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KELPS - a simplified kernel for reactive  
logic-based  production-style systems 
  

Programs are reactive rules with explicit time 
in the logical form: 
     
     X [antecedent(X) Y consequent(X, Y)]  
abbreviated    antecedent(X)        consequent(X, Y)  
  
 
whenever  the antecedent is true, 
then    the consequent is true in the future.  
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Model-theoretic semantics:      Operational Semantics:   
facts are time-stamped    facts  updated  destructively   
          without  time  stamps 
Computation:             
model generation  
 
 
 
 
 
 
 
 
 
 
 

old-fact 
fact1 
fact2 
… 
factn 
 

new-fact 
fact1 
fact2 
… 
factn 
 

ei Si Si+1 

 ti  ti+1   
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KELPS = Composite events + rules + composite actions 

 pre-sensor detects possible fire in area A at time T1 ∧ 
 smoke detector detects smoke in area A at time T2  ∧ 
 |T1 – T2 |   60 sec ∧ max(T1, T2, T) 
 
  activate local fire suppression in area A at time T3  ∧ T <T3   T + 10 sec ∧ 
  send security guard to area A at time T4   ∧ T3 <T4   T3 + 30 sec 
 
∨  call fire department to area A at time T3‘  ∧ T <T3‘   T +  120 sec 
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Syntax of reactive rules in KELPS 

  antecedent1 (X) ∧… ∧ antecedentn (X)  
   
  consequent11 (X, Y) ∧… ∧ consequent1l1 (X, Y)  
 ∨ … 
 ∨ consequentm1 (X, Y) ∧… ∧ consequentmlm (X, Y)  
  
Each antecedenti (X)  and consequenti j(X, Y) is: 
  
• an FOL condition in the vocabulary of state predicates 

(operationally a query to the extended current state) 
 
• an event atom representing an event (including action) 
 
• a temporal constraint time1 < time2 or time1 ≤ time2 
  
 Each consequenti1 (X, Y) ∧… ∧ consequentil1 (X, Y) is a plan. 
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MetateM (Michael Fisher et al) 

 
Programs = reactive rules in modal temporal logic: 

  
‘past and present formula’ implies ‘present or future formula’ 

  
Computation = model generation. 
 
Model = possible worlds connected by an accessibility relation. 
 
States updated non-destructively by frame axioms. 
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Transaction Logic (Bonner and Kifer) 
  
 Programs = sequences of FOL queries and database updates.  
  
 Computation = model generation. 
 
 Model = possible worlds.  
 Truth defined relative to paths between possible worlds. 
 
 States (databases) updated destructively. 
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LPS = KELPS + Logic Programs 
  
 Programs = reactive rules + logic programs with FOL queries. 
  
 Computation = model generation. 
 
 Model = single, minimal Herbrand model with time stamps. 
 Truth defined as in classical FOL. 
 
 States updated destructively. 
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LPS framework <R, L, D>  and current state S 

The state S is a set of ground atomic sentences, representing: 
 

•  the extensional part of a deductive database, or 
•  program variables changed by destructive assignment, or 
•  a Herbrand model of the current state of the world.  
 
Reactive rules R: X [antecedent(X) Y consequent(X, Y)]  
 
Logic program L = Lint  Levents  Ltimeless  Ltemp   
 
Ltimeless  defines time independent predicates. 
Lint  defines intensional predicates in terms of extensional predicates.  
Levents  defines composite events in terms of atomic events.  
Ltemp defines temporal predicates <, . 
 
Domain theory D is a logic program that 
  defines preconditions and postconditions of atomic events 
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Blocks world <R, L, D>  and current state S 

R: request(on(Block, Place), T1) make-on(Block, Place, T2, T3)  T1 < T2 
 
S* :  Deductive database:  extensional predicates on(Block, Place, T). 
 
Lint: clear(table, T) 
 clear(Block, T)   X on(X, Block, T) 
 
Levents:  make-on(Block, Place, T, T)   on(Block, Place, T) 
     make-on(Block, Place, T1, T3)   make-clear(Block, TB1, TB2)  
   make-clear(Place, TP1, TP2)   min(TB1, TP1, T1)  max(TB2, TP2, T2)  
   move(Block, Place, T3)  T2 < T3  
  
   make-clear(Place, T, T)  clear(Place, T)  
   make-clear(Place, T1, T3)  on(Block, Place, T1) 
     make-clear(Block, T1, T2) move(Block, table, T3)  T2 < T3 
 
D: possible(move(Block, Place), T)  clear(Block, T)  clear(Place, T)  Block  Place 
 initiates(move(Block, Place), on(Block, Place), T)  
 terminates(move(Block, Place), on(Block, Support), T)  on(Block, Support,T) 
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Dialogue/parsing example <R, L, D> where L = Levents D = {} S = {} 

Reactive rule R: 
sentence(T1, T2)  sentence (T3, T4)  T2 < T3 < T2 + 10  
 
Atomic events: 
word(my, 1, 2)  word(name, 2, 3)   word(is, 3, 4)  word(bob, 4, 5)
  
Composite events (and actions) Levents : 
 

adjective(T1, T2)  word(my, T1, T2)   
adjective(T1, T2)  word(your, T1, T2) 
 

noun(T1, T2)  word(name, T1, T2) verb(T1, T2)  word(is, T1, T2) 
noun(T1, T2)  word(bob, T1, T2)  noun(T1, T2)  word(what, T1, T2) 
 

sentence(T1, T3)  noun-phrase(T1, T2)  verb-phrase(T2, T3) 
noun-phrase(T1, T3)  adjective(T1, T2)  noun(T2, T3) 
noun-phrase(T1, T2)  noun(T1, T2) 
verb-phrase(T1, T3)  verb(T1, T2)  noun-phrase(T2, T3) 
verb-phrase(T1, T2)  verb(T1, T2) 
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The reactive rule is true in the sequence of atomic and 
composite events 
 

{word(my, 1, 2)  word(name, 2, 3)   word(is, 3, 4)  
word(bob, 4, 5)   word(what, 6, 7)  word(is, 7, 8)  
word(your, 8, 9)  word(name, 9, 10) 
adjective(1, 2)   noun(2, 3)    verb(3, 4)   
noun(4, 5)    noun(6, 7)    verb(7, 8) 
adjective(8, 9)   noun(9, 10)   noun-phrase(1, 3) 
noun-phrase(2, 3)  noun-phrase(4, 5)  verb-phrase(3, 5) 
sentence(2, 4)    sentence(2, 5)   sentence(1, 5) 
noun-phrase(6, 7)  noun-phrase(8, 10)  noun-phrase(9, 10) 
verb-phrase(7, 10)  sentence(6, 8)   sentence(6, 10)}  
 Temp 
 
where Temp (includes 5 < 6) is the extension of the inequality 
relation defined by Ltemp . 
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LPS: alternative external notations 

Transaction Logic: 
 
P  Q means P(T1)  Q(T2)   T1 < T2 

   or P(T1 , T2)  Q(T3, T4)   T2 < T3 
 
 
Modal temporal logic: 
 
P  ◊Q means P(T1)  Q(T2)   T1 < T2.  
P  Q means P(T)  Q(T+1) 
           or P(T1)  Q(T2)   T1 <T2  T1+ ε 
 
 
Graphical notation: 
     t1  t2 
  P 
            R 
  Q   t3  t4 
 
means P(T1)  Q(T2)  R(T3)  T1 + t1  T3   T1 + t2   
       T2 + t3  T3   T2 + t4  
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The Dining Philosophers 

18 



The Dining Philosophers  

The initial state S0: available(fork0) 
      available(fork1) 
      available(fork2) 
      available(fork3) 
      available(fork4) 
 
Ltimeless      adjacent(fork0, philosopher(0), fork1)  
      adjacent(fork1, philosopher(1), fork2) 
      adjacent(fork2, philosopher(2), fork3) 
      adjacent(fork3, philosopher(3), fork4) 
      adjacent(fork4, philosopher(4), fork0) 
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The Dining Philosophers  –  with time-free syntax 

time-to-eat(philosopher(I))  
 dine(philosopher(I)) 
 
dine(philosopher(I))  
 think(philosopher(I)),  
 pickup-forks(philosopher(I)),  
 eat(philosopher(I)),  
 putdown-forks(philosopher(I)) 
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Atomic actions are defined by the  
domain specific event theory D 

  
       
 pickup-forks(philosopher(I))  
 terminates  available(F1) and available(F2) 
  preconditions  available(F1), available(F2) if  
     adjacent(F1, philosopher(I), F2). 
  
 putdown-forks(philosopher(I))  
 initiates   available(F1) and available(F2) if  
     adjacent(F1, philosopher(I), F2). 
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The reactive rule is true in the sequence of states and actions: 

S0: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 

A1: {think(philosopher(0)), think(philosopher(1)), think(philosopher(2)), think(philosopher(3)), think(philosopher(4)) } 

S1: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 

A2: {pickup-forks(philosopher(0)), pickup-forks(philosopher(2))} 

S2: {available(fork4)} 

A3: {eat(philosopher(0)), eat(philosopher(2))} 

S3: {available(fork4)} 

A4: {putdown-forks(philosopher(0)), putdown-forks(philosopher(2))} 

S4: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 

A5: {pickup-forks(philosopher(1)), pickup-forks(philosopher(3))} 

S5: {available(fork0)} 

A6: {eat(philosopher(1)), eat(philosopher(3))} 

S6: {available(fork0)} 

A7: {putdown-forks(philosopher(1)), putdown-forks(philosopher(3))} 

S7:  {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 

A8: {pickup-forks(philosopher(4))} 

S8:  {available(fork1), available(fork2), available(fork3)} 

A9: {eat(philosopher(4))} 

S9: {available(fork1), available(fork2), available(fork3)} 

A10: {putdown-forks(philosopher(4))} 

S10: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 22 
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Model-theoretic semantics 

Given <R, L, D>  and initial state S0*  with explicit time, 
ex1*,…, exi*,…. sequence of sets of external events with explicit time, 
  
the computational task is to generate a sequence of sets of actions  
a1*,…, ai*,…. such that  R is true in the “intended” minimal model of: 
     
 
 
 
 
where  ei*   = exi *    ai *  
 
Si = (Si-1 – {p| terminates(ei, p,  ti)  is true in ei*  Si-1*  Ltimeless  Lint  D} ) 
       {p | initiates(ei, p, ti)      is true in ei*  Si-1*  Ltimeless  Lint  D}  
 
Si* =  {holds(p, ti) | p  Si at time ti}   
  
 
 

L   S0*   S1*   .... Si* ...    
e1*      e2*         … ei*    ….  
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The operational semantics is an  
observe–decide–think –act cycle. 

The i-th cycle transforms Si-1, Ri-1, Gi-1 and ei 
into  Si, Ri, Gi, and actions ai+1 
 
• Gi is a conjunction of goals. 
 
• Each goal has the form: 
 

  subgoal11 (X, Y) ∧… ∧ subgoal1l1 (X, Y)  
 ∨ … 
 ∨ subgoalm1 (X, Y) ∧… ∧ subgoalmlm (X, Y)  

 
 Each subgoalij is an event, FOL condition or temporal constraint. 
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Simplified operational semantics (for LPS -  Levents ) 

Step 0. Observe. Use ei to transform Si-1 into Si. 
 
Step 1. Think. If earlier-antecedents(X)  later-antecedents(X)  consequent(X, Y)  
is in Ri-1    and   earlier-antecedents(x) is true in ei*  Si*  Ltimeless  Lint  
then simplify any temporal constraints in  later-antecedents(x)  consequent(x, Y)  
and add the result to Ri-1 to obtain Ri. 
 
If later-antecedents(x) is empty, then add the result to Gi-1 as a new goal. 
 
Step 2.1. Decide. Choose a set P of plans from one or more goals in Gi-1.  
 
Step 2.2. Think. For every plan in P, choose a form  
earlier-consequents(Y)  later-consequents(Y).  
If earlier-consequents(y) is true in ei*  Si*  Ltimeless  Lint  
then simplify any temporal constraints in later-consequents(y)  
and add the result as an new plan to the same goal in P to obtain Gi. 
 
 

Step 2.3. Act. For every plan in P of a form  
actions(Z)  other-consequents(Z),  choose such a form, 
attempt to execute actions(Z)  
and add any successfully executed instances actions(z) to ei+1. 
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The operational semantics is sound with respect to  
the model-theoretic semantics. 

Theorem. Given external events ex1,…, exn,….,  
suppose the operational semantics generates: 
 
    S0, R0, G0 , a1, … ,Si, Ri, Gi, ai+1, ….  
 
Let M be the “intended” minimal model of: 
  
 
 
 
 
 
Then R0  G0  is true in M  if and only if  
 
for every new goal G added to a goal state Gi,  
there exists a goal state Gj, j  i such that the empty plan  (equivalent to true)  
is added as a new plan to the same  goal as G in Gj.  
 
 
 

L   S0*   S1*   .... Si* ...   
 e1*      e2*      … ei*    ….  
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Incompleteness 

 
The operational semantics is incomplete.  
It cannot preventively make a rule true by making its 
antecedents false: 
 

attacks(X, me, T1)  ¬ prepared-for-attack(me, T1)  
  surrender(me, T2)  T1 < T2   T1 +  

 
It cannot proactively make a reactive rule true by making its 
consequents true before its antecedents become true: 

  
enter-bus(me, T1)  
 have-ticket(me, T2)  T1 < T2  T1 +  
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Model-theoretic semantics – an alternative formulation 
with general purpose event theory Etholds 

holds(P, T2)  happens(E, T1, T2)  initiates(E, P, T1) 
holds(P, T2)  holds(P, T1)  happens(E, T1, T2)  ¬ terminates(E, P, T1) 
 
Given <R, L, D>  and initial state S0*  with explicit time, 
ex1*,…, exi*,…. sequence of sets of external events with explicit time, 
  
the computational task is to generate a sequence of sets of actions  
a1*,…, ai*,…. such that  R is true in the “intended” minimal model of: 
 
 
  
    

  
 

ETholds    L  D   S0*    
e1*      e2*      … ei*    ….  
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Solving the computational aspect of the frame problem 
 

Theorem. The “intended” minimal model of: 
 
 
 
  
 is identical to the “intended” minimal model of: 
 
           
   
 
 
 
 
 

 

ETholds  L  D   S0*    
e1*      e2*      … ei*    ….  

L  D     S0*   S1*   .... Si* ...    
e1*      e2*         … ei*    ….  
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Conclusions 

 
•  Destructive assignment does not need a semantics. 
  It is the semantics. 

 
• Challenge:  Find a framework that unifies 
   
   Programming 
   Databases 
   AI knowledge representation and problem-solving 
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