
Towards a Unifying Logic-Based Framework for

 Programming

 Databases

 AI knowledge representation and problem-solving

Robert Kowalski and Fariba Sadri

Department of Computing
Imperial College London

1

Outline

• KELPS - a simplified kernel for reactive logic-based
production-style systems

• Related work (MetateM, Transaction Logic)

• LPS = KELPS + Logic Programs

• MALPS = Multi Agent LPS (The Dining Philosophers)

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

2

KELPS - a simplified kernel for reactive
logic-based production-style systems

Programs are reactive rules with explicit time
in the logical form:

 X [antecedent(X) Y consequent(X, Y)]
abbreviated antecedent(X)  consequent(X, Y)

whenever the antecedent is true,
then the consequent is true in the future.

3

Model-theoretic semantics: Operational Semantics:
facts are time-stamped facts updated destructively
 without time stamps
Computation:
model generation

old-fact
fact1
fact2
…
factn

new-fact
fact1
fact2
…
factn

ei Si Si+1

 ti ti+1

4

KELPS = Composite events + rules + composite actions

 pre-sensor detects possible fire in area A at time T1 ∧
 smoke detector detects smoke in area A at time T2 ∧
 |T1 – T2 |  60 sec ∧ max(T1, T2, T)

 activate local fire suppression in area A at time T3 ∧ T <T3  T + 10 sec ∧
 send security guard to area A at time T4 ∧ T3 <T4  T3 + 30 sec

∨ call fire department to area A at time T3‘ ∧ T <T3‘  T + 120 sec

5

Syntax of reactive rules in KELPS

 antecedent1 (X) ∧… ∧ antecedentn (X)
 
 consequent11 (X, Y) ∧… ∧ consequent1l1 (X, Y)
 ∨ …
 ∨ consequentm1 (X, Y) ∧… ∧ consequentmlm (X, Y)

Each antecedenti (X) and consequenti j(X, Y) is:

• an FOL condition in the vocabulary of state predicates

(operationally a query to the extended current state)

• an event atom representing an event (including action)

• a temporal constraint time1 < time2 or time1 ≤ time2

 Each consequenti1 (X, Y) ∧… ∧ consequentil1 (X, Y) is a plan.

6

Outline

• KELPS

• Related work (MetateM, Transaction Logic)

• LPS = KELPS + Logic Programs

• MALPS = Multi Agent LPS (The Dining Philosophers)

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

7

MetateM (Michael Fisher et al)

Programs = reactive rules in modal temporal logic:

‘past and present formula’ implies ‘present or future formula’

Computation = model generation.

Model = possible worlds connected by an accessibility relation.

States updated non-destructively by frame axioms.

8

Transaction Logic (Bonner and Kifer)

 Programs = sequences of FOL queries and database updates.

 Computation = model generation.

 Model = possible worlds.
 Truth defined relative to paths between possible worlds.

 States (databases) updated destructively.

9

Outline

• KELPS

• Related work

• LPS = KELPS + Logic Programs

• MALPS = Multi Agent LPS (The Dining Philosophers)

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

10

LPS = KELPS + Logic Programs

 Programs = reactive rules + logic programs with FOL queries.

 Computation = model generation.

 Model = single, minimal Herbrand model with time stamps.
 Truth defined as in classical FOL.

 States updated destructively.

11

LPS framework <R, L, D> and current state S

The state S is a set of ground atomic sentences, representing:

• the extensional part of a deductive database, or
• program variables changed by destructive assignment, or
• a Herbrand model of the current state of the world.

Reactive rules R: X [antecedent(X) Y consequent(X, Y)]

Logic program L = Lint  Levents  Ltimeless  Ltemp

Ltimeless defines time independent predicates.
Lint defines intensional predicates in terms of extensional predicates.
Levents defines composite events in terms of atomic events.
Ltemp defines temporal predicates <, .

Domain theory D is a logic program that
 defines preconditions and postconditions of atomic events

12

Blocks world <R, L, D> and current state S

R: request(on(Block, Place), T1) make-on(Block, Place, T2, T3)  T1 < T2

S* : Deductive database: extensional predicates on(Block, Place, T).

Lint: clear(table, T)
 clear(Block, T)   X on(X, Block, T)

Levents: make-on(Block, Place, T, T)  on(Block, Place, T)
 make-on(Block, Place, T1, T3)  make-clear(Block, TB1, TB2)
  make-clear(Place, TP1, TP2)  min(TB1, TP1, T1)  max(TB2, TP2, T2)
  move(Block, Place, T3)  T2 < T3

 make-clear(Place, T, T)  clear(Place, T)
 make-clear(Place, T1, T3)  on(Block, Place, T1)
  make-clear(Block, T1, T2) move(Block, table, T3)  T2 < T3

D: possible(move(Block, Place), T)  clear(Block, T)  clear(Place, T)  Block  Place
 initiates(move(Block, Place), on(Block, Place), T)
 terminates(move(Block, Place), on(Block, Support), T)  on(Block, Support,T)

13

Dialogue/parsing example <R, L, D> where L = Levents D = {} S = {}

Reactive rule R:
sentence(T1, T2)  sentence (T3, T4)  T2 < T3 < T2 + 10

Atomic events:
word(my, 1, 2) word(name, 2, 3) word(is, 3, 4) word(bob, 4, 5)

Composite events (and actions) Levents :

adjective(T1, T2)  word(my, T1, T2)
adjective(T1, T2)  word(your, T1, T2)

noun(T1, T2)  word(name, T1, T2) verb(T1, T2)  word(is, T1, T2)
noun(T1, T2)  word(bob, T1, T2) noun(T1, T2)  word(what, T1, T2)

sentence(T1, T3)  noun-phrase(T1, T2)  verb-phrase(T2, T3)
noun-phrase(T1, T3)  adjective(T1, T2)  noun(T2, T3)
noun-phrase(T1, T2)  noun(T1, T2)
verb-phrase(T1, T3)  verb(T1, T2)  noun-phrase(T2, T3)
verb-phrase(T1, T2)  verb(T1, T2)
 14

The reactive rule is true in the sequence of atomic and
composite events

{word(my, 1, 2) word(name, 2, 3) word(is, 3, 4)
word(bob, 4, 5) word(what, 6, 7) word(is, 7, 8)
word(your, 8, 9) word(name, 9, 10)
adjective(1, 2) noun(2, 3) verb(3, 4)
noun(4, 5) noun(6, 7) verb(7, 8)
adjective(8, 9) noun(9, 10) noun-phrase(1, 3)
noun-phrase(2, 3) noun-phrase(4, 5) verb-phrase(3, 5)
sentence(2, 4) sentence(2, 5) sentence(1, 5)
noun-phrase(6, 7) noun-phrase(8, 10) noun-phrase(9, 10)
verb-phrase(7, 10) sentence(6, 8) sentence(6, 10)}
 Temp

where Temp (includes 5 < 6) is the extension of the inequality
relation defined by Ltemp .

15

LPS: alternative external notations

Transaction Logic:

P  Q means P(T1)  Q(T2)  T1 < T2

 or P(T1 , T2)  Q(T3, T4)  T2 < T3

Modal temporal logic:

P  ◊Q means P(T1)  Q(T2)  T1 < T2.
P  Q means P(T)  Q(T+1)
 or P(T1)  Q(T2)  T1 <T2  T1+ ε

Graphical notation:
 t1 t2
 P
 R
 Q t3 t4

means P(T1)  Q(T2)  R(T3)  T1 + t1  T3  T1 + t2 
 T2 + t3  T3  T2 + t4

16

Outline

• KELPS

• Related work

• LPS

• MALPS = Multi Agent LPS (The Dining Philosophers)

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

17

The Dining Philosophers

18

The Dining Philosophers

The initial state S0: available(fork0)
 available(fork1)
 available(fork2)
 available(fork3)
 available(fork4)

Ltimeless adjacent(fork0, philosopher(0), fork1)
 adjacent(fork1, philosopher(1), fork2)
 adjacent(fork2, philosopher(2), fork3)
 adjacent(fork3, philosopher(3), fork4)
 adjacent(fork4, philosopher(4), fork0)

19

The Dining Philosophers – with time-free syntax

time-to-eat(philosopher(I))
 dine(philosopher(I))

dine(philosopher(I))
 think(philosopher(I)),
 pickup-forks(philosopher(I)),
 eat(philosopher(I)),
 putdown-forks(philosopher(I))

20

Atomic actions are defined by the
domain specific event theory D

 pickup-forks(philosopher(I))
 terminates available(F1) and available(F2)
 preconditions available(F1), available(F2) if
 adjacent(F1, philosopher(I), F2).

 putdown-forks(philosopher(I))
 initiates available(F1) and available(F2) if
 adjacent(F1, philosopher(I), F2).

21

The reactive rule is true in the sequence of states and actions:

S0: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)}

A1: {think(philosopher(0)), think(philosopher(1)), think(philosopher(2)), think(philosopher(3)), think(philosopher(4)) }

S1: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)}

A2: {pickup-forks(philosopher(0)), pickup-forks(philosopher(2))}

S2: {available(fork4)}

A3: {eat(philosopher(0)), eat(philosopher(2))}

S3: {available(fork4)}

A4: {putdown-forks(philosopher(0)), putdown-forks(philosopher(2))}

S4: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)}

A5: {pickup-forks(philosopher(1)), pickup-forks(philosopher(3))}

S5: {available(fork0)}

A6: {eat(philosopher(1)), eat(philosopher(3))}

S6: {available(fork0)}

A7: {putdown-forks(philosopher(1)), putdown-forks(philosopher(3))}

S7: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)}

A8: {pickup-forks(philosopher(4))}

S8: {available(fork1), available(fork2), available(fork3)}

A9: {eat(philosopher(4))}

S9: {available(fork1), available(fork2), available(fork3)}

A10: {putdown-forks(philosopher(4))}

S10: {available(fork0), available(fork1), available(fork2), available(fork3), available(fork4)} 22

Outline

• KELPS

• Related work

• LPS

• MALPS

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

23

Model-theoretic semantics

Given <R, L, D> and initial state S0* with explicit time,
ex1*,…, exi*,…. sequence of sets of external events with explicit time,

the computational task is to generate a sequence of sets of actions
a1*,…, ai*,…. such that R is true in the “intended” minimal model of:

where ei* = exi *  ai *

Si = (Si-1 – {p| terminates(ei, p, ti) is true in ei*  Si-1*  Ltimeless  Lint  D})
  {p | initiates(ei, p, ti) is true in ei*  Si-1*  Ltimeless  Lint  D}

Si* = {holds(p, ti) | p  Si at time ti}

L  S0*  S1*  Si* ... 
e1*  e2*  … ei*  ….

24

Outline

• KELPS

• Related work

• LPS

• MALPS

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

25

The operational semantics is an
observe–decide–think –act cycle.

The i-th cycle transforms Si-1, Ri-1, Gi-1 and ei
into Si, Ri, Gi, and actions ai+1

• Gi is a conjunction of goals.

• Each goal has the form:

 subgoal11 (X, Y) ∧… ∧ subgoal1l1 (X, Y)
 ∨ …
 ∨ subgoalm1 (X, Y) ∧… ∧ subgoalmlm (X, Y)

 Each subgoalij is an event, FOL condition or temporal constraint.

26

Simplified operational semantics (for LPS - Levents)

Step 0. Observe. Use ei to transform Si-1 into Si.

Step 1. Think. If earlier-antecedents(X)  later-antecedents(X)  consequent(X, Y)
is in Ri-1 and earlier-antecedents(x) is true in ei*  Si*  Ltimeless  Lint
then simplify any temporal constraints in later-antecedents(x)  consequent(x, Y)
and add the result to Ri-1 to obtain Ri.

If later-antecedents(x) is empty, then add the result to Gi-1 as a new goal.

Step 2.1. Decide. Choose a set P of plans from one or more goals in Gi-1.

Step 2.2. Think. For every plan in P, choose a form
earlier-consequents(Y)  later-consequents(Y).
If earlier-consequents(y) is true in ei*  Si*  Ltimeless  Lint
then simplify any temporal constraints in later-consequents(y)
and add the result as an new plan to the same goal in P to obtain Gi.

Step 2.3. Act. For every plan in P of a form
actions(Z)  other-consequents(Z), choose such a form,
attempt to execute actions(Z)
and add any successfully executed instances actions(z) to ei+1.

27

The operational semantics is sound with respect to
the model-theoretic semantics.

Theorem. Given external events ex1,…, exn,….,
suppose the operational semantics generates:

 S0, R0, G0 , a1, … ,Si, Ri, Gi, ai+1, ….

Let M be the “intended” minimal model of:

Then R0  G0 is true in M if and only if

for every new goal G added to a goal state Gi,
there exists a goal state Gj, j  i such that the empty plan (equivalent to true)
is added as a new plan to the same goal as G in Gj.

L  S0*  S1*  Si* ... 
 e1*  e2*  … ei*  ….

28

Incompleteness

The operational semantics is incomplete.
It cannot preventively make a rule true by making its
antecedents false:

attacks(X, me, T1)  ¬ prepared-for-attack(me, T1)
 surrender(me, T2)  T1 < T2  T1 + 

It cannot proactively make a reactive rule true by making its
consequents true before its antecedents become true:

enter-bus(me, T1)
 have-ticket(me, T2)  T1 < T2  T1 + 

29

Outline

• KELPS

• Related work

• LPS

• MALPS

• Model-theoretic semantics

• Operational semantics

• The frame problem

• Conclusions

30

Model-theoretic semantics – an alternative formulation
with general purpose event theory Etholds

holds(P, T2)  happens(E, T1, T2)  initiates(E, P, T1)
holds(P, T2)  holds(P, T1)  happens(E, T1, T2)  ¬ terminates(E, P, T1)

Given <R, L, D> and initial state S0* with explicit time,
ex1*,…, exi*,…. sequence of sets of external events with explicit time,

the computational task is to generate a sequence of sets of actions
a1*,…, ai*,…. such that R is true in the “intended” minimal model of:

ETholds  L  D  S0* 
e1*  e2*  … ei*  ….

31

Solving the computational aspect of the frame problem

Theorem. The “intended” minimal model of:

 is identical to the “intended” minimal model of:

ETholds  L  D  S0* 
e1*  e2*  … ei*  ….

L  D  S0*  S1*  Si* ... 
e1*  e2*  … ei*  ….

32

Conclusions

• Destructive assignment does not need a semantics.
 It is the semantics.

• Challenge: Find a framework that unifies

 Programming
 Databases
 AI knowledge representation and problem-solving

33

