Towards a Unifying Logic-Based Framework for Programming Databases AI knowledge representation and problem-solving

Robert Kowalski and Fariba Sadri
Department of Computing Imperial College London
Outline

• **KELPS** - a simplified kernel for reactive logic-based production-style systems

• Related work (MetateM, Transaction Logic)

• LPS = KELPS + Logic Programs

• MALPS = Multi Agent LPS (The Dining Philosophers)

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions
KELPS - a simplified kernel for reactive logic-based production-style systems

Programs are reactive rules with explicit time in the logical form:

\[\forall X \left(\text{antecedent}(X) \rightarrow \exists Y \text{ consequent}(X, Y) \right) \]

abbreviated

\[\text{antecedent}(X) \rightarrow \text{consequent}(X, Y) \]

whenever the *antecedent* is true,
then the *consequent* is true in the future.
Model-theoretic semantics: facts are time-stamped

Operational Semantics: facts updated destructively without time stamps

Computation: model generation
KELPS = Composite events + rules + composite actions

pre-sensor detects possible fire in area A at time $T_1 \land$
smoke detector detects smoke in area A at time $T_2 \land$
$|T_1 - T_2| \leq 60 \text{ sec} \land \max(T_1, T_2, T)$

→ activate local fire suppression in area A at time $T_3 \land T < T_3 \leq T + 10 \text{ sec} \land$
send security guard to area A at time $T_4 \land T_3 < T_4 \leq T_3 + 30 \text{ sec}$

∨ call fire department to area A at time $T_3^{'} \land T < T_3^{'} \leq T + 120 \text{ sec}$
Syntax of reactive rules in KELPS

\[
\text{antecedent}_1(X) \land \cdots \land \text{antecedent}_n(X)
\]

\[
\rightarrow \quad \text{consequent}_{11}(X, Y) \land \cdots \land \text{consequent}_{1l_1}(X, Y)
\]

\[
\lor \quad \cdots \quad \lor \quad \text{consequent}_{m_1}(X, Y) \land \cdots \land \text{consequent}_{m_{l_m}}(X, Y)
\]

Each \(\text{antecedent}_i(X)\) and \(\text{consequent}_{ij}(X, Y)\) is:

- an FOL condition in the vocabulary of state predicates (operationally a query to the extended current state)
- an event atom representing an event (including action)
- a temporal constraint \(\text{time}_1 < \text{time}_2\) or \(\text{time}_1 \leq \text{time}_2\)

Each \(\text{consequent}_{i_1}(X, Y) \land \cdots \land \text{consequent}_{i_{l_1}}(X, Y)\) is a plan.
Outline

• KELPS
• Related work (MetateM, Transaction Logic)
• LPS = KELPS + Logic Programs
• MALPS = Multi Agent LPS (The Dining Philosophers)
• Model-theoretic semantics
• Operational semantics
• The frame problem
• Conclusions
MetateM (Michael Fisher et al)

Programs = reactive rules in modal temporal logic:

\[
\text{‘past and present formula’ implies ‘present or future formula’}
\]

Computation = model generation.

Model = possible worlds connected by an accessibility relation.

States updated **non-destructively** by frame axioms.
Transaction Logic (Bonner and Kifer)

Programs = sequences of FOL queries and database updates.

Computation = model generation.

Model = possible worlds.
Truth defined relative to paths between possible worlds.

States (databases) updated destructively.
Outline

• KELPS
• Related work
• LPS = KELPS + Logic Programs
• MALPS = Multi Agent LPS (The Dining Philosophers)
• Model-theoretic semantics
• Operational semantics
• The frame problem
• Conclusions
LPS = KELPS + Logic Programs

 Programs = reactive rules + logic programs with FOL queries.

 Computation = model generation.

 Model = single, minimal Herbrand model with time stamps. Truth defined as in classical FOL.

 States updated destructively.
LPS framework \(<R, L, D>\) and current state \(S\)

The state \(S\) is a set of ground atomic sentences, representing:

- the extensional part of a deductive database, or
- program variables changed by destructive assignment, or
- a Herbrand model of the current state of the world.

Reactive rules \(R\): \(\forall X \ [\text{antecedent}(X) \rightarrow \exists Y \ \text{consequent}(X, Y)]\)

Logic program \(L = L_{int} \cup L_{events} \cup L_{timeless} \cup L_{temp}\)

- \(L_{timeless}\) defines time independent predicates.
- \(L_{int}\) defines intensional predicates in terms of extensional predicates.
- \(L_{events}\) defines composite events in terms of atomic events.
- \(L_{temp}\) defines temporal predicates \(<, \leq\).

Domain theory \(D\) is a logic program that defines preconditions and postconditions of atomic events.
Blocks world \(<R, L, D>\) and current state \(S\)

\(R: \) request(on(Block, Place), T1) \(\rightarrow\) make-on(Block, Place, T2, T3) \(\land\) T1 < T2

\(S^*:\) Deductive database: extensional predicates on(Block, Place, T).

\(L_{int}:\) clear(table, T)

\(\) clear(Block, T) \(\leftarrow\) \(\exists X\) on(X, Block, T)

\(\) events:

\(\) make-on(Block, Place, T, T) \(\leftarrow\) on(Block, Place, T)

\(\) make-on(Block, Place, T1, T3) \(\leftarrow\) make-clear(Block, TB1, TB2)

\(\) \(\land\) make-clear(Place, TP1, TP2) \(\land\) min(TB1, TP1, T1) \(\land\) max(TB2, TP2, T2)

\(\) \(\land\) move(Block, Place, T3) \(\land\) T2 < T3

\(\) make-clear(Place, T, T) \(\leftarrow\) clear(Place, T)

\(\) make-clear(Place, T1, T3) \(\leftarrow\) on(Block, Place, T1)

\(\) \(\land\) make-clear(Block, T1, T2) \(\land\) move(Block, table, T3) \(\land\) T2 < T3

\(D:\) possible(move(Block, Place), T) \(\leftarrow\) clear(Block, T) \(\land\) clear(Place, T) \(\land\) Block \(\neq\) Place

\(\) initiates(move(Block, Place), on(Block, Place), T)

\(\) terminates(move(Block, Place), on(Block, Support), T) \(\leftarrow\) on(Block, Support, T)
Dialogue/parsing example $<R, L, D>$ where $L = L_{\text{events}}$ $D = \{\}$ $S = \{\}$

Reactive rule R:
sentence(T1, T2) \rightarrow sentence (T3, T4) \land T2 < T3 < T2 + 10

Atomic events:
word(my, 1, 2) word(name, 2, 3) word(is, 3, 4) word(bob, 4, 5)

Composite events (and actions) L_{events}:

adjective(T1, T2) \leftarrow word(my, T1, T2)
adjective(T1, T2) \leftarrow word(your, T1, T2)
noun(T1, T2) \leftarrow word(name, T1, T2) verb(T1, T2) \leftarrow word(is, T1, T2)
noun(T1, T2) \leftarrow word(bob, T1, T2) noun(T1, T2) \leftarrow word(what, T1, T2)
sentence(T1, T3) \leftarrow noun-phrase(T1, T2) \land verb-phrase(T2, T3)
noun-phrase(T1, T3) \leftarrow adjective(T1, T2) \land noun(T2, T3)
noun-phrase(T1, T2) \leftarrow noun(T1, T2)
verb-phrase(T1, T3) \leftarrow verb(T1, T2) \land noun-phrase(T2, T3)
verb-phrase(T1, T2) \leftarrow verb(T1, T2)
The reactive rule is true in the sequence of atomic and composite events

\{ \text{word}(my, 1, 2), \text{word}(bob, 4, 5), \text{word}(your, 8, 9), \text{adjective}(1, 2), \text{noun}(4, 5), \text{adjective}(8, 9), \text{noun-phrase}(2, 3), \text{sentence}(2, 4), \text{noun-phrase}(6, 7), \text{verb-phrase}(7, 10) \\} \cup \text{Temp}

where \text{Temp} (includes 5 < 6) is the extension of the inequality relation defined by \(L_{temp} \).
LPS: alternative external notations

Transaction Logic:

\[P \otimes Q \text{ means } P(T_1) \land Q(T_2) \land T_1 < T_2 \]

or

\[P(T_1, T_2) \land Q(T_3, T_4) \land T_2 < T_3 \]

Modal temporal logic:

\[P \land \Diamond Q \text{ means } P(T_1) \land Q(T_2) \land T_1 < T_2. \]

\[P \land \Box Q \text{ means } P(T) \land Q(T+1) \]

or

\[P(T_1) \land Q(T_2) \land T_1 < T_2 \leq T_1 + \varepsilon \]

Graphical notation:

\[P \]

\[Q \]

\[R \]

\[P \land Q \land R \land T_1 + t_1 \leq T_3 \leq T_1 + t_2 \land T_2 + t_3 \leq T_3 \leq T_2 + t_4 \]
Outline

- KELPS
- Related work
- LPS
- \textbf{MALPS = Multi Agent LPS (The Dining Philosophers)}
- Model-theoretic semantics
- Operational semantics
- The frame problem
- Conclusions
The Dining Philosophers
The Dining Philosophers

The initial state S_0: $\text{available}(\text{fork}_0)$
$\text{available}(\text{fork}_1)$
$\text{available}(\text{fork}_2)$
$\text{available}(\text{fork}_3)$
$\text{available}(\text{fork}_4)$

L_{timeless}
$\text{adjacent}(\text{fork}_0, \text{philosopher}(0), \text{fork}_1)$
$\text{adjacent}(\text{fork}_1, \text{philosopher}(1), \text{fork}_2)$
$\text{adjacent}(\text{fork}_2, \text{philosopher}(2), \text{fork}_3)$
$\text{adjacent}(\text{fork}_3, \text{philosopher}(3), \text{fork}_4)$
$\text{adjacent}(\text{fork}_4, \text{philosopher}(4), \text{fork}_0)$
The Dining Philosophers — with time-free syntax

time-to-eat(philosopher(I))
→ dine(philosopher(I))

dine(philosopher(I))
← think(philosopher(I)),
 pickup-forks(philosopher(I)),
 eat(philosopher(I)),
 putdown-forks(philosopher(I))
Atomic actions are defined by the domain specific event theory D

pickup-forks(philosopher(I))
- terminates $\text{available}(F_1)$ and $\text{available}(F_2)$
- preconditions $\text{available}(F_1)$, $\text{available}(F_2)$ if $\text{adjacent}(F_1, \text{philosopher}(I), F_2)$.

putdown-forks(philosopher(I))
- initiates $\text{available}(F_1)$ and $\text{available}(F_2)$ if $\text{adjacent}(F_1, \text{philosopher}(I), F_2)$.
The reactive rule is true in the sequence of states and actions:

\[S_0: \{ \text{available}(\text{fork}_0), \text{available}(\text{fork}_1), \text{available}(\text{fork}_2), \text{available}(\text{fork}_3), \text{available}(\text{fork}_4) \} \]
\[A_1: \{ \text{think}(\text{philosopher}(0)), \text{think}(\text{philosopher}(1)), \text{think}(\text{philosopher}(2)), \text{think}(\text{philosopher}(3)), \text{think}(\text{philosopher}(4)) \} \]
\[S_1: \{ \text{available}(\text{fork}_0), \text{available}(\text{fork}_1), \text{available}(\text{fork}_2), \text{available}(\text{fork}_3), \text{available}(\text{fork}_4) \} \]
\[A_2: \{ \text{pickup-forks}(\text{philosopher}(0)), \text{pickup-forks}(\text{philosopher}(2)) \} \]
\[S_2: \{ \text{available}(\text{fork}_4) \} \]
\[A_3: \{ \text{eat}(\text{philosopher}(0)), \text{eat}(\text{philosopher}(2)) \} \]
\[S_3: \{ \text{available}(\text{fork}_4) \} \]
\[A_4: \{ \text{putdown-forks}(\text{philosopher}(0)), \text{putdown-forks}(\text{philosopher}(2)) \} \]
\[S_4: \{ \text{available}(\text{fork}_0), \text{available}(\text{fork}_1), \text{available}(\text{fork}_2), \text{available}(\text{fork}_3), \text{available}(\text{fork}_4) \} \]
\[A_5: \{ \text{pickup-forks}(\text{philosopher}(1)), \text{pickup-forks}(\text{philosopher}(3)) \} \]
\[S_5: \{ \text{available}(\text{fork}_0) \} \]
\[A_6: \{ \text{eat}(\text{philosopher}(1)), \text{eat}(\text{philosopher}(3)) \} \]
\[S_6: \{ \text{available}(\text{fork}_0) \} \]
\[A_7: \{ \text{putdown-forks}(\text{philosopher}(1)), \text{putdown-forks}(\text{philosopher}(3)) \} \]
\[S_7: \{ \text{available}(\text{fork}_0), \text{available}(\text{fork}_1), \text{available}(\text{fork}_2), \text{available}(\text{fork}_3), \text{available}(\text{fork}_4) \} \]
\[A_8: \{ \text{pickup-forks}(\text{philosopher}(4)) \} \]
\[S_8: \{ \text{available}(\text{fork}_1), \text{available}(\text{fork}_2), \text{available}(\text{fork}_3) \} \]
\[A_9: \{ \text{eat}(\text{philosopher}(4)) \} \]
\[S_9: \{ \text{available}(\text{fork}_1), \text{available}(\text{fork}_2), \text{available}(\text{fork}_3) \} \]
\[A_{10}: \{ \text{putdown-forks}(\text{philosopher}(4)) \} \]
\[S_{10}: \{ \text{available}(\text{fork}_0), \text{available}(\text{fork}_1), \text{available}(\text{fork}_2), \text{available}(\text{fork}_3), \text{available}(\text{fork}_4) \} \]
Outline

• KELPS
• Related work
• LPS
• MALPS
• Model-theoretic semantics
• Operational semantics
• The frame problem
• Conclusions
Model-theoretic semantics

Given \(<R, L, D>\) and initial state \(S_0^*\) with explicit time, \(ex_1^*, ..., ex_i^*,\) sequence of sets of external events with explicit time, the \textit{computational task} is to generate a sequence of sets of actions \(a_1^*, ..., a_i^*,\) such that \(R\) is true in the “intended” minimal model of:

\[
L \cup S_0^* \cup S_1^* \cup ... \cup S_i^* ... \cup e_1^* \cup e_2^* \cup ... e_i^* \cup ...
\]

where \(e_i^* = ex_i^* \cup a_i^*\)

\[
S_i = (S_{i-1} - \{ p \mid \text{terminates}(e_i, p, t_i) \text{ is true in } e_i^* \cup S_{i-1}^* \cup L_{\text{timeless}} \cup L_{\text{int}} \cup D \}) \cup \{ p \mid \text{initiates}(e_i, p, t_i) \text{ is true in } e_i^* \cup S_{i-1}^* \cup L_{\text{timeless}} \cup L_{\text{int}} \cup D \}
\]

\(S_i^* = \{ holds(p, t_i) \mid p \in S_i \text{ at time } t_i \}\)
Outline

- KELPS
- Related work
- LPS
- MALPS
- Model-theoretic semantics
- Operational semantics
- The frame problem
- Conclusions
The operational semantics is an observe–decide–think –act cycle.

The \(i\)-th cycle transforms \(S_{i-1}, R_{i-1}, G_{i-1}\) and \(e_i\) into \(S_i, R_i, G_i,\) and actions \(a_{i+1}\)

- \(G_i\) is a conjunction of goals.

- Each goal has the form:

\[
\text{subgoal}_{11}(X, Y) \land \cdots \land \text{subgoal}_{1l_1}(X, Y) \\
\lor \cdots \\
\lor \text{subgoal}_{m1}(X, Y) \land \cdots \land \text{subgoal}_{ml_m}(X, Y)
\]

Each \(\text{subgoal}_{ij}\) is an event, FOL condition or temporal constraint.
Simplified operational semantics (for LPS - L_{events})

Step 0. Observe. Use e_i to transform S_{i-1} into S_i.

Step 1. Think. If earlier-antecedents(X) \land later-antecedents(X) \rightarrow consequent(X, Y) is in R_{i-1} and earlier-antecedents(x) is true in $e_i^* \cup S_i^* \cup L_{timeless} \cup L_{int}$ then simplify any temporal constraints in later-antecedents(x) \rightarrow consequent(x, Y) and add the result to R_{i-1} to obtain R_i.

If later-antecedents(x) is empty, then add the result to G_{i-1} as a new goal.

Step 2.1. Decide. Choose a set P of plans from one or more goals in G_{i-1}.

Step 2.2. Think. For every plan in P, choose a form earlier-consequents(Y) \land later-consequents(Y).

If earlier-consequents(y) is true in $e_i^* \cup S_i^* \cup L_{timeless} \cup L_{int}$ then simplify any temporal constraints in later-consequents(y) and add the result as an new plan to the same goal in P to obtain G_i.

Step 2.3. Act. For every plan in P of a form actions(Z) \land other-consequents(Z), choose such a form, attempt to execute actions(Z) and add any successfully executed instances actions(z) to e_{i+1}.
The operational semantics is sound with respect to the model-theoretic semantics.

Theorem. Given external events $\mathbf{ex}_1, ..., \mathbf{ex}_n, ...$, suppose the operational semantics generates:

$$S_0, R_0, G_0, a_1, ... , S_i, R_i, G_i, a_{i+1}, ...$$

Let M be the “intended” minimal model of:

$$L \cup S_0^* \cup S_1^* \cup ... \cup S_i^* \cup ... \cup e_1^* \cup e_2^* \cup ... e_i^* \cup ...$$

Then $R_0 \cup G_0$ is true in M if and only if

for every new goal G added to a goal state G_i, there exists a goal state $G_j, j \geq i$ such that the empty plan (equivalent to true) is added as a new plan to the same goal as G in G_j.
Incompleteness

The operational semantics is **incomplete**. It cannot **preventively** make a rule true by making its **antecedents** false:

\[
\text{attacks}(X, \text{me}, T_1) \land \neg \text{prepared-for-attack}(\text{me}, T_1) \\
\rightarrow \text{surrender}(\text{me}, T_2) \land T_1 < T_2 \leq T_1 + \delta
\]

It cannot **proactively** make a reactive rule true by making its **consequents** true before its **antecedents** become true:

\[
\text{enter-bus}(\text{me}, T_1) \\
\rightarrow \text{have-ticket}(\text{me}, T_2) \land T_1 < T_2 \leq T_1 + \varepsilon
\]
Outline

• KELPS
• Related work
• LPS
• MALPS
• Model-theoretic semantics
• Operational semantics
• The frame problem
• Conclusions
Model-theoretic semantics – an alternative formulation with general purpose event theory E_t_{holds}

$\text{holds}(P, T_2) \leftarrow \text{happens}(E, T_1, T_2) \land \text{initiates}(E, P, T_1)$

$\text{holds}(P, T_2) \leftarrow \text{holds}(P, T_1) \land \text{happens}(E, T_1, T_2) \land \neg \text{terminates}(E, P, T_1)$

Given $<R, L, D>$ and initial state S_0^* with explicit time, $ex_1^*,..., ex_i^*,...$ sequence of sets of external events with explicit time,

the computational task is to generate a sequence of sets of actions $a_1^*,..., a_i^*,...$ such that R is true in the “intended” minimal model of:

\[
E_t_{holds} \cup L \cup D \cup S_0^* \cup \bigcup e_1^* \cup \bigcup e_2^* \cup ... \cup \bigcup e_i^* \cup ...\]
Solving the computational aspect of the frame problem

Theorem. The “intended” minimal model of:

\[
ET_{\text{holds}} \cup L \cup D \cup S_0^* \cup e_1^* \cup e_2^* \cup ... e_i^* \cup ... \]

is identical to the “intended” minimal model of:

\[
L \cup D \cup S_0^* \cup S_1^* \cup ... S_i^* \cup e_1^* \cup e_2^* \cup ... e_i^* \cup ... \]
Conclusions

• **Destructive assignment** does not need a semantics. It is the semantics.

• **Challenge:** Find a framework that unifies

 Programming
 Databases
 AI knowledge representation and problem-solving