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KELPS - a simplified kernel for reactive  
logic-based  production-style systems 
  

Programs are reactive rules with explicit time 
in the logical form: 
     
     X [antecedent(X) Y consequent(X, Y)]  
abbreviated    antecedent(X)        consequent(X, Y)  
  
 
whenever  the antecedent is true, 
then    the consequent is true in the future.  
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Model-theoretic semantics:      Operational Semantics:   
facts are time-stamped    facts  updated  destructively   
          without  time  stamps 
Computation:             
model generation  
 
 
 
 
 
 
 
 
 
 
 

old-fact 
fact1 
fact2 
… 
factn 
 

new-fact 
fact1 
fact2 
… 
factn 
 

ei Si Si+1 

 ti  ti+1   
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KELPS = Composite events + rules + composite actions 

 pre-sensor detects possible fire in area A at time T1 ∧ 
 smoke detector detects smoke in area A at time T2  ∧ 
 |T1 – T2 |   60 sec ∧ max(T1, T2, T) 
 
  activate local fire suppression in area A at time T3  ∧ T <T3   T + 10 sec ∧ 
  send security guard to area A at time T4   ∧ T3 <T4   T3 + 30 sec 
 
∨  call fire department to area A at time T3‘  ∧ T <T3‘   T +  120 sec 
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Syntax of reactive rules in KELPS 

  antecedent1 (X) ∧… ∧ antecedentn (X)  
   
  consequent11 (X, Y) ∧… ∧ consequent1l1 (X, Y)  
 ∨ … 
 ∨ consequentm1 (X, Y) ∧… ∧ consequentmlm (X, Y)  
  
Each antecedenti (X)  and consequenti j(X, Y) is: 
  
• an FOL condition in the vocabulary of state predicates 

(operationally a query to the extended current state) 
 
• an event atom representing an event (including action) 
 
• a temporal constraint time1 < time2 or time1 ≤ time2 
  
 Each consequenti1 (X, Y) ∧… ∧ consequentil1 (X, Y) is a plan. 
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MetateM (Michael Fisher et al) 

 
Programs = reactive rules in modal temporal logic: 

  
‘past and present formula’ implies ‘present or future formula’ 

  
Computation = model generation. 
 
Model = possible worlds connected by an accessibility relation. 
 
States updated non-destructively by frame axioms. 
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Transaction Logic (Bonner and Kifer) 
  
 Programs = sequences of FOL queries and database updates.  
  
 Computation = model generation. 
 
 Model = possible worlds.  
 Truth defined relative to paths between possible worlds. 
 
 States (databases) updated destructively. 
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LPS = KELPS + Logic Programs 
  
 Programs = reactive rules + logic programs with FOL queries. 
  
 Computation = model generation. 
 
 Model = single, minimal Herbrand model with time stamps. 
 Truth defined as in classical FOL. 
 
 States updated destructively. 
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LPS framework <R, L, D>  and current state S 

The state S is a set of ground atomic sentences, representing: 
 

•  the extensional part of a deductive database, or 
•  program variables changed by destructive assignment, or 
•  a Herbrand model of the current state of the world.  
 
Reactive rules R: X [antecedent(X) Y consequent(X, Y)]  
 
Logic program L = Lint  Levents  Ltimeless  Ltemp   
 
Ltimeless  defines time independent predicates. 
Lint  defines intensional predicates in terms of extensional predicates.  
Levents  defines composite events in terms of atomic events.  
Ltemp defines temporal predicates <, . 
 
Domain theory D is a logic program that 
  defines preconditions and postconditions of atomic events 

12 



Blocks world <R, L, D>  and current state S 

R: request(on(Block, Place), T1) make-on(Block, Place, T2, T3)  T1 < T2 
 
S* :  Deductive database:  extensional predicates on(Block, Place, T). 
 
Lint: clear(table, T) 
 clear(Block, T)   X on(X, Block, T) 
 
Levents:  make-on(Block, Place, T, T)   on(Block, Place, T) 
     make-on(Block, Place, T1, T3)   make-clear(Block, TB1, TB2)  
   make-clear(Place, TP1, TP2)   min(TB1, TP1, T1)  max(TB2, TP2, T2)  
   move(Block, Place, T3)  T2 < T3  
  
   make-clear(Place, T, T)  clear(Place, T)  
   make-clear(Place, T1, T3)  on(Block, Place, T1) 
     make-clear(Block, T1, T2) move(Block, table, T3)  T2 < T3 
 
D: possible(move(Block, Place), T)  clear(Block, T)  clear(Place, T)  Block  Place 
 initiates(move(Block, Place), on(Block, Place), T)  
 terminates(move(Block, Place), on(Block, Support), T)  on(Block, Support,T) 
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Dialogue/parsing example <R, L, D> where L = Levents D = {} S = {} 

Reactive rule R: 
sentence(T1, T2)  sentence (T3, T4)  T2 < T3 < T2 + 10  
 
Atomic events: 
word(my, 1, 2)  word(name, 2, 3)   word(is, 3, 4)  word(bob, 4, 5)
  
Composite events (and actions) Levents : 
 

adjective(T1, T2)  word(my, T1, T2)   
adjective(T1, T2)  word(your, T1, T2) 
 

noun(T1, T2)  word(name, T1, T2) verb(T1, T2)  word(is, T1, T2) 
noun(T1, T2)  word(bob, T1, T2)  noun(T1, T2)  word(what, T1, T2) 
 

sentence(T1, T3)  noun-phrase(T1, T2)  verb-phrase(T2, T3) 
noun-phrase(T1, T3)  adjective(T1, T2)  noun(T2, T3) 
noun-phrase(T1, T2)  noun(T1, T2) 
verb-phrase(T1, T3)  verb(T1, T2)  noun-phrase(T2, T3) 
verb-phrase(T1, T2)  verb(T1, T2) 
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The reactive rule is true in the sequence of atomic and 
composite events 
 

{word(my, 1, 2)  word(name, 2, 3)   word(is, 3, 4)  
word(bob, 4, 5)   word(what, 6, 7)  word(is, 7, 8)  
word(your, 8, 9)  word(name, 9, 10) 
adjective(1, 2)   noun(2, 3)    verb(3, 4)   
noun(4, 5)    noun(6, 7)    verb(7, 8) 
adjective(8, 9)   noun(9, 10)   noun-phrase(1, 3) 
noun-phrase(2, 3)  noun-phrase(4, 5)  verb-phrase(3, 5) 
sentence(2, 4)    sentence(2, 5)   sentence(1, 5) 
noun-phrase(6, 7)  noun-phrase(8, 10)  noun-phrase(9, 10) 
verb-phrase(7, 10)  sentence(6, 8)   sentence(6, 10)}  
 Temp 
 
where Temp (includes 5 < 6) is the extension of the inequality 
relation defined by Ltemp . 
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LPS: alternative external notations 

Transaction Logic: 
 
P  Q means P(T1)  Q(T2)   T1 < T2 

   or P(T1 , T2)  Q(T3, T4)   T2 < T3 
 
 
Modal temporal logic: 
 
P  ◊Q means P(T1)  Q(T2)   T1 < T2.  
P  Q means P(T)  Q(T+1) 
           or P(T1)  Q(T2)   T1 <T2  T1+ ε 
 
 
Graphical notation: 
     t1  t2 
  P 
            R 
  Q   t3  t4 
 
means P(T1)  Q(T2)  R(T3)  T1 + t1  T3   T1 + t2   
       T2 + t3  T3   T2 + t4  
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The Dining Philosophers 
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The Dining Philosophers  

The initial state S0: available(fork0) 
      available(fork1) 
      available(fork2) 
      available(fork3) 
      available(fork4) 
 
Ltimeless      adjacent(fork0, philosopher(0), fork1)  
      adjacent(fork1, philosopher(1), fork2) 
      adjacent(fork2, philosopher(2), fork3) 
      adjacent(fork3, philosopher(3), fork4) 
      adjacent(fork4, philosopher(4), fork0) 
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The Dining Philosophers  –  with time-free syntax 

time-to-eat(philosopher(I))  
 dine(philosopher(I)) 
 
dine(philosopher(I))  
 think(philosopher(I)),  
 pickup-forks(philosopher(I)),  
 eat(philosopher(I)),  
 putdown-forks(philosopher(I)) 
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Atomic actions are defined by the  
domain specific event theory D 

  
       
 pickup-forks(philosopher(I))  
 terminates  available(F1) and available(F2) 
  preconditions  available(F1), available(F2) if  
     adjacent(F1, philosopher(I), F2). 
  
 putdown-forks(philosopher(I))  
 initiates   available(F1) and available(F2) if  
     adjacent(F1, philosopher(I), F2). 
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The reactive rule is true in the sequence of states and actions: 

S0: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 

A1: {think(philosopher(0)), think(philosopher(1)), think(philosopher(2)), think(philosopher(3)), think(philosopher(4)) } 

S1: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 

A2: {pickup-forks(philosopher(0)), pickup-forks(philosopher(2))} 

S2: {available(fork4)} 

A3: {eat(philosopher(0)), eat(philosopher(2))} 

S3: {available(fork4)} 

A4: {putdown-forks(philosopher(0)), putdown-forks(philosopher(2))} 

S4: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 

A5: {pickup-forks(philosopher(1)), pickup-forks(philosopher(3))} 

S5: {available(fork0)} 

A6: {eat(philosopher(1)), eat(philosopher(3))} 

S6: {available(fork0)} 

A7: {putdown-forks(philosopher(1)), putdown-forks(philosopher(3))} 

S7:  {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 

A8: {pickup-forks(philosopher(4))} 

S8:  {available(fork1), available(fork2), available(fork3)} 

A9: {eat(philosopher(4))} 

S9: {available(fork1), available(fork2), available(fork3)} 

A10: {putdown-forks(philosopher(4))} 

S10: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 22 
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Model-theoretic semantics 

Given <R, L, D>  and initial state S0*  with explicit time, 
ex1*,…, exi*,…. sequence of sets of external events with explicit time, 
  
the computational task is to generate a sequence of sets of actions  
a1*,…, ai*,…. such that  R is true in the “intended” minimal model of: 
     
 
 
 
 
where  ei*   = exi *    ai *  
 
Si = (Si-1 – {p| terminates(ei, p,  ti)  is true in ei*  Si-1*  Ltimeless  Lint  D} ) 
       {p | initiates(ei, p, ti)      is true in ei*  Si-1*  Ltimeless  Lint  D}  
 
Si* =  {holds(p, ti) | p  Si at time ti}   
  
 
 

L   S0*   S1*   .... Si* ...    
e1*      e2*         … ei*    ….  
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The operational semantics is an  
observe–decide–think –act cycle. 

The i-th cycle transforms Si-1, Ri-1, Gi-1 and ei 
into  Si, Ri, Gi, and actions ai+1 
 
• Gi is a conjunction of goals. 
 
• Each goal has the form: 
 

  subgoal11 (X, Y) ∧… ∧ subgoal1l1 (X, Y)  
 ∨ … 
 ∨ subgoalm1 (X, Y) ∧… ∧ subgoalmlm (X, Y)  

 
 Each subgoalij is an event, FOL condition or temporal constraint. 
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Simplified operational semantics (for LPS -  Levents ) 

Step 0. Observe. Use ei to transform Si-1 into Si. 
 
Step 1. Think. If earlier-antecedents(X)  later-antecedents(X)  consequent(X, Y)  
is in Ri-1    and   earlier-antecedents(x) is true in ei*  Si*  Ltimeless  Lint  
then simplify any temporal constraints in  later-antecedents(x)  consequent(x, Y)  
and add the result to Ri-1 to obtain Ri. 
 
If later-antecedents(x) is empty, then add the result to Gi-1 as a new goal. 
 
Step 2.1. Decide. Choose a set P of plans from one or more goals in Gi-1.  
 
Step 2.2. Think. For every plan in P, choose a form  
earlier-consequents(Y)  later-consequents(Y).  
If earlier-consequents(y) is true in ei*  Si*  Ltimeless  Lint  
then simplify any temporal constraints in later-consequents(y)  
and add the result as an new plan to the same goal in P to obtain Gi. 
 
 

Step 2.3. Act. For every plan in P of a form  
actions(Z)  other-consequents(Z),  choose such a form, 
attempt to execute actions(Z)  
and add any successfully executed instances actions(z) to ei+1. 
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The operational semantics is sound with respect to  
the model-theoretic semantics. 

Theorem. Given external events ex1,…, exn,….,  
suppose the operational semantics generates: 
 
    S0, R0, G0 , a1, … ,Si, Ri, Gi, ai+1, ….  
 
Let M be the “intended” minimal model of: 
  
 
 
 
 
 
Then R0  G0  is true in M  if and only if  
 
for every new goal G added to a goal state Gi,  
there exists a goal state Gj, j  i such that the empty plan  (equivalent to true)  
is added as a new plan to the same  goal as G in Gj.  
 
 
 

L   S0*   S1*   .... Si* ...   
 e1*      e2*      … ei*    ….  
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Incompleteness 

 
The operational semantics is incomplete.  
It cannot preventively make a rule true by making its 
antecedents false: 
 

attacks(X, me, T1)  ¬ prepared-for-attack(me, T1)  
  surrender(me, T2)  T1 < T2   T1 +  

 
It cannot proactively make a reactive rule true by making its 
consequents true before its antecedents become true: 

  
enter-bus(me, T1)  
 have-ticket(me, T2)  T1 < T2  T1 +  
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Model-theoretic semantics – an alternative formulation 
with general purpose event theory Etholds 

holds(P, T2)  happens(E, T1, T2)  initiates(E, P, T1) 
holds(P, T2)  holds(P, T1)  happens(E, T1, T2)  ¬ terminates(E, P, T1) 
 
Given <R, L, D>  and initial state S0*  with explicit time, 
ex1*,…, exi*,…. sequence of sets of external events with explicit time, 
  
the computational task is to generate a sequence of sets of actions  
a1*,…, ai*,…. such that  R is true in the “intended” minimal model of: 
 
 
  
    

  
 

ETholds    L  D   S0*    
e1*      e2*      … ei*    ….  
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Solving the computational aspect of the frame problem 
 

Theorem. The “intended” minimal model of: 
 
 
 
  
 is identical to the “intended” minimal model of: 
 
           
   
 
 
 
 
 

 

ETholds  L  D   S0*    
e1*      e2*      … ei*    ….  

L  D     S0*   S1*   .... Si* ...    
e1*      e2*         … ei*    ….  
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Conclusions 

 
•  Destructive assignment does not need a semantics. 
  It is the semantics. 

 
• Challenge:  Find a framework that unifies 
   
   Programming 
   Databases 
   AI knowledge representation and problem-solving 
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