Rigidity and Algebraic Statistics

Fatemeh Mohammadi
Bernd Schulze
Meera Sitharam
Shin-ichi Tanigawa

September 2-6, 2024

=O\ HETEH
NIl SHONAN MEETING

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan



Theory and Algorithms in Graph
Rigidity and Algebraic Statistics

Organizers:

Fatemeh Mohammadi (KU Leuven)
Bernd Schulze (Lancaster University)
Meera Sitharam (University of Florida)
Shin-ichi Tanigawa (University of Tokyo)

September 2 — 6, 2024

Abstract

The main objective of the proposed meeting is to identify and explore
key emerging connections between two active algorithmic research areas:
graph rigidity theory, with applications in diverse geometric modeling sce-
narios and algebraic statistics, with applications in data-driven inference
and machine learning. To this end, the invited experts in each field will
outline recent fruitful interactions as well as mathematical and computa-
tional tools for the fundamental problems in these two areas, to establish
a common language for participants with different expertise.

Background and introduction

Graph rigidity theory and algorithmic characteri-
zations

A fundamental topic in computational geometry is the efficient algorithmic
characterization of basic properties of point configurations in Euclidean
space that satisfy various algebraic geometric constraints. Example prop-
erties of such feasible sets of point configurations are emptiness, finiteness,
singularity etc. Rigidity theory establishes an underlying mathematical
foundation by revealing and studying discrete structures, both geometric
and purely combinatorial, inherent in geometric constraint systems. This
is a classical topic in discrete geometry, whose history can be traced back
to the work of Euler, Cauchy and Maxwell on the rigidity of polyhedra
and skeletal frames. In the last two decades, both geometric and combina-
torial rigidity theory have become particularly active, drawing on diverse
areas of mathematics and computer science and engaging with a growing
range of modern applications, such as Computer-Aided-Design, molecular
modeling, localisation in sensor networks, and the distributed control of
formations of autonomous agents. As a result, the area has gained sig-
nificant international visibility as an active and interdisciplinary research
area. In Spring 2021 the Fields Institute in Toronto, Canada, ran a 6-
month thematic program on this topic (Geometric Constraint Systems,
Framework Rigidity, and Distance Geometry) and an additional 2-month



program will take place in Summer 2023. Furthermore, a 6-month pro-
gram is planned at ICERM, Brown, USA, in Spring 2025 (Geometry of
Materials, Packings and Rigid Frameworks).

Algebraic statistics, emerging connections, timeli-
ness

Recently it has become increasingly clear that rigidity theory and the
similarly flourishing field of algebraic statistics — which employs algebraic
approaches to data-driven, statistical and machine learning questions —
share common goals in capturing hidden discrete structures inherent in
algebraic relations. Techniques in one field have been shown to shed a
new light on a challenging problem in the other field. One representa-
tive example is the estimation of the probability distribution for a sample
of observations from a problem domain. Maximum likelihood estima-
tion (MLE) is a common framework used throughout the field of machine
learning. MLE involves maximizing a likelihood function in order to find
the probability distribution and parameters that best explain the observed
data, and hence, provides a framework for predictive modeling in machine
learning where finding model parameters can be formulated as an opti-
mization problem. Recently, rigidity theory has been shown to provide
useful tools in the realm of Bayesian statistics and Gaussian graphical
models. For example, it is shown that the maximum likelihood threshold
of a graph, which is the smallest number of data points that guarantees
that MLE exist almost surely in the Gaussian graphical model, is closely
connected to rigidity theory.

In view of this emerging interaction, it is timely to hold an interna-
tional workshop in 2024 whose focus and objective is to identify and ex-
plore key connections between rigidity theory and algebraic statistics. To
this end, the invited experts in each field will outline recent mathematical
and computational tools for the fundamental problems in graph rigidity
or algebraic statistical inference and modeling, to establish a common
language for participants with different expertise.

Problems in the overlap area of algebraic matroids

A key mathematical concept for facilitating such an interaction would be
the theory of algebraic matroids. Matroid theory offers a general frame-
work for analyzing discrete structures and developing efficient algorithms
in various fields such as combinatorial optimization and machine learn-
ing. Several key questions in rigidity theory and algebraic statistics are
inter-related through formulations in terms of matroids associated with
algebraic varieties. Thus the workshop aims to provide an occasion for
researchers to share the state-of-art techniques for analyzing algebraic
matroids and discussing future research directions. Specific problems we
would like to address during the workshop are the following.

e Combinatorial and efficient algorithmic characterization of indepen-
dence/dependence in a variety of algebraic matroids: efficient algo-
rithms will be sought for e.g. checking consistency or redundancy
of geometric constraint systems or algebraic relations that capture
specific data properties.

e Geometric and efficient algorithmic characterization of the identifia-
bility of algebraic systems in terms of independence/dependence in



algebraic matroids: efficient algorithms will be sought for e.g. check-
ing completeness of algebraic constraint systems and the identifiabil-
ity of data properties from partial measurements from experiments.

e Development of a common framework for identifying underlying al-
gebraic matroids in applications: this contributes to an acceleration
of applications and a systematization of the theory of algebraic ma-
troids.

Overview of the Meeting

We hosted 25 participants with diverse expertise who engaged in discus-
sions on various aspects of rigidity theory, encompassing both theoretical
and algorithmic perspectives, as well as its connections to algebraic statis-
tics, persistent homology, and tropical geometry. Each participant deliv-
ered a lightning talk, while five domain experts—Louis Theran, Atsuhiro
Nakamoto, Eran Nevo, Tibor Jordan, and Satoshi Murai—gave in-depth
one-hour overview lectures. Additionally, Eleftherios Kastis, Jan Leg-
ersky, Alison La Porta, Bill Jackson, Daniel Garamvolgyi, Oliver Clarke,
and Bernd Schulze presented 30-minute talks.

Jessica Sidman offered insights into her forthcoming book on rigidity
theory, tailored for undergraduate and project students, while Jan Leg-
ersky demonstrated a new computational platform for solving rigidity-
related problems, highlighting examples and novel features. Each talk
was followed by an interactive Q&A session and further discussions, with
ample time allocated for collaborative working groups over the five days
of the seminar.

The social event featured visits to Jomyoji and Hokokuji Temples,
accompanied by a traditional Japanese tea ceremony.

Overview of Talks

Quad-dominated maps on the sphere (and other
surfaces) and their rigidity properties

Brigitte Servatius, WPI

Abstract. Maxwell/Cremona showed that a planar framework can be
lifted to a polyhedron. Planar rigidity cycles have a stress that is nonzero
on all edges. Their geometric dual is a rigidity cycle as well and therefore
the average valence as well as the average face size of such a graph is just
a bit less than four and in the absence of very large faces the resulting
polyhedron will be quad-dominated. We suggest a simple procedure to
easily construct such graphs answering a question of structural engineer
Bill Baker.

NAC-colourings

Anthony Nixon, Lancaster

Abstract. A NAC-colouring is a type of edge-colouring whose existence
characterises those graphs that admit a flexible realisation in the plane.



In this talk a positive solution was presented to a conjecture on pre-
cisely when a minimally rigid graph in the plane has a NAC-colouring.
This represented joint work with Katie Clinch, Daniel Garamvolgyi, John
Haslegrave, Tony Huyn and Jan Legersky.

Generation of quadrangulations on surfaces and re-
lated topics

Atsuhiro Nakamoto, Yokohama National University

Abstract. A quadrangulation on a surface is a simple graph on the surface
such that each face is bounded by a cycle of length 4. A face contraction
of a face f of G is to identify two opposite vertices of the boundary 4-cycle
of f and replace two pairs of multiple edges with two single edges respec-
tively. A generating theorem of quadrangulations on the sphere states that
every quadrangulation on the sphere can be reduced to a cycle of length 4
by a repeated application of face contractions, through quadrangulations.
In my talk, we introduce various generating theorems of quadrangulations
on surfaces, and ones with some combinatorial conditions, together with
generating theorems of triangulations and Eulerian triangulations.

Finally, focusing on the relation that every quadrangulation on the
sphere is a bipartite (2, 4)-tight graph, we introduce a generating theorem
of bipartite (2, 2)-tight graphs, which is related to a bipartite quadrangu-
lation on the projective plane.

Rigidity over the rational numbers
Sean Dewar, University of Bristol

Abstract. Let us say that a rational framework (G, p) — a pair made up of a
simple graph G = (V, E) and a realisationp : V — Q% — is rationally rigid
if there are finitely many frameworks (G, ¢) (modulo isometries) whereby
lpo — Pwll = |lgo — qul|. With this, we say that a graph G is rigid (resp.,
flexible) in Q% if there exists an open dense subset of rationally rigid (resp.,
not rationally rigid) realisations of G in (Q%)Y. If a graph is rigid in R,
it is easy to show that it is also rigid in Q¢. The reverse, however, gets a
little weird. If we take a graph G with 1 degree of freedom in R? (ie., Gis
not rigid in R? but G + e is for some non-edge e), then its rigidity in Q¢ is
dependent on the genus of a generic realisation’s configuration space (the
algebraic curve of edge-length equivalent realisations in ((Cd)v modulo
isometries), which now say is the d-genus of the graph. Specifically, if G
has 1 d.o.f. in R%, then G is rigid in Q? if its d-genus is 2 or more as a
consequence of Falting’s theorem [10, 11], a deep result that is central in
Algebraic Number Theory. Furthermore, G is flexible in Q¢ if its d-genus
is 0. If the d-genus is 1, it is entirely unclear what happens.

The first-order flexibility of a periodic framework
Eleftherios Kastis, Lancaster University

Abstract. Given a periodic placement p of a Z%symmetric graph G, the
rigidity matrix of the resulting framework G is unitarily equivalent to a
multiplication operator ¥g. This operator generalizes the notion of the
orbit matrix, providing a route to factor periodic flexes. Moreover, it gives



rise to the C(z)-module M(G) generated by its rows, so the infinitesimal
flex space F(G, C) of G can be identified with the dual annihilator of M (G).
Using spectral synthesis tools (Lefrank, 1958), it was shown that F'(G,C)
contains a dense subset of pg-sequences u, p : 7% — C*Y0 of the form

Ugp.n : k= wW"h(k)

where w € C{ lies in the so-called geometric flex spectrum of G and h(z)
is a vector-valued polynomial. A natural question is to extend the above
results to [-symmetric frameworks, where I is a finitely generated abelian
group. This is joint work with S. C. Power.

Almost periodic rigidity for symmetric frameworks

Eleftherios Kastis, Lancaster University

Abstract. Let I'" be an abelian group. Given a I'-symmetric graph G,
we can define a pair (Go,m), where Go = (Vo, Eo) be a finite directed
multigraph and m : Ey — I is the so-called gain map that encodes the
properties of G. A I'-gain framework is a tuple G = (Go, m, , T), where
(Go, m) is a I'-gain graph and ¢ = (e )eer, is a collection of linear maps
from X to Y and 7: I’ = Isom(X) is a group homomorphism.

In the last 15 years, there have been studies about factor periodic
rigidity (see Power - Owen, 2011). One complication for the study of
these frameworks is that the set of factor periodic flexes does not form a
linear space, in fact addition of two factor periodic flexes may fail to be
factor periodic. Since this set of flexes lives in the kernel of the matrix
valued function, it is natural to consider a closed vector space generated
by this set. working with the supremum norm, the theory of almost peri-
odic rigidity becomes relative. Almost periodic flexes have been discussed
for periodic frameworks (Badri, Kitson, Power, 2014), where it was shown
that almost periodic rigidity is equivalent to factor periodic rigidity. Using
techniques from abstract analysis we can show that the same statement is
true for abstract abelian groups. To prove the result, we use the factoriza-
tion of the coboundary matrix (see Kastis, Kitson, McCarthy, 2021) and
apply theory of joint eigenvalues to give a characterization of the so-called
trivial RUM spectrum.

A typical question on the above results is to consider the flex spaces
generated under weaker topologies. This is ongoing joint work with Derek
Kitson.

Self-stress, Je T’aime

Oleg Karpenkov, University of Liverpool

Abstract. The title of the talk is inspired by the movie “Paris, Je T aime”.
Besides a personal author’s attitude to the research subject, the talk fol-
lows the structure of the movie: it contains several subject that seems not
to be connected in one story but provides a collection of complementary
images]. Let us start with the first subject.

Liftings in R3. The notion of Maxwell-Cremona liftings is a classical
notion in rigidity theory for frameworks in the plane. The lifting of a self-
stress is a certain piecewise linear function whose singular set coincides
with the framework. It is natural to ask what happens with the liftings if



the framework is not planar. However the answer for planar graphs has
been known for more 100 years, a satisfactory definition in the non-planar
case was missing.

The direct generalisation here are piece-wise linear functions in R*
whose singular set is the framework. Unfortunately this approach does
not work by the following reason: the singular set of piecewise-linear
framework is a two-dimensional polyhedron, while the frameworks are
one-dimensional. (Such extension would work perfectly for the case of
polyhedral two-dimensional surfaces, introduced by Rybnikov but not for
graph frameworks.)

In our recent preprint we proposed to consider liftings to be certain
function on the classes of the fundamental group of the complement to
the framework. Such functions naturally enumerate the self-stresses (that
are interpreted as certain linking numbers). This is a joint research with
Fatemeh Mohammadi, Christian Miiller, and Bernd Schulze [18, 17].

Pseudo-periodic tensegrities. The second subject is on new class of
self-stresses in R2. Such self-stresses admit the following properties:

e They are combinatorially equivalent to a periodic graph on a torus
T2

e Their stresses are all rational. Moreover they are defined by a certain
rather simple recurrent formula.

e Their limiting set is a triangle.

Such self-stressed frameworks arise from the study of multidimensional
continued fractions of cubic irrationalities. It is interesting to admit, that
the set of edges of such frameworks converges to the edges of the triangle.
‘We do not know what is the limiting sets of the vertices of such framework.
The vertices of the triangle are the limiting points, however it is not known
to the authors if the points of the edges of the triangle are limiting points
of vertices.

It is also not known if it is possible to construct similar tensegrities
whose limit sets are arbitrary graphs. The question is open even for the
case of K3 3.

We show a few examples of such self-stresses in the presentation.
This is a joint research in progress with Fatemeh Mohammadi, Chris-
tian Miiller, and Bernd Schulze.

Rigidity in a curved space. As a rule self-stresses are considered as a
force-loads for a certain finite system of points in the equilibrium. Here it
is assumed that the force-loads are geodesics. We propose an alternative
approach to self-stresses that covers the situation of curved spaces where
the geodesics are not necessarily straight lines in the space. The main
idea is as follows. Consider a single point, and let us assume that force
levels are certain curves in the plane (or surfaces in the space). In case
of circles we have classical tensegrities, however one can consider employ
ellipses or more complicated curves. (For instance, one can consider the
level sets of the magnetic field that are not centrally symmetric).

So for every point p we have its own family of force levels fp(A). Now
the lines of forces between points p and ¢ will be the curves connecting p
and ¢ that satisfy the equation

grad (fp) = grad (fy)



at all the points of such line of force. Note that such curves are not nec-
essarily parallel to gradients. In addition such curves can have branching
points. Once the force lines at a point p are constructed, one can write
down the equilibrium conditions in the tangent space at p. The next step
of this study is to develop a systematic study of such self stresses and the
corresponding aspects of the rigidity theory.

Rigidity and reconstruction in matroids of highly
connected graphs

Daéniel Garamvolgyi, Alfréd Rényi Institute, Budapest

Abstract. A graph matroid family M is a family of matroids M(G) defined
on the edge set of each finite graph G in a compatible and isomorphism-
invariant way. We say that M has the Whitney property if there is a
constant ¢ such that every c-connected graph G is uniquely determined
by M(G). Similarly, M has the Lovdsz-Yemini property if there is a
constant ¢ such that for every c-connected graph G, M(G) has maximal
rank among graphs on the same number of vertices.

In the talk, I describe some new results related to these notions. It
turns out that if M is unbounded (that is, there is no absolute constant
that bounds the rank of M(G) for every G), then M has the Whitney
property if and only if it has the Lovasz-Yemini property, and that every
l-extendable graph matroid family has the Lovdsz-Yemini (and thus the
Whitney) property. These results unify and extend earlier results about
graph reconstruction from an underlying matroid.

Stress-linked pairs of vertices
Déniel Garamvolgyi, Alfréd Rényi Institute, Budapest

Abstract. Let G be a graph. A pair of vertices {u, v} is globally d-linked
in G if for every generic d-dimensional framework (G, p), the edge lengths
of (G, p) uniquely determine the distance of p(u) and p(v). In this talk,
I introduce a new equilibrium stress-based sufficient condition for being
globally d-linked and describe how this new notion led to a resolution of
some conjectures in combinatorial rigidity theory.

Computing Tropical Varieties
Fatemeh Mohammadi, KU Leuven and University of Tromsg

Abstract. Tropical geometry has recently found new applications in rigid-
ity theory, particularly in the study of Cayley-Menger varieties, determin-
ing bounds on the number of realizations of a graph, and in NAC-coloring.
However, computing tropical varieties remains a challenging task, with
most progress limited to low dimensions (e.g., d = 2) or small-scale ex-
amples. Despite the potential of these connections, the computational
complexity associated with tropical varieties restricts practical calcula-
tions to small instances.

The goal of this presentation is to demonstrate that while computing
the entire tropical variety may be infeasible, there are several algebraic
and geometric techniques that allow us to sample points from a tropical
variety and gain partial information. These techniques rely on the notion



of Grobner degeneration. More precisely, the concept of the Grébner fan
for a polynomial ideal, pioneered by Mora and Robbiano in 1988, provides
a powerful polyhedral framework where the maximal cones correspond to
the reduced Grébner bases of the ideal. The tropical variety emerges as a
subcomplex of this Grébner fan, offering a rich geometric structure used
in diverse applications within mathematics and beyond.

In this presentation, we will explore prototypical examples, with a par-
ticular focus on tropical Grassmannians and flag varieties. These exam-
ples, along with their combinatorial counterparts such as Young tableaux
and Gelfand-Cetlin polytopes, provide valuable insights into the broader
landscape of tropical geometry. Additionally, we will discuss a geomet-
ric approach using polytope mutations, which facilitates Grobner walks
within the tropical fan. This method effectively computes various cones
within the tropical varieties.

One specific application of this approach is in computing toric degen-
erations of varieties—objects of central interest in algebraic geometry that
can be modeled using polytopes and polyhedral fans. This approach lever-
ages the well-known correspondence between geometric properties of vari-
eties and combinatorial invariants of their associated polytopes. Through
Grobner fans and tropical geometry, we extend this ”dictionary” from
toric varieties to more general varieties. I will discuss how to achieve
these degenerations using joint work with Oliver Clarke [3].

On the existence of reflection symmetric flexible
realizations

Jan Legersky, Czech Technical University in Prague, Faculty of Informa-
tion Technology, Czech Republic

Abstract. The existence of a flexible quasi-injective realization in the
plane is characterized by the existence of a NAC-coloring [13], which is a
surjective coloring of edges by red and blue such that every cycle is either
monochromatic, or there are at least two red and at least two blue edges.
The idea of NAC-colorings was adjusted to the rotation symmetric setting:
there is a rotation symmetric flexible realization if and only if there is a
NAC-coloring invariant under the rotation with a certain property [9].

The existence of a reflection symmetric quasi-injective realization with
a flex preserving the symmetry, which is the topic of this talk, is surpris-
ingly more difficult. We introduce the concept of pseudo-RS-colorings: an
edge coloring by red, blue and gold such that there is at least one blue
and one red edge, changing all gold edges to red, resp. all to blue, yields
NAC-colorings and blue and red interchange under the reflection. An
almost red-blue cycle is a cycle that has exactly one gold edge. A pseudo-
RS-coloring is an RS-coloring either if there is no almost red-blue cycle,
or for every red-blue cycle, there is another pseudo-RS-coloring differing
in a specific way on the cycle.

Our main results are the following: if a graph admits a reflection
symmetric flexible quasi-injective realization, then the graph has an RS-
coloring. This necessary condition can be strengthened to exclude some
RS-colorings that cannot come from a flex. On the other hand, we show
that if a graph has an RS-coloring with no almost red-blue cycle, then it
has a reflection symmetric flexible quasi-injective realization. There is also
a construction of a reflection symmetric flex in a very special case of RS-



colorings with an almost red-blue cycle, but the complete characterization
is still open.
This is joint work with Sean Dewar and Georg Grasegger.

PyRigi - software package for rigidity theory

Jan Legersky, Czech Technical University in Prague, Faculty of Informa-
tion Technology, Czech Republic

Abstract. PyRigi is a Python package for research in rigidity and flexibil-
ity of bar-and-joint frameworks that was initiated at the workshop Code
of Rigidity held during the Special Semester on Rigidity and Flexibility
at RICAM in Linz, Austria in March 2024. In this talk, we discuss the
current status of the package including the documentation, communica-
tion tools and possible ways of contributing. As an example of using
the package we present a generically rigid graph with two different penny
realizations which is a solution to an open problem in [7].

A smallest flexible polyhedron without self-intersections

Georg Grasegger, Johann Radon Institute for Computational and Applied
Mathematics (RICAM), Austrian Academy of Sciences

Abstract. For some time it was believed that Steffen’s polyhedron is
the smallest flexible polyhedron without self-intersection. In this talk we
show a smaller example with 8 vertices which is now known to be the least
possible.

Joint work with Matteo Gallet, Jan Legersky and Josef Schicho

k-fold circuits in rigidity matroids
Anthony Nixon, Lancaster University

Abstract. The concept of a k-fold circuit generalises double circuits to
arbitrary cyclic sets in a matroid with the dependencies parametrised by
k. This talk analysed some basic theory of k-fold circuits and used it to
analyse extensions of the well known coning lemmas in rigidity theory.
Then a further application resolved a conjecture of Alan Lew by proving
the maximal dimension in which the graph obtained from K4 by deleting
a perfect matching is rigid.

This talk concerned joint work with John Hewetson, Bill Jackson and Ben
Smith.

Newton-Okounkov Bodies and Algebraic Matroids
Oliver Clarke, Edinburgh

Abstract. A Newton-Okounkov body A(A,v) is a closed covex body asso-
ciated to a finitely generated algebra A and valuation v : A\ {0} — Q".
A finite Khovanskii basis is a set of generators f1, ..., fr for A such that
their images under v generate the semigroup v(A). These generating
sets are analogous to Grobner bases and provide straightforward algorith-
mic methods to solve questions such as the membership problem. Unlike
Grobner bases, finite Khovanskii bases need not exist since the semigroup



v(A) may not be finitely generated. However, for special families, such
as Grassmannians, it is possible to construct collections of well-behaved
weight-valuations.
Given an algebra A with distinguished generating set F' = {f1,..., fu} C

A, its algebraic matroid M is the matroid on ground set F whose depen-
dent sets are the subsets {d1,...,d¢} C F such that there exists a non-zero
polynomial p € Clyx, ..., ye] with p(di,...,d¢) =0. If f1,..., fr is a Kho-
vanskii basis for some valuation v, then the matroid M, realised by vectors
v(f1),...,v(fr) is closely related to M. Moreover, for special families, it
is possible to recover fully the data of M by varying v. For example, for
the Grassmannian of 2-planes, the Pliicker coordinates are a Khovanskii
basis with respect to any weight valuation, and each base of the algebraic
matroid is a base of some matroid M, .

On generic universal rigidity on the line
Tibor Jordan, ELTE E&6tvos Lorand University, Budapest

Abstract. A d-dimensional bar-and-joint framework (G,p) with under-
lying graph G is called universally rigid if all realizations of G with the
same edge lengths, in all dimensions, are congruent to (G,p). A graph
G is said to be generically universally rigid in R? if every d-dimensional
generic framework (G, p) is universally rigid. In this short talk we sum-
marize the main results of a recent paper [6] concerning the case d = 1.
We gave counterexamples to a conjectured characterization of generically
universally rigid graphs in R! from (R. Connelly, 2011). We also intro-
duced two new operations that preserve the universal rigidity of generic
frameworks, and the property of being not universally rigid, respectively.
One of these operations is used in the analysis of one of our examples,
while the other operation is applied to obtain a lower bound on the size
of generically universally rigid graphs. This bound gives a partial answer
to a question from [15].

Minimally rigid tensegrity frameworks
Tibor Jordan, ELTE E6tvos Lorand University, Budapest

Abstract. A d-dimensional tensegrity framework (T, p) is an edge-labeled
geometric graph in RY, which consists of a graph T' = (V,BUCUS)
and a map p : V — R?% The labels determine whether an edge uv of
T corresponds to a fixed length bar in (7, p), or a cable which cannot
increase in length, or a strut which cannot decrease in length.

We consider minimally infinitesimally rigid d-dimensional tensegrity
frameworks and provide tight upper bounds on the number of its edges, in
terms of the number of vertices and the dimension d. We obtain stronger
upper bounds in the case when there are no bars and the framework is
in generic position. The proofs use methods from convex geometry and
matroid theory. A special case of our results confirms a conjecture of W.
Whiteley from 1987. We also give an affirmative answer to a conjecture
concerning the number of edges of a graph whose three-dimensional rigid-
ity matroid is minimally connected (Joint work with Adam Clay and Séra
Té6th.)
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The infinitesimal rigidity of Dihedral-symmetric
bar-joint frameworks

Alison La Porta, Lancaster University

Abstract. The infinitesimal rigidity of symmetric finite plane bar-joint
frameworks has been researched extensively for over ten years. A number
of combinatorial characterisations of such frameworks were established,
provided the frameworks are ‘symmetry generic’. If the symmetry group
which acts on a given framework is dihedral, the problem becomes more
difficult, especially if the symmetry group does not act freely on the joints.
One of the difficulties arises from the fact that the gain graph, a combi-
natorial tool often used in the study of infinitesimal rigidity of symmetric
frameworks, loses some useful properties in this setting.

Forced symmetric rigidity on the plane

Alison La Porta, Lancaster University

Abstract. Take a finite plane bar-joint framework (G,p) with a non-
trivial symmetry, and consider the infinitesimal motions which do not
break its symmetry. If all such motions are trivial, we say (G, p) is
fully-symmetrically (infinitesimally) rigid. In 2012, Jorddn, Kaszanitzky
and Tanigawa combinatorially characterised fully-symmetrically infinites-
imally rigid frameworks, where the symmetry group is either a finite cyclic
group or a Dihedral group Ci, for some odd k > 3, provided the symme-
try group acts freely on the vertex set and the framework is ‘symmetry-
generic’. I present similar results, for which I drop the requirement that
the group action is free on the joints.

Consider the quotient G of the underlying graph G, and suppose that
the symmetry group acts freely on V(é) The edges of G may be directed
and labelled with group elements of the symmetry group, in a specific way
which allows to maintain all of the information of G, while disregarding
any redundancy. The combinatorial tool obtained, typically referred to as
a gain graph, is often denoted (G,%), where ¢ : E(G) — I' denotes the
labelling of the edges. If the symmetry group does not act freely on V(Q),
then some of the information of G is lost through the process of obtaining
(G, ). Namely, (G,1) cannot store any information on the stabilisers of
the vertices. Hence, I introduce a generalisation of gain graph which also
labels vertices with stabiliser groups. Some examples show that this new
gain graph does not carry all properties of the usual gain graph.

Maxwell-Cremona liftings of self-stressed frame-
works in arbitrary dimension

Bernd Schulze, Lancaster University

Abstract. This is an extended talk on the first topic mentioned in Oleg
Karpenkov’s lightning talk.

In 1864, James Clerk Maxwell introduced a link between self-stressed
frameworks in the plane and piecewise linear liftings to 3-space. This con-
nection has found numerous applications in areas such as rigidity theory,
discrete and computational geometry, control theory and structural engi-
neering. While there are some generalisations of this theory to liftings of
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d-complexes in d-space, extensions for liftings of frameworks in d-space
for d at least 3 have been missing. In this talk we introduce differential
liftings on general graphs using differential forms associated with the el-
ements of the homotopy groups of the complements to the frameworks.
Such liftings play the role of integrands for the classical notion of liftings
for planar frameworks. These differential liftings have a natural extension
to self-stressed frameworks in higher dimensions. As a result we gener-
alise the notion of classical liftings to both graphs and multidimensional
k-complexes in d-space (k=2,...,d).

This is joint work with Oleg Karpenkov, Fatemeh Mohammadi and
Christian Mueller.

Inverse problems in topological data analysis

Louis Theran, University of St Andrews

Abstract. Persistent homology, which captures how the topology of a data
set changes across scales, is a basic tool in topological data analysis. The
main invariant of persistent homology, called the barcode, is a collection of
intervals corresponding to lifetimes of homological features in a filtration
indexed by a subset of R. Forward problems in persistent homology are
well-studied and foundational results imply that the map from a data set
to its barcode is, in wide generality, stable: similar data sets have similar
barcodes.

Much less is known about inverse problems in persistent homology.
In this talk, I will consider point cloud data and the Vietoris—Rips and
Cech filtrations, which are the most commonly used the applications. I
will describe combinatorial sufficient conditions for a generic point cloud
to be locally identifiable, up to isometry, from its barcode in either filtra-
tion and identifiable from its barcode in the Vietoris—Rips filtration. The
identifiability result makes use of recent advances in generic unlabelled
global rigidity.

This is joint work with D. Beers, H. Harrington, J. Leygoine, and U.
Lim.

Volume Constrained Rigidity of Hypergraphs
Bill Jackson, Queen Mary University of London

Abstract. Let H = (V, E) be a hypergraph and p : V — R? be a realisation
of H in R%. We say that (H,p) is volume rigid if every continuous motion
of the vertices of (H,p) which preserves the volume of the hyperedges in
E results in a realisation which is congruent to p. The hypergraph H is
volume rigid in R? if some (or equivalently, every) generic realisation of
H in R? is volume rigid. We prove the following result (which extends
previous results of Kalai and Fogelsanger for the special case when j = 1).

Theorem. Suppose A is a simplicial d-manifold and H is the hypergraph
defined by the j-faces of H for some fixed 1 < j < d—1. Then H is volume
rigid in R+,

This is joint work with James Cruickshank and Shin-ichi Tanigawa.
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Summary of Discussions

Participants presented their latest research findings and highlighted key
challenges, sparking a range of engaging discussions. In particular, several
concrete open problems proposed during the meeting prompted partici-
pants to share their insights and collaboratively explore potential direc-
tions for future research.

Problems on graph theoretical analysis of non-negative
tensor decompositions and completions

(posed by Shin-ichi Tanigawa)

Tensor decompositions and completions are widely used in various con-
text of computer science. For statistical applications, it is required that
each entry in the decomposition is non-negative (since probability is non-
negative).

Tensor decompositions and completions can be understood in the rigid-
ity frameworks: unlike a conventional rigidity formulation, the underlying
graph is a k-regular hypergraph G and the measurement map fg of G is

fa(p) = (Z Hpu,z) (p € R™)
e€E(G)

j=1lwveEe

where p, ; denotes the i-th coordinate of the vertex v. The formulation
has been discussed in my paper with Cruickshank, Nixon, and Moham-
madi, and it may be considered as a hypergraph extension of the matrix
completion formulation due to Singer-Cucuringu.

A non-negative matrix decomposition or completion corresponds to
the case when each entry of p is non-negative.

Krone and Kubjas analyzed the non-negative matrix completion prob-
lem using rigidity. That corresponds to the case when the order of tensors
is two and the underlying graphs are complete.

Problems on tensegrity realizability of Wagner graphs
(posed by Shin-ichi Tanigawa)

The question concerns about the low dimensional realizability of tenseg-
rities.

A tensegrity in R? is defined as a triple (G, o,p), where G is a multi-
graph, o : E(G) — {—,+} is a sign function on the edge set of G,
and p : V(G) — R? is a point configuration. We say that (G,o,p) is
d-dimensional if the affine span of p(V(G)) is d-dimensional. We say
(G,0,q) is a deformation of (G,o,p) if o(ij)|lqi — g;|| < ollpi — p,l| for
every ij € E(G).

Here is a key definition. A multigraph G is d-realizable if for any
integer d’ > d and any d’-dimensional tensegrity (G, o,p) there is a d-
dimensional tensegrity (G, o,q) that is a deformation of (G, o,p). The
realizability number of G is defined as the smallest integer d such that G
is d-realizable.

This is the tensegrity version of the realizability of graphs by Connelly-
Belk (DCG2007) and it has been introduced by myself with a joint work
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with Ryoshun Oba. It is an unsolved open problem to characterize multi-
graphs with the realizability number at most three. In an on-going work
with Tibor and Daniel, we found that the realizability of the Wagner
graph is a key. The Wagner graph is a 3-regular connected graph with
8 vertices obtained from the octagon by drawing diagonal edges between
opposite vertices.

My open problem is to decide the realizable dimension of the Wagner
graph (with possible parallel edges). Since the Wagner graph is just a
graph with 8 vertices, it would be possible to check it by a computer. The
question is if there is a implementable algorithm for computing the realiz-
ability dimension. (I do not expect the algorithm to work in polynomial-
time.)

Problems on absolute 2-rigidity
(recalled by Jan Legersky)

In 1999, Hiroshi Maehara posed the problem to characterize absolutely
2-rigid graphs, where a graph G is called absolutely d-rigid if every injec-
tive realization of G in R? is rigid. The question is interesting only for
d = 2 since a graph is absolutely 1-rigid if and only if it is connected,
and absolutely d-rigid for d > 3 if and only if it is complete. The latter
statement follows from the fact the a so called butterfly motion come from
an injective realization such that two non-adjacent vertices are placed ar-
bitrarily and all the other vertices are placed on a line.

Clearly, a necessary condition on absolute 2-rigidity is 2-rigidity. A
sufficient, but not necessary, condition is given by non-existence of NAC-
colorings [13]. A stronger sufficient condition can be formulated using the
so called constant distance closure [14].

Discussions of the problem: Déaniel Garamvdlgyi proposed to attempt a
proof of NP-hardness. Eran Nevo suggested to look at 2-hyperconnectivity
matroid.

Problems on volume rigidity

(posed by Eran Nevo)

A pure (d — 1)-dimensional simplicial complex is volume rigid if for
some (eq. every) generic embedding of its vertices in R~!, every motion
of the vertices that preserves, up to first order, the volumes of its facets,
in fact does so for all d-subsets of the vertices. In a paper by Bulavka-N.-
Peled [2] we conjectured that:

Conj.1: For every compact connected surface without boundary S,
every triangulation A of S and every facet (triangle) F' € A, A\ {F'} is
volume rigid (in the plane).

Conj.2: For every d > 3, every triangulation A of the (d — 1)-sphere
and every facet F' € A, A\ {F} is volume rigid.

Conj.1 is known for the 2-sphere and the torus [2] and open otherwise.
(Without removing a triangle, it is known also for the projective plane
and the Klein bottle [2].) Conj.2 is open for every d > 4.
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Problems on circumsphere rigidity

(posed by Louis Theran)

Letd>1and2<k<d+1. If p=(p1,...,pxr) is a configuration of
affinely independent points in R?, the minimum radius r of a circumsphere
of p satisfies

T’2 _ det Ap
2det Ap

where Ap is the (k4 1) x (k + 1) Cayley-Menger matrix of p and Ap is
obtained from Ap by removing the first row and column.

A circumsphere framework, (H,p) is a pair with H = ([n], E) a hy-
pergraph with 2 < |o| < d+ 1 and p a configuration of n points in R,
We define a measurement map

det Ap,
pu(p) = <_2det Ap, >GGE
As usual, we say that (H,p) is locally rigid if there is a neighborhood
U > p so that if g € U and py(p) = pu(q), then q is congruent to p.
Circumsphere rigidity arises in some ongoing work with Beers, Haring-
ton, Leygoine, and Lim on identifiability problems in persistent homology.
We have shown that local circumsphere rigidity is a generic property and

that there are locally circumsphere rigid hypergraphs. Beyond this, little
is known. Some interesting problems are:

o Let 2 <r <d+1. Is the complete r-uniform hypergraph K, locally
circumsphere rigid when (") >dn — (dzl)?

r

e Let 2 <r < d+1. Is the complete r-uniform hypergraph K, globally
circumsphere rigid when (:) > dn — (d;l)?

e Sufficient conditions for local circumsphere rigidity, e.g., inductive
constructions.

Problems on uniqueness of degree sequences in
base decompositions

(posed by Shin-ichi Tanigawa)

Let KF be the k-uniform complete hypergraph on {vi,...,vn}, and
let M be a matroid on the edge set of K. For a subgraph H of K%, its
(labeled) degree sequence is defined to be deg(H) = (dg(v1),...,du(vn)),
where dg(v;) denotes the degree of v; in H.

Let G be a spanning subgraph of K whose edge set is the union
of edge-disjoint s bases of M. By a base-decomposition of G, we mean
a sequence (G1,...,Gs) of subgraphs of G such that G;’s are mutually
edge-disjoint and each E(G;) is a base of M.

The question we want to understand is for which matroid M a base-
decomposition has the unique degree sequence property. We say that a
base-decomposition (G1,...,Gs) has the unique degree sequence property
if there is no base-decomposition (Hi, .. .,HS) satisfying H1 # G1 and
deg(H1) = deg(Gh).

We have a proof showing that, if M is an even cycle matroid of a graph,
then there is no base-decomposition having the unique degree sequence
property. Our conjecture is that this is also the case for graphic matroids.
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Problems on rigidity matroid for graphs embedded
on surfaces via Delta-matroids

(posed by Brigitte Servatius)

Bouchet associated a Delta-matroid for a cellular map on a surface
using topology. In [1], we give a combinatorial version. There are two
matroids arising from this Delta-matroid, namely the lower matroid whose
bases are the feasible sets of minimal size and the upper matroid whose
bases are feasible sets of maximal size. The difference in rank of these
two matroids is 2 minus the Euler characteristic of the surface. The lower
matroid is the cycle matroid of the embedded graph, while the upper
matroid is the cocycle matroid of the geometric dual. on the sphere upper
and lower matroid are identical and the 2-dimensional rigidity matroid is
the Dilworth truncation of two copies of the cycle matroid for a planar
graph. For cellular embeddings of a graph on other surfaces we propose to
consider the Dilworth truncation of the union of upper and lower matroid
as the rigidity matroid of the graph on the surface.

Problems on infinitesimal rigidity of plane frame-
works with dihedral symmetry

(posed by Bernd Schulze)

A well-studied problem in rigidity theory is to combinatorially chara-
terise the graphs that give symmetry-forced rigid frameworks in the plane
if realised generically with the given symmetry. (A framework is forced-
symmetric rigid if it has no non-trivial symmetry-preserving motions.)
A key tool to study forced-symmetric infinitesimal rigidity is the orbit
rigidity matrix, which is an analog of the standard rigidity matrix for the
forced-symmetric setting and was first introduced by Schulze and White-
ley in 2010. Using these matrices, characterisations of symmetry-generic
symmetry-forced rigid frameworks in the plane have been obtained for the
reflection group, rotational (cyclic) groups and dihedral groups of order
2k+1, where k is at least 1. See the work of Kaszanitzky, Jorddn and
Tanigawa (2016) and of Malestein and Theran (2015), for example.

To study whether a symmetry-generic framework is infinitesimally
rigid (instead of just symmetry-forced rigid), phase-symmetric orbit rigid-
ity matrices have been established for groups of order 2 and 3 by Schulze
and Tanigawa in 2015, and for arbitrary rotational groups by Ikeshita and
Tanigawa shortly afterwards. Each of these matrices corresponds to an
irreducible representation of the group and allows an analysis of the in-
finitesimal motions and self-stresses of the symmetry type described by the
representation. Using these phase-symmetric orbit rigidity matrices and
their underlying combinatorial structure, known as group-labeled quotient
graphs or gain graphs, characterisations for symmetry-generic infinitesi-
mal rigidity have been obtained for a large class of cyclic groups by the
above-mentioned authors.

It remains a key challenge to analyse plane framework with dihedral
symmetry. In particular, dihedral groups of order larger than 4 are non-
abelian and hence have irreducible representations of order larger than 1.
It is an open question how to define phase-symmetric orbit rigidity matri-
ces for these representations. A related question is what the underlying
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combinatorial structures of these matrices look like. An answer to these
questions may lead to interesting new types of rigidity matroids.

Problems on volume constrained rigidity of hyper-
graphs
(posed by Bill Jackson)

Let H = (V, E) be a hypergraph and p : V — R? be a realisation of
H in R?. We say that (H,p) is volume rigid if every continuous motion
of the vertices of (H,p) which preserves the volume of the hyperedges in
FE results in a realisation which is congruent to p. The hypergraph H is
volume rigid in R? if some (or equivalently, every) generic realisation of
H in R? is volume rigid.
Problem 1. Suppose P is a convex simplicial d-polytope, H is the hy-
pergraph defined by the j-faces of P for some fixed 1 < j < d—2 and p
is the realisation of H in R? given by the positions of the vertices of P.
Is (H, p) volume rigid in R?? (This is true when j = 1 by results of Dehn
and Whiteley.)

Problem 2. Suppose H is a j-uniform hypergraph and H is volume rigid
in R4 for some 2 < j < d. Is H volume rigid in R?? (We can use
Whiteley’s Coning Lemma to show this is true when 7 = 1.)
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Challenges and Future Directions

By highlighting recent interactions between rigidity theory and algebraic
statistics, the importance of algebraic matroids was reaffirmed. New ap-
plications of algebraic matroids, such as volume rigidity and identifiability
in persistent homology, were also discussed. However, it was noted that,
despite the rapid expansion of application areas for algebraic matroids,
there remains a lack of effective tools for analyzing their combinatorial
structure. In this context, several specific challenges and future research
directions were identified.

e Understanding the relationship between operations on algebraic va-
rieties and operations on matroids: In algebraic geometry, various
construction operations on algebraic varieties have been proposed,
while in combinatorics, corresponding construction operations on
matroids have been developed independently. However, certain op-
erations exhibit striking similarities, and understanding these sim-
ilarities through the lens of algebraic matroids is expected to shed
light on the seemingly complex structure of algebraic matroids. In
particular, some of the participants initiated a project exploring the
connection between matroid union and secant varieties.

e Analysis of algebraic matroids via tropicalization: Except for the
cases of Cayley-Menger varieties and Grassmannians, the analysis of
matroid structures through the tropicalization of algebraic varieties
has not been carried out, and a more systematic understanding is
needed.

e Combinatorics of matroids on hypergraphs: Matroids on graphs are
one of the central topics in matroid theory, and various types of
graph-based matroids have been proposed, with their relationships
and combinatorial properties being well-studied. In contrast, ma-
troids on hypergraphs, which are particularly important in algebraic
statistics, seem to lack systematic understanding to date. Some of
the participants initiated a project exploring combinatorial charac-
terizations of sparsity matroids of hypergraphs.

e Global rigidity under general measurements and matroid redun-
dancy or connectivity: Global rigidity in Euclidean rigidity theory is
characterized by the redundancy or connectivity of the rigidity ma-
troid, and thus, graph conditions ensuring redundancy or connectiv-
ity of the rigidity matroid have been extensively studied. However,
the relationship between global rigidity under general measurements
and the redundancy or connectivity of the corresponding algebraic
matroid remains largely unexplored.

Some of presentations at the workshop are now on arXiv:

e Eran Nevo published a preprint [19] on his open problem about k-
volume rigidity of simplicial complexes in R? (with Alan Lew, Yuval
Peled, Orit Raz).

e Bill Jackson and Shin-ichi Tanigawa (with James Cruickshank) pub-
lished a preprint [5] on the open problem about volume constrained
rigidity of hypergraphs.

e Sean Dewar, Georg Grasegger, and Jan Legersky published a preprint [8]
on constructing reflection-symmetric flexible realisations of graphs.

e Oleg Karpenkov, Fatemeh Mohammadi, and Bernd Schulze (with
Christian Miiller) published a preprint [18] on a generalization of
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Maxwell-Cremona lifting to the three-dimensional case and further
to multidimensional cases.

Oleg Karpenkov, Fatemeh Mohammadi, and Bernd Schulze (with
Christian Miiller) published a preprint [17] on new type of self-
stressed tensegrities that admits remarkable Dirichlet periodicity fill-
ing the triangle.

Oleg Karpenkov published a preprint [16] on tensegrities on mani-
folds.

Daniel Garamvolgyi published a preprint [12] on the reconstruction
of highly connected graphs from matroids.

Tibor Jorddn published a preprint [4] on minimally rigid tensegrity
frameworks (with Adam D. W. Clay and Sara H. Toth).

Fatemeh Mohammadi, Louis Theran, and Jessica Sidman are final-

izing a paper titled ’Algebraic Matroids of Secant Varieties,” which
originated from the discussions during the meeting.
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