
Towards a Unifying Logic-Based Framework for

 Programming

 Databases

 AI knowledge representation and problem-solving

Robert Kowalski and Fariba Sadri

Department of Computing
Imperial College London

1

Outline

• KELPS - a simplified kernel for reactive logic-based
production-style systems

• Related work (MetateM, Transaction Logic)

• LPS = KELPS + Logic Programs

• MALPS = Multi Agent LPS (The Dining Philosophers)

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

2

KELPS - a simplified kernel for reactive
logic-based production-style systems

Programs are reactive rules with explicit time
in the logical form:

 X [antecedent(X) Y consequent(X, Y)]
abbreviated antecedent(X) consequent(X, Y)

whenever the antecedent is true,
then the consequent is true in the future.

3

Model-theoretic semantics: Operational Semantics:
facts are time-stamped facts updated destructively
 without time stamps
Computation:
model generation

old-fact
fact1
fact2
…
factn

new-fact
fact1
fact2
…
factn

ei Si Si+1

 ti ti+1

4

KELPS = Composite events + rules + composite actions

 pre-sensor detects possible fire in area A at time T1 ∧
 smoke detector detects smoke in area A at time T2 ∧
 |T1 – T2 | 60 sec ∧ max(T1, T2, T)

 activate local fire suppression in area A at time T3 ∧ T <T3 T + 10 sec ∧
 send security guard to area A at time T4 ∧ T3 <T4 T3 + 30 sec

∨ call fire department to area A at time T3‘ ∧ T <T3‘ T + 120 sec

5

Syntax of reactive rules in KELPS

 antecedent1 (X) ∧… ∧ antecedentn (X)

 consequent11 (X, Y) ∧… ∧ consequent1l1 (X, Y)
 ∨ …
 ∨ consequentm1 (X, Y) ∧… ∧ consequentmlm (X, Y)

Each antecedenti (X) and consequenti j(X, Y) is:

• an FOL condition in the vocabulary of state predicates

(operationally a query to the extended current state)

• an event atom representing an event (including action)

• a temporal constraint time1 < time2 or time1 ≤ time2

 Each consequenti1 (X, Y) ∧… ∧ consequentil1 (X, Y) is a plan.

6

Outline

• KELPS

• Related work (MetateM, Transaction Logic)

• LPS = KELPS + Logic Programs

• MALPS = Multi Agent LPS (The Dining Philosophers)

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

7

MetateM (Michael Fisher et al)

Programs = reactive rules in modal temporal logic:

‘past and present formula’ implies ‘present or future formula’

Computation = model generation.

Model = possible worlds connected by an accessibility relation.

States updated non-destructively by frame axioms.

8

Transaction Logic (Bonner and Kifer)

 Programs = sequences of FOL queries and database updates.

 Computation = model generation.

 Model = possible worlds.
 Truth defined relative to paths between possible worlds.

 States (databases) updated destructively.

9

Outline

• KELPS

• Related work

• LPS = KELPS + Logic Programs

• MALPS = Multi Agent LPS (The Dining Philosophers)

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

10

LPS = KELPS + Logic Programs

 Programs = reactive rules + logic programs with FOL queries.

 Computation = model generation.

 Model = single, minimal Herbrand model with time stamps.
 Truth defined as in classical FOL.

 States updated destructively.

11

LPS framework <R, L, D> and current state S

The state S is a set of ground atomic sentences, representing:

• the extensional part of a deductive database, or
• program variables changed by destructive assignment, or
• a Herbrand model of the current state of the world.

Reactive rules R: X [antecedent(X) Y consequent(X, Y)]

Logic program L = Lint Levents Ltimeless Ltemp

Ltimeless defines time independent predicates.
Lint defines intensional predicates in terms of extensional predicates.
Levents defines composite events in terms of atomic events.
Ltemp defines temporal predicates <, .

Domain theory D is a logic program that
 defines preconditions and postconditions of atomic events

12

Blocks world <R, L, D> and current state S

R: request(on(Block, Place), T1) make-on(Block, Place, T2, T3) T1 < T2

S* : Deductive database: extensional predicates on(Block, Place, T).

Lint: clear(table, T)
 clear(Block, T) X on(X, Block, T)

Levents: make-on(Block, Place, T, T) on(Block, Place, T)
 make-on(Block, Place, T1, T3) make-clear(Block, TB1, TB2)
 make-clear(Place, TP1, TP2) min(TB1, TP1, T1) max(TB2, TP2, T2)
 move(Block, Place, T3) T2 < T3

 make-clear(Place, T, T) clear(Place, T)
 make-clear(Place, T1, T3) on(Block, Place, T1)
 make-clear(Block, T1, T2) move(Block, table, T3) T2 < T3

D: possible(move(Block, Place), T) clear(Block, T) clear(Place, T) Block Place
 initiates(move(Block, Place), on(Block, Place), T)
 terminates(move(Block, Place), on(Block, Support), T) on(Block, Support,T)

13

Dialogue/parsing example <R, L, D> where L = Levents D = {} S = {}

Reactive rule R:
sentence(T1, T2) sentence (T3, T4) T2 < T3 < T2 + 10

Atomic events:
word(my, 1, 2) word(name, 2, 3) word(is, 3, 4) word(bob, 4, 5)

Composite events (and actions) Levents :

adjective(T1, T2) word(my, T1, T2)
adjective(T1, T2) word(your, T1, T2)

noun(T1, T2) word(name, T1, T2) verb(T1, T2) word(is, T1, T2)
noun(T1, T2) word(bob, T1, T2) noun(T1, T2) word(what, T1, T2)

sentence(T1, T3) noun-phrase(T1, T2) verb-phrase(T2, T3)
noun-phrase(T1, T3) adjective(T1, T2) noun(T2, T3)
noun-phrase(T1, T2) noun(T1, T2)
verb-phrase(T1, T3) verb(T1, T2) noun-phrase(T2, T3)
verb-phrase(T1, T2) verb(T1, T2)
 14

The reactive rule is true in the sequence of atomic and
composite events

{word(my, 1, 2) word(name, 2, 3) word(is, 3, 4)
word(bob, 4, 5) word(what, 6, 7) word(is, 7, 8)
word(your, 8, 9) word(name, 9, 10)
adjective(1, 2) noun(2, 3) verb(3, 4)
noun(4, 5) noun(6, 7) verb(7, 8)
adjective(8, 9) noun(9, 10) noun-phrase(1, 3)
noun-phrase(2, 3) noun-phrase(4, 5) verb-phrase(3, 5)
sentence(2, 4) sentence(2, 5) sentence(1, 5)
noun-phrase(6, 7) noun-phrase(8, 10) noun-phrase(9, 10)
verb-phrase(7, 10) sentence(6, 8) sentence(6, 10)}
 Temp

where Temp (includes 5 < 6) is the extension of the inequality
relation defined by Ltemp .

15

LPS: alternative external notations

Transaction Logic:

P Q means P(T1) Q(T2) T1 < T2

 or P(T1 , T2) Q(T3, T4) T2 < T3

Modal temporal logic:

P ◊Q means P(T1) Q(T2) T1 < T2.
P Q means P(T) Q(T+1)
 or P(T1) Q(T2) T1 <T2 T1+ ε

Graphical notation:
 t1 t2
 P
 R
 Q t3 t4

means P(T1) Q(T2) R(T3) T1 + t1 T3 T1 + t2
 T2 + t3 T3 T2 + t4

16

Outline

• KELPS

• Related work

• LPS

• MALPS = Multi Agent LPS (The Dining Philosophers)

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

17

The Dining Philosophers

18

The Dining Philosophers

The initial state S0: available(fork0)
 available(fork1)
 available(fork2)
 available(fork3)
 available(fork4)

Ltimeless adjacent(fork0, philosopher(0), fork1)
 adjacent(fork1, philosopher(1), fork2)
 adjacent(fork2, philosopher(2), fork3)
 adjacent(fork3, philosopher(3), fork4)
 adjacent(fork4, philosopher(4), fork0)

19

The Dining Philosophers – with time-free syntax

time-to-eat(philosopher(I))
 dine(philosopher(I))

dine(philosopher(I))
 think(philosopher(I)),
 pickup-forks(philosopher(I)),
 eat(philosopher(I)),
 putdown-forks(philosopher(I))

20

Atomic actions are defined by the
domain specific event theory D

 pickup-forks(philosopher(I))
 terminates available(F1) and available(F2)
 preconditions available(F1), available(F2) if
 adjacent(F1, philosopher(I), F2).

 putdown-forks(philosopher(I))
 initiates available(F1) and available(F2) if
 adjacent(F1, philosopher(I), F2).

21

The reactive rule is true in the sequence of states and actions:

S0: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)}

A1: {think(philosopher(0)), think(philosopher(1)), think(philosopher(2)), think(philosopher(3)), think(philosopher(4)) }

S1: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)}

A2: {pickup-forks(philosopher(0)), pickup-forks(philosopher(2))}

S2: {available(fork4)}

A3: {eat(philosopher(0)), eat(philosopher(2))}

S3: {available(fork4)}

A4: {putdown-forks(philosopher(0)), putdown-forks(philosopher(2))}

S4: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)}

A5: {pickup-forks(philosopher(1)), pickup-forks(philosopher(3))}

S5: {available(fork0)}

A6: {eat(philosopher(1)), eat(philosopher(3))}

S6: {available(fork0)}

A7: {putdown-forks(philosopher(1)), putdown-forks(philosopher(3))}

S7: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)}

A8: {pickup-forks(philosopher(4))}

S8: {available(fork1), available(fork2), available(fork3)}

A9: {eat(philosopher(4))}

S9: {available(fork1), available(fork2), available(fork3)}

A10: {putdown-forks(philosopher(4))}

S10: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 22

Outline

• KELPS

• Related work

• LPS

• MALPS

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

23

Model-theoretic semantics

Given <R, L, D> and initial state S0* with explicit time,
ex1*,…, exi*,…. sequence of sets of external events with explicit time,

the computational task is to generate a sequence of sets of actions
a1*,…, ai*,…. such that R is true in the “intended” minimal model of:

where ei* = exi * ai *

Si = (Si-1 – {p| terminates(ei, p, ti) is true in ei* Si-1* Ltimeless Lint D})
 {p | initiates(ei, p, ti) is true in ei* Si-1* Ltimeless Lint D}

Si* = {holds(p, ti) | p Si at time ti}

L S0* S1* Si* ...
e1* e2* … ei* ….

24

Outline

• KELPS

• Related work

• LPS

• MALPS

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

25

The operational semantics is an
observe–decide–think –act cycle.

The i-th cycle transforms Si-1, Ri-1, Gi-1 and ei
into Si, Ri, Gi, and actions ai+1

• Gi is a conjunction of goals.

• Each goal has the form:

 subgoal11 (X, Y) ∧… ∧ subgoal1l1 (X, Y)
 ∨ …
 ∨ subgoalm1 (X, Y) ∧… ∧ subgoalmlm (X, Y)

 Each subgoalij is an event, FOL condition or temporal constraint.

26

Simplified operational semantics (for LPS - Levents)

Step 0. Observe. Use ei to transform Si-1 into Si.

Step 1. Think. If earlier-antecedents(X) later-antecedents(X) consequent(X, Y)
is in Ri-1 and earlier-antecedents(x) is true in ei* Si* Ltimeless Lint
then simplify any temporal constraints in later-antecedents(x) consequent(x, Y)
and add the result to Ri-1 to obtain Ri.

If later-antecedents(x) is empty, then add the result to Gi-1 as a new goal.

Step 2.1. Decide. Choose a set P of plans from one or more goals in Gi-1.

Step 2.2. Think. For every plan in P, choose a form
earlier-consequents(Y) later-consequents(Y).
If earlier-consequents(y) is true in ei* Si* Ltimeless Lint
then simplify any temporal constraints in later-consequents(y)
and add the result as an new plan to the same goal in P to obtain Gi.

Step 2.3. Act. For every plan in P of a form
actions(Z) other-consequents(Z), choose such a form,
attempt to execute actions(Z)
and add any successfully executed instances actions(z) to ei+1.

27

The operational semantics is sound with respect to
the model-theoretic semantics.

Theorem. Given external events ex1,…, exn,….,
suppose the operational semantics generates:

 S0, R0, G0 , a1, … ,Si, Ri, Gi, ai+1, ….

Let M be the “intended” minimal model of:

Then R0 G0 is true in M if and only if

for every new goal G added to a goal state Gi,
there exists a goal state Gj, j i such that the empty plan (equivalent to true)
is added as a new plan to the same goal as G in Gj.

L S0* S1* Si* ...
 e1* e2* … ei* ….

28

Incompleteness

The operational semantics is incomplete.
It cannot preventively make a rule true by making its
antecedents false:

attacks(X, me, T1) ¬ prepared-for-attack(me, T1)
 surrender(me, T2) T1 < T2 T1 +

It cannot proactively make a reactive rule true by making its
consequents true before its antecedents become true:

enter-bus(me, T1)
 have-ticket(me, T2) T1 < T2 T1 +

29

Outline

• KELPS

• Related work

• LPS

• MALPS

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

30

Model-theoretic semantics – an alternative formulation
with general purpose event theory Etholds

holds(P, T2) happens(E, T1, T2) initiates(E, P, T1)
holds(P, T2) holds(P, T1) happens(E, T1, T2) ¬ terminates(E, P, T1)

Given <R, L, D> and initial state S0* with explicit time,
ex1*,…, exi*,…. sequence of sets of external events with explicit time,

the computational task is to generate a sequence of sets of actions
a1*,…, ai*,…. such that R is true in the “intended” minimal model of:

ETholds L D S0*
e1* e2* … ei* ….

31

Solving the computational aspect of the frame problem

Theorem. The “intended” minimal model of:

 is identical to the “intended” minimal model of:

ETholds L D S0*
e1* e2* … ei* ….

L D S0* S1* Si* ...
e1* e2* … ei* ….

32

Conclusions

• Destructive assignment does not need a semantics.
 It is the semantics.

• Challenge: Find a framework that unifies

 Programming
 Databases
 AI knowledge representation and problem-solving

33

