Designing Efficient Map-Reduce Algorithms

A Common Mistake Size/Communication Trade-Off Hamming-Distance 1 Matrix Multiplication

Jeffrey D. Ullman Stanford University

Review of Map-Reduce

Mappers and Reducers Key-Value Pairs Example Application: Join

Mappers and Reducers

- Map-Reduce job = Map function + Reduce function.
- Map Task = Map-function execution on a chunk of inputs.
- Reduce Task = Reduce-function execution on one or more key-(list of values) pairs.
- Mapper = application of the Map function to a single input.
- Reducer = application of the Reduce function to a single key-(list of values) pair.

Example: Natural Join

- Join of R(A,B) with S(B,C) is the set of tuples (a,b,c) such that (a,b) is in R and (b,c) is in S.
- Mappers need to send R(a,b) and S(b,c) to the same reducer, so they can be joined there.
- Mapper output: key = B-value, value = relation and other component (A or C).
 - Example: R(1,2) -> (2, (R,1))
 S(2,3) -> (2, (S,3))

Mapping Tuples

$$R(1,2) \rightarrow Mapperfor R(1,2) \rightarrow (2, (R,1))$$
$$R(4,2) \rightarrow Mapperfor R(4,2) \rightarrow (2, (R,4))$$
$$S(2,3) \rightarrow Mapperfor S(2,3) \rightarrow (2, (S,3))$$
$$S(5,6) \rightarrow Mapperfor S(5,6) \rightarrow (5, (S,6))$$

Grouping Phase

- There is a reducer for each key.
- Every key-value pair generated by any mapper is sent to the reducer for its key.

Mapping Tuples

Constructing Value-Lists

- The input to each reducer is organized by the system into a pair:
 - The key.
 - The list of values associated with that key.

The Value-List Format

$$(2, [(R,1), (R,4), (S,3)]) \longrightarrow Reducer for B = 2$$

$$(5, [(S, 6)]) \longrightarrow \begin{array}{c} \text{Reducer} \\ \text{for B} = 5 \end{array}$$

The Reduce Function for Join

- Given key b and a list of values that are either
 (R, a_i) or (S, c_j), output each triple (a_i, b, c_j).
 - Thus, the number of outputs made by a reducer is the product of the number of R's on the list and the number of S's on the list.

Output of the Reducers

$$(2, [(R,1), (R,4), (S,3)]) \longrightarrow \begin{bmatrix} \text{Reducer} \\ \text{for } B = 2 \end{bmatrix} \longrightarrow (1,2,3), (4,2,3)$$

$$(5, [(S, 6)]) \longrightarrow \begin{array}{c} \text{Reducer} \\ \text{for B} = 5 \end{array} \longrightarrow$$

Motivating Example

Computation and Communication Cost Drug Interaction Problem Controlling the Communcation

The Drug-Interaction Problem

- Data consists of records for 3000 drugs.
 - List of patients taking, dates, diagnoses.
 - About 1M of data per drug.
- Problem is to find drug interactions.
 - Example: two drugs that when taken together increase the risk of heart attack.
- Must examine each pair of drugs and compare their data.

Initial Map-Reduce Algorithm

- The first attempt used the following plan:
 - Key = set of two drugs {*i*, *j*}.
 - Value = the record for one of these drugs.
- Given drug *i* and its record R_i, the mapper generates all key-value pairs ({*i*, *j*}, R_i), where *j* is any other drug besides *i*.
- Each reducer receives its key and a list of the two records for that pair: ({*i*, *j*}, [*R_i*, *R_j*]).

Example: Three Drugs

Example: Three Drugs

Example: Three Drugs

What Went Wrong?

- 3000 drugs
- times 2999 key-value pairs per drug
- times 1,000,000 bytes per key-value pair
- = 9 terabytes communicated over a 1Gb Ethernet
- = 90,000 seconds of network use.

A Better Approach

- The way to handle this problem is to use fewer keys with longer lists of values.
- Suppose we group the drugs into 30 groups of 100 drugs each.
 - Say G₁ = drugs 1-100, G₂ = drugs 101-200,..., G₃₀ = drugs 2901-3000.
 - Let g(i) = the number of the group into which drug i goes.

The Map Function

- A key is a set of two group numbers.
- The mapper for drug *i* produces 29 key-value pairs.
 - Each key is the set containing g(i) and one of the other group numbers.
 - The value is a pair consisting of the drug number i and the megabyte-long record for drug *i*.

The Reduce Function

- The reducer for pair of groups {*m*, *n*} gets that key and a list of 200 drug records – the drugs belonging to groups *m* and *n*.
- Its job is to compare each record from group m with each record from group n.
 - Special case: also compare records in group n with each other, if m = n+1 or if n = 30 and m = 1.
- Notice each pair of records is compared at exactly one reducer, so the total computation is not increased.

The New Communication Cost

- The big difference is in the communication requirement.
- Now, each of 3000 drugs' 1MB records is replicated 29 times.
 - Communication cost = 87GB, vs. 9TB.

Theory of Map-Reduce Algorithms

Reducer Size Replication Rate Mapping Schemas Lower Bounds

A Model for Map-Reduce Algorithms

- 1. A set of *inputs*.
 - Example: All drugs and their records.
- 2. A set of *outputs*.
 - Example: One output for each pair of drugs.
- 3. A many-many relationship between inputs and outputs.
 - An output is related to the inputs it needs to compute its values.
 - Example: The output for the pair of drugs {*i*, *j*} is related to inputs *i* and *j*.

Example: Drug Inputs/Outputs

Example: Matrix Multiplication

- Reducer size, denoted q, is the maximum number of inputs that a given reducer can have.
 - I.e., the length of the value list.
- Limit might be based on how many inputs can be handled in main memory.
- Or: make q low to force lots of parallelism.

Replication Rate

- The average number of key-value pairs created by each mapper is the *replication rate*.
 - Denoted r.
- Represents the communication cost per input.

Example: Drug Interaction

- Suppose we use g groups and d drugs.
- A reducer needs two groups, so q = 2d/g.
- Each of the d inputs is sent to g-1 reducers, or approximately r = g.
- Replace g by r in q = 2d/g to get r = 2d/q.

Tradeoff! The bigger the reducers, the less communication.

Upper and Lower Bounds on r

- What we did gives an upper bound on r as a function of q.
- A solid investigation of map-reduce algorithms for a problem includes lower bounds.
 - Proofs that you cannot have lower r for a given q.

Mapping Schemas

- A mapping schema for a problem and a reducer size q is an assignment of inputs to sets of reducers, with two conditions:
 - 1. No reducer is assigned more than q inputs.
 - 2. For every output, there is some reducer that receives all of the inputs associated with that output.
 - Say the reducer *covers* the output.

Mapping Schemas – (2)

- Every map-reduce algorithm has a mapping schema.
- The requirement that there be a mapping schema is what distinguishes map-reduce algorithms from general parallel algorithms.

Example: Drug Interactions

- d drugs, reducer size q.
- No reducer can cover more than q²/2 outputs.
- There are d²/2 outputs that must be covered.
- Therefore, we need at least d²/q² reducers.
- Each reducer gets q inputs, so replication r is at least $q(d^2/q^2)/d = d/q$.
- Half the r from the algorithm we described.

The Hamming-Distance = 1 Problem

The Exact Lower Bound Matching Algorithms

Definition of HD1 Problem

 Given a set of bit strings of length b, find all those that differ in exactly one bit.

• Theorem: $r \ge b/log_2q$.

Algorithms Matching Lower Bound

Matrix Multiplication

One-Job Method Two-Job Method Comparison

Matrix Multiplication

- Assume n × n matrices AB = C.
- A_{ij} is the element in row *i* and column *j* of matrix
 A.
 - Similarly for B and C.
- $C_{ik} = \Sigma_j A_{ij} \times B_{jk}$.
- Output C_{ik} depends on the *i*th row of Aand the *k*th column of B.
- Theorem: For matrix multiplication, r > 2n²/q.
- Matching algorithm exists the standard partition by bands.

Matching Algorithm

Divide rows of A and columns of B into g groups gives $r = g = 2n^2/q$

Two-Job Map-Reduce Algorithm

- A better way: use two map-reduce jobs.
- Job 1: Divide both input matrices into rectangles.
 - Reducer takes two rectangles and produces partial sums of certain outputs.
- Job 2: Sum the partial sums.

Picture of First Job

Comparison: Communication Cost

One-job method: Total communication = 4n⁴/q.
 Two-job method Total communication = 4n³/√q.

Summary

- Represent problems by mapping schemas
- Get upper bounds on number of covered outputs as a function of reducer size.
- Turn these into lower bounds on replication rate as a function of reducer size.
- For HD = 1 problem: exact match between upper and lower bounds.
- 1-job matrix multiplication analyzed exactly.
- But 2-job MM yields better total communication.