Towards a Unifying Logic-Based Framework for

Programming
Databases

Al knowledge representation and problem-solving

Robert Kowalski and Fariba Sadri

Department of Computing
Imperial College London

Outline

KELPS - a simplified kernel for reactive logic-based
production-style systems

Related work (MetateM, Transaction Logic)

LPS = KELPS + Logic Programs

MALPS = Multi Agent LPS (The Dining Philosophers)
Model-theoretic semantics

Operational semantics

The frame problem

Conclusions

KELPS - a simplified kernel for reactive
logic-based production-style systems

Programs are reactive rules with explicit time
in the logical form:

VX [antecedent(X)— Y consequent(X, Y)]
abbreviated antecedent(X) — consequent(X, Y)

whenever the antecedent is true,
then the consequent is true in the future.

Model-theoretic semantics: Operational Semantics:

facts are time-stamped facts updated destructively
without time stamps

Computation:

model generation

S.

I

i
Si+1

old-fact
fact,
fact,

new-fact
fact,
fact,

fact, fact,

i+1

KELPS = Composite events + rules + composite actions

pre-sensor detects possible fire in area A at time T, /A
smoke detector detects smoke in area A at time T, /|
|IT,—T,| <60sec A max(T,, T, T)

— activate local fire suppression in area A at time T, A T<T, <T+ 10 sec /|
send security guard to area A at time T, N T,<T, <T,+ 30 sec

V' call fire department to area A at time T;* A T<T,”<T+ 120sec

Syntax of reactive rules in KELPS

antecedent, (X) A --- A antecedent, (X)

%

consequent,, (X, Y) A== A consequent,; (X, Y)
Voo
V' consequent, (X, Y) A~ A consequent,, (X, Y)

Each antecedent;(X) and consequent; (X, Y)is:

 an FOL condition in the vocabulary of state predicates
(operationally a query to the extended current state)

 anevent atom representing an event (including action)
* atemporal constraint time, < time, or time, < time,

Each consequent;, (X, Y) A --- A consequent,, (X, Y)is a plan.

Outline

KELPS

Related work (MetateM, Transaction Logic)

LPS = KELPS + Logic Programs

MALPS = Multi Agent LPS (The Dining Philosophers)
Model-theoretic semantics

Operational semantics

The frame problem

Conclusions

MetateM (Michael Fisher et al)

Programs = reactive rules in modal temporal logic:

‘past and present formula’ implies ‘present or future formula’

Computation = model generation.
Model = possible worlds connected by an accessibility relation.

States updated non-destructively by frame axioms.

Transaction Logic (Bonner and Kifer)
Programs = sequences of FOL queries and database updates.
Computation = model generation.

Model = possible worlds.
Truth defined relative to paths between possible worlds.

States (databases) updated destructively.

Outline

KELPS

Related work

LPS = KELPS + Logic Programs

MALPS = Multi Agent LPS (The Dining Philosophers)
Model-theoretic semantics

Operational semantics

The frame problem

Conclusions

10

LPS = KELPS + Logic Programs

Programs = reactive rules + logic programs with FOL queries.
Computation = model generation.

Model = single, minimal Herbrand model with time stamps.
Truth defined as in classical FOL.

States updated destructively.

11

LPS framework <R, L, D> and current state S

The state S is a set of ground atomic sentences, representing:

. the extensional part of a deductive database, or
. program variables changed by destructive assignment, or
. a Herbrand model of the current state of the world.

Reactive rules R: VX [antecedent(X)— 7Y consequent(X, Y)]

Logic programL=L,__ UL UL UL

int events timeless temp

L..ess defines time independent predicates.

L defines intensional predicates in terms of extensional predicates.
L. definescomposite eventsinterms of atomic events.
L

temp defines temporal predicates <, <

Domain theory D is a logic program that
defines preconditions and postconditions of atomic events

Blocks world <R, L, D> and current state S

R: request(on(Block, Place), T1)— make-on(Block, Place, T2, T3) AT1< T2

S$* . Deductive database: extensional predicates on(Block, Place, T).

L. clear(table, T)
clear(Block, T) «— — 3X on(X, Block, T)
L.,ents: make-on(Block, Place, T, T) «—on(Block, Place, T)

make-on(Block, Place, T1, T3) < make-clear(Block, TB1, TB2)
A make-clear(Place, TP1, TP2) A min(TB1, TP1, T1) A max(TB2, TP2, T2)

A move(Block, Place, T3) A T2 < T3

make-clear(Place, T, T) «<— clear(Place, T)
make-clear(Place, T1, T3) < on(Block, Place, T1)
A make-clear(Block, T1, T2)A move(Block, table, T3) A T2 < T3

D: possible(move(Block, Place), T) < clear(Block, T) A clear(Place, T) A Block = Place

initiates(move(Block, Place), on(Block, Place), T)
terminates(move(Block, Place), on(Block, Support), T) < on(Block, Support,T)

Dialogue/parsing example <R, L, D> whereL =1L, ...D={}S={}

Reactive rule R:
sentence(T1, T2) — sentence (T3, T4) AT2<T3<T2+ 10

Atomic events:
word(my, 1, 2) word(name, 2, 3) word(is, 3, 4) word(bob, 4, 5)

Composite events (and actions) L, . :

adjective(T1, T2) < word(my, T1, T2)
adjective(T1, T2) <« word(your, T1, T2)

noun(T1, T2) <~ word(name, T1, T2) verb(T1, T2) < word(is, T1, T2)
noun(T1, T2) < word(bob, T1, T2) noun(T1, T2) < word(what, T1, T2)

sentence(T1, T3) «— noun-phrase(T1, T2) A verb-phrase(T2, T3)
noun-phrase(T1, T3) «— adjective(T1, T2) A noun(T2, T3)
noun-phrase(T1, T2) < noun(T1, T2)

verb-phrase(T1, T3) < verb(T1, T2) A noun-phrase(T2, T3)
verb-phrase(T1, T2) < verb(T1, T2)

The reactive rule is true in the sequence of atomic and
composite events

{word(my, 1, 2) word(name, 2, 3) word(is, 3, 4)
word(bob, 4, 5) word(what, 6, 7) word(is, 7, 8)
word(your, 8, 9) word(name, 9, 10)

adjective(1, 2) noun(2, 3) verb(3, 4)

noun(4, 5) noun(6, 7) verb(7, 8)
adjective(8, 9) noun(9, 10) noun-phrase(1, 3)
noun-phrase(2, 3) noun-phrase(4, 5) verb-phrase(3, 5)
sentence(2, 4) sentence(2, 5) sentence(1, 5)
noun-phrase(6, 7) noun-phrase(8, 10) noun-phrase(9, 10)
verb-phrase(7, 10) sentence(6, 8) sentence(6, 10)}
U Temp

where Temp (includes 5 < 6) is the extension of the inequality
relation defined by L., .

LPS: alternative external notations

Transaction Logic:

P® Q means P(T;) AQ(T,) A T,<T,
or P(T;, T,) AQ(T; T,) AnT,<T,

Modal temporal logic:

P A0Q means P(T,) AQ(T,) A T,<T,.
P A0Q means P(T) A Q(T+1)
or P(T)AQ(T,) nT,<T,=<T,+¢

Graphical notation:
t1 t2
» O

//-?

t3 t4

means P(T) AQ(T,) AR(T) AT, +t1 <T,<T,+t2 »
IL,+t3<T,=T,+t4

16

Outline

KELPS

Related work

LPS

MALPS = Multi Agent LPS (The Dining Philosophers)
Model-theoretic semantics

Operational semantics

The frame problem

Conclusions

17

The Dining Philosophers

18

The Dining Philosophers

The initial state S,

L

timeless

available(fork,)
available(fork,)
available(fork,)
available(fork;,)
available(fork,)

adjacent(fork, philosopher(0), fork,)
adjacent(fork,, philosopher(1), fork,)
adjacent(fork,, philosopher(2), fork;,)
adjacent(fork,, philosopher(3), fork,)
adjacent(fork, philosopher(4), fork,)

19

The Dining Philosophers — with time-free syntax

time-to-eat(philosopher(l))
—dine(philosopher(l))

dine(philosopher(l))

<« think(philosopher(l)),
pickup-forks(philosopher(l)),
eat(philosopher(l)),
putdown-forks(philosopher(l))

20

Atomic actions are defined by the
domain specific event theory D

pickup-forks(philosopher(l))

terminates available(F,) and available(F,)

preconditions available(F,), available(F,) if
adjacent(F,, philosopher(l), F,).

putdown-forks(philosopher(l))
initiates available(F,) and available(F,) if
adjacent(F,, philosopher(l), F,).

21

The reactive rule is true in the sequence of states and actions:

S,: {available(fork,), available(fork,), available(fork,), available(fork,), available(fork,)}
A;: {think(philosopher(0)), think(philosopher(1)), think(philosopher(2)), think(philosopher(3)), think(philosopher(4))}
S,: {available(fork,), available(fork,), available(fork,), available(fork,), available(fork,)}
A,: {pickup-forks(philosopher(0)), pickup-forks(philosopher(2))}

S,: {available(fork,)}

A;: {eat(philosopher(0)), eat(philosopher(2))}

S;: {available(fork,)}

A,: {putdown-forks(philosopher(0)), putdown-forks(philosopher(2))}

S,: {available(fork,), available(fork,), available(fork,), available(fork), available(fork,)}
A.: {pickup-forks(philosopher(1)), pickup-forks(philosopher(3))}

Ss: {available(fork,)}

A;: {eat(philosopher(1)), eat(philosopher(3))}

Se: {available(fork,)}

A,: {putdown-forks(philosopher(1)), putdown-forks(philosopher(3))}

S,: {available(fork,), available(fork,), available(fork,), available(fork;), available(fork,)}
Ag: {pickup-forks(philosopher(4))}

Sg: {available(fork,), available(fork,), available(fork;)}

Ag: {eat(philosopher(4))}

So: {available(fork,), available(fork,), available(fork)}

A, o {putdown-forks(philosopher(4))}

S,o: {available(fork,), available(fork,), available(fork,), available(fork;), available(fork,)} 22

Outline

KELPS

Related work

LPS

MALPS

Model-theoretic semantics
Operational semantics

The frame problem

Conclusions

23

Model-theoretic semantics

Given <R, L, D> and initial state S,* with explicit time,
ex,*,..., ex;*,.... sequence of sets of external events with explicit time,
the computational task is to generate a sequence of sets of actions

a,*,.., a*,..suchthat Ristruein the “intended” minimal model of:

LU S,* US,* U....§5%... U
e,* Ue* U..efU ..

where e* =ex;* Ua;*

S;=(S;.;—{p| terminates(e, p, t;) istrueine*US, ,* UL, ... L, . D})
U {p | initiates(e, p, t) istrueine*US *UlL, ..UL. . D}

S;*= {holds(p, t;) | p € S; at time t;}

24

Outline

KELPS

Related work

LPS

MALPS

Model-theoretic semantics
Operational semantics

The frame problem

Conclusions

25

The operational semantics is an
observe—decide—think —act cycle.

The i-th cycle transforms S, ;, R ;, G;.; and e;
into S; R, G;, and actions a;,,

* G;is aconjunction of goals.

 Each goal has the form:

subgoal,; (X, Y) A== A subgoal,; (X, Y)
Ve
V/ subgoal_, (X, Y) A=+ A subgoal

mim

(X, Y)

Each subgoal;; is an event, FOL condition or temporal constraint.

26

Simplified operational semantics (for LPS- L, ...)

Step 0. Observe. Use e; to transform S, ; into S,.

Step 1. Think. If earlier-antecedents(X) A later-antecedents(X) — consequent(X, Y)
isinR,; and earlier-antecedents(x)is trueine;* US* UL, e UL,

then simplify any temporal constraints in later-antecedents(x) — consequent(x, Y)
and add the result to R, ; to obtain R;.

If later-antecedents(x) is empty, then add the result to G, ; as a new goal.
Step 2.1. Decide. Choose a set P of plans from one or more goals in G, ;.

Step 2.2. Think. For every plan in P, choose a form
earlier-consequents(Y) A later-consequents(Y).

If earlier-consequents(y)is trueine* US* UL, ... UL, .

then simplify any temporal constraints in later-consequents(y)

and add the result as an new plan to the same goal in P to obtain G;.

Step 2.3. Act. For every plan in P of a form
actions(Z) A other-consequents(Z), choose such a form,
attempt to execute actions(Z)

and add any successfully executed instances actions(z) to e;,;.
27

The operational semantics is sound with respect to
the model-theoretic semantics.

Theorem. Given external events ex;,..., ex,,....,

suppose the operational semantics generates:

So Ry, Gy, a4, ... ,5;, R, G, a;

ir Yi+1r ccc

Let M be the “intended” minimal model of:

LU §,* US,* U...§5%...U

I

e,* ue U ..efuU ..

Then R, U G, is true in M if and only if
for every new goal G added to a goal state G;,

there exists a goal state G;, j >/ such that the empty plan (equivalent to true)
is added as a new plan to the same goalas G in G;.

28

Incompleteness

The operational semantics is incomplete.
It cannot preventively make a rule true by making its
antecedents false:

attacks(X, me, T,) A = prepared-for-attack(me, T,)
— surrender(me, T,)ANT,<T, <T,+ 0

It cannot proactively make a reactive rule true by making its
consequents true before its antecedents become true:

enter-bus(me, T,)
— have-ticket(me, T,)ANT,<T,<T,+ ¢

29

Outline

KELPS

Related work

LPS

MALPS

Model-theoretic semantics
Operational semantics

The frame problem

Conclusions

30

Model-theoretic semantics — an alternative formulation
with general purpose event theory Et, .

holds(P, T,) «<— happens(E, T,, T,) » initiates(E, P, T,)
holds(P, T,) <— holds(P, T,) A happens(E, T,, T,) n - terminates(E, P, T,)

Given <R, L, D> and initial state §,* with explicit time,
ex,*,.., ex;*,.... sequence of sets of external events with explicit time,

the computational task is to generate a sequence of sets of actions
a,*,.., a;*,...such that Ris true in the “intended” minimal model of:

ET, 1us YLUDUS* U
e,* ue,*uU..e*U ..

31

Solving the computational aspect of the frame problem

Theorem. The “intended” minimal model of:

ET, 4V L UDU S U
e,* Ue*uU ..e*uU ..

is identical to the “intended” minimal model of:

LUD U S, US,*FU...5%...U
e,;* Ue* U..e*uU ..

32

Conclusions

Destructive assignment does not need a semantics.
It is the semantics.

Challenge: Find a framework that unifies
Programming

Databases
Al knowledge representation and problem-solving

33

