
ISSN 2186-7437

NII Shonan Meeting Report

No. 190

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Engineering Dependable Ubiquitous
Systems

Christos Tsigkanos
Carlo Ghezzi
Zhenjiang Hu

March 17 - 20, 2025

Contents

1 Background – Introduction 2

2 Overview of the Meeting 4

3 Overview of Talks 5

4 List of Participants 12

5 Meeting Schedule 13

6 Summary of Discussions 16
6.1 Programming Languages and Abstraction 17
6.2 Specification and Verification . 17
6.3 Ethics for Autonomous and Intelligent Systems 17

7 Identified Issues and Future Directions 20
7.1 Programming Languages and Abstraction 20
7.2 Specification and Verification . 20
7.3 Ethics for Autonomous and Intelligent Systems 21

1

1 Background – Introduction

Today, even small devices – from mobile phones to industrial robots – are
internet-connected, are capable of running software and are situated close to
end-users or applications, rendering the overall systems induced software-intensive.
Commonly understood by evocative terms such as Industry 4.0 or as said to be
exhibiting smart functionalities, they are becoming ubiquitous and are increas-
ingly integrated in daily life and are increasingly engineered with autonomy in
mind.

The major hurdle to engineering such systems is the inherent complexity of
their software, as software is the principal factor defining their overall behavior.
This complexity manifests both at design as well as at runtime. At design
time, software may be required to be designed and developed for heterogeneous
platforms and stacks while ensuring interoperability. Software components may
furthermore implement particular types of computation (such as verification or
AI functionalities), often in a distributed manner. This is something which needs
to be accommodated in both design and runtime cycles – a typical example case
is Internet of Things applications, where technological advances have enabled
even miniscule devices to run software; as such, a continuum from devices to
cloud arises. At runtime, such systems are exposed to changes in different
contexts derived from changes in environment, software configuration, execution
infrastructure, or other unforeseen issues.

Paradigms and approaches from software engineering and programming lan-
guages have shown to be highly effective for such designs – however traditional
methods and techniques face challenges from this new domain. Examples range
from model-based engineering and code generation to tackle heterogeneity, to
verification techniques employed at runtime for requirements validation or AI
used to devise control actions. All those require the backing of sound engineering
techniques in order to build and operate scalable, usable and efficient applica-
tions and systems that operate in a way that is beneficial to individuals, society
and the environment. This Shonan meeting aimed at investigating wide themes
within software engineering for dependable ubiquitous systems, including:

• Software-defined Everything. Software is used to abstract and automate
management and control of computational, networking, storage, or hard-
ware resources of various devices. Applications involve various software
stacks and exhibit different complexities, with multiple software compo-
nents being deployed in diverse infrastructures and contexts being a central
theme: components may be deployed on (or migrated to) different hosts,
ranging from resource-constrained or domain-specific devices to powerful
cloud servers. Architecting and developing such systems reliably is a major
challenge. Software-defined everything here involves active management of
the system by (possibly autonomous) software agents, which set in motion
actions to satisfy system objectives. Attributes such as locality, variability
in the environment, and distribution of computation (manifested as uncer-
tainty at runtime) pose challenges, calling for additional management and
control closer to the software components’ operating architectural layer.
A further open problem is how to instrument requirements verification
and control at runtime for systems that are diverse, are expected to scale
(e.g., to avoid resource saturation or central points of failure), ensure con-

2

formance to new requirements (e.g., privacy, responsiveness), or are highly
dynamic.

• Programming Models for Ubiquitous Computation. One critical problem
in exploring ubiquitous and pervasive systems for greater societal benefits
is the lack of a fundamental basis of widely accepted programming models
for such systems. The ubiquitous computing scenario brings many new
problems such as coping with the limited processing power of mobile de-
vices, frequent disconnections, interoperation among different computing
devices, the migration of code and tasks between heterogeneous devices,
etc. It requires programming languages and models that can support mo-
bility, interoperability, adaptation, and context awareness.

• Ethics for Autonomous and Intelligent Systems. As deployment of au-
tonomous and intelligent systems becomes increasingly pervasive, we need
to establish societal and policy guidelines in order for such systems to
remain human-centric and ensure that they serve humanity’s values and
foundational ethical principles. The self-adaptive systems community has
tackled mechanisms for attainment of technical goals; autonomous and in-
telligent systems however raise issues beyond simply addressing technical
problems. These systems must be developed and should operate in a way
that is beneficial to society and the environment.

3

2 Overview of the Meeting

The NII Shonan Meeting “Engineering Dependable Ubiquitous Systems” took
place in Shonan, Japan from March 17th to 20th, 2025. The seminar was
organized by Christos Tsigkanos (University of Athens & University of Bern),
Carlo Ghezzi (Politecnico di Milano) and Zhenjiang Hu (Peking University).
We hosted 26 participants from all over the world and diverse expertise, who
discussed various topics. All participants held lightning talks, while 10 experts
gave longer overview talks. All talks were followed by a discussion session, while
we allotted sufficient time for working group discussions throughout the days of
the seminar. The social event included the traditional seminar outing, including
visits of the Kenchoji temple and Kamakura and attending a ZAZEN session.

4

3 Overview of Talks

Runtime Monitoring of Ubiquitous Systems

Michele Loreti – University of Camerino

Ubiquitous Systems (US) are a class of systems where computing capabili-
ties are woven into the fabric of everyday life. These are composed by a set of
entities that, while interacting with the users, are able to perceive the state of
the environment where they operate and that can use actuators to change it.
Each of these entities are often programmed to reach local or global goals and
operate without any centralised control and to adapt their behaviour according
to the changes in the environment where they operate. To support development
of resilient US, it is crucial to introduce tools and methodologies that permit de-
scribing their behaviour and specifying and verifying the expected requirements.
For this reason, if is of outmost importance to identify the right specification
language (or primitives) to describe the behaviour of each entity and to use
formal languages (temporal logics) that permits describing requirements of a
single entity as well as of the full system. In this talk we have first discussed
how computation of US can be modelled. Moreover, we have introduced the
logic GLoTL that can be used to specify properties of a collection of agents at
both local and global levels. At a local level, the properties of the behaviour of
single entities are considered. While at the global level, properties refer to the
whole system. Finally, the algorithm to support runtime verification of GLoTL
is discussed.

An Overview on Reactive Synthesis and Specifications

Shahar Maoz – Tel Aviv University, Israel

Reactive synthesis is an automated procedure to obtain a correct-by-construction
reactive system from a given temporal specification. Examples of these systems
include the software controllers of robotic systems. Despite recent advancements
on the theory and algorithms of reactive synthesis, e.g., efficient synthesis for
the GR(1) fragment of linear temporal logic, many challenges remain in bring-
ing reactive synthesis technologies to the hands of software engineers. Over the
last several years, we have worked on bridging this gap, addressing challenges
that relate to the change from writing code to writing specifications, and the de-
velopment of tools to support a specification-centric rather than a code-centric
development process.

In this talk I’ll start with an overview of the SYNTECH project and the
Spectra specification language and synthesizer. I will then focus on several
recent works dealing with unnecessary assumptions, the specification of triggers,
and a user study on the use of the synthesizer. Finally, I will discuss why
we should pay more research attention to formal specifications, what are the
challenges we will be facing, and present a vision for future work on specification
engineering.

5

Engineering Digital Systems for Humanity: A Research
Roadmap

Martina De Sanctis – Gran Sasso Science Institute (GSSI), Italy

As testified by new regulations like the European AI Act, worries about the
human and societal impact of (autonomous) software technologies are becom-
ing of public concern. Human, societal, and environmental values, alongside
traditional software quality, are increasingly recognized as essential for sustain-
ability and long-term well-being. Traditionally, systems are engineered taking
into account business goals and technology drivers. Considering the growing
awareness in the community, in this talk, I present a research roadmap for en-
gineering Digital Systems for humanity, where we argue that the engineering of
systems should also consider human, societal, and environmental drivers. To
this aim, we identified the macro and technological challenges by focusing on
humans and their role while co-existing with digital systems. The first challenge
considers humans in a proactive role when interacting with digital systems, i.e.,
taking initiative in making things happen instead of reacting to events. The sec-
ond concerns humans having a reactive role in interacting with digital systems,
i.e., humans interacting with digital systems as a reaction to events. The third
challenge focuses on humans with a passive role, i.e., they experience, enjoy,
or even suffer digital systems’ decisions and/or actions. The fourth challenge
concerns the duality of trust and trustworthiness, with humans playing any
role. Building on the new human, societal, and environmental drivers and the
macro and technological challenges, we identified a research roadmap of digital
systems for humanity. The research roadmap is concretized in a number of re-
search directions organized into four groups: development process, requirements
engineering, software architecture and design, and verification and validation.

Formal Verification, Vulnerability Analysis, and Attack De-
tection in Cyber-Physical Systems

Marjan Sirjani – Mälardalen University, Sweden

To explain formal verification, vulnerability analysis, and attack detection in
cyber-physical systems I focus on a concrete example, Distributed Redundant
Controllers. A potential problem that may arise in the domain of distributed
control systems is the existence of more than one primary controller in redun-
dancy plans which may lead to inconsistency. We worked on an algorithm called
NRP FD (Network Reference Point Failure Detection), proposed by industry,
to solve this issue by prioritizing consistency over availability. I explain how
by using modeling and formal verification, we discovered an issue in NRP FD
where we may have two primary controllers at the same time. We then provide
a solution to mitigate the identified issue, thereby enhancing the robustness and
reliability of such systems. In the same context, I also show how we used model
checking for making informed decisions in designing test cases for fault-tolerant
systems, and how our timing analysis helps in making timing configuration de-
cisions. I show how Time Rebeca and Lingua Franca languages and tools are
used for this work hand in hand. I add a discussion on how this approach may
be generalized in different contexts.

6

Resource provisioning with emphasis on ML

Luciano Baresi – Politecnico di Milano, Italy

Many modern dependable systems exploit virtual execution environments
(e.g., virtual machines or containers) and embed some machine-learning (ML)
based components. Oftentimes, the dependability of these systems does not
only require the correctness and robustness of their components but calls for a
proper management of computational resources: too few resources may hamper
the proper operation of these systems, while too many resources would be a
waste and would impact their sustainability.

Besides framing the problem, the talk discussed the work carried out in the
last years to tackle these issues. The presentation started by sketching the key
ingredients of the first solutions we developed to control CPU core allocation for
the operation of interactive web applications. The use of containers and control
theory (PI controllers) allowed for the fine-grained and runtime adaptation of
provisioned cores to meet set response times. We used similar enablers to control
the operations of batch applications with proper deadlines, that is, big-data
applications run on top of Spark. These applications are not interactive and
there no response times to meet; deadlines are used to constrain batch execution.
CPUs are not enough when one wants to control the training of ML models,
which impose that GPU cores be allocated, and their peculiar characteristics
be managed properly. This is why designed controller provision resources in a
different way.

Thorough evaluation demonstrates that developed solutions work properly
and can scale to manage realistic applications. Fine-grained GPU provision-
ing and distributed settings, for example, federated learning frameworks, need
further work and are still part of our research agenda.

Towards Neuro-Symbolic Formal Reasoning

Xiaoxing Ma – Nanjing University, China

This talk proposes Neuro-Symbolic (NeSy) formal reasoning as a promising
approach for integrating the power of AI, particularly Large Language Models
(LLMs), into software engineering.

Software engineering has achieved tremendous success in building large-scale
systems, making ”software-defined everything” nearly a reality. The power of
software lies in its unique capability to manage complexity through unprece-
dented compositionality and reusability. These strengths stem from the fact
that traditional (symbolic) software is a purely logical artifact, free of uncer-
tainty.

However, the introduction of ML models brings uncertainty due to their sta-
tistical nature, reliance on incomplete induction, and the randomness involved in
training processes. This inherent uncertainty challenges foundational software
engineering principles. Simply using ML models as components or as unverified
code generators undermines software’s traditional strengths. While powerful,
LLMs often produce incorrect or ”hallucinated” outputs.

The core proposal is a NeSy approach that leverages the strengths of both
paradigms: the LLM’s ability to ”guess” or generate potential solutions (like

7

code or mathematical proofs) and symbolic methods’ ability to rigorously ”check”
or verify the correctness of these generations. This ”Guess and Check” method
aims to produce trustworthy outputs from potentially untrustworthy LLMs.
The idea is to automate the ”how” (implementation and proof generation) while
humans focus on the ”what” (requirements and goals), ensuring LLM-generated
artifacts are formally verified by symbolic tools.

The talk also presents initial work exploring the feasibility of this NeSy
approach, yielding encouraging results:

The Olympiad Inequality Proving (LIPS) system combines LLM intuition
for suggesting proof steps with symbolic solvers for verifying and pruning these
steps. This method significantly outperformed not only LLMs or symbolic
solvers alone on various datasets but also human Gold medalists on a benchmark
of competition-level inequalities. It even discovered novel proofs and identified
errors in existing expert solutions.

The Loop Invariant Inference (LaM4Inv) framework uses LLMs to generate
candidate loop invariants. These candidates are then verified and refined using
symbolic tools like SMT solvers and Bounded Model Checking, incorporating
counterexamples back into the LLM prompt for iterative improvement. This
NeSy approach demonstrated significant improvements over existing baseline
methods for loop invariant generation.

Environment Modeling-driven Software Requirements En-
gineering

Zhi Jin – Peking University, China

Requirements engineering is to observe the real world, locate system prob-
lems, and decide the system capabilities. There are different perspectives on the
problem observation. Ubiquitous Systems directly interact with their operative
environment i.e. sensing the environment and actuating the environment. It
is more than important to identify the features and issues of the environment
and to deal with the concerns initiated by the environment. The environmental
model-based approach is taking the environment as the first-class citizen when
conducting the requirement engineering. Through modeling the environment,
and analyzing the environment static and dynamic characteristics, the behav-
iors that the systems should have and the constraints that need to be met can
be derived systematically. This talk first presents what the environment is,
how to model the environment, and how to determine the system dependabil-
ity enhancement capabilities from the perspective of the environment. Second,
it presents a study to identify the preferred way of expressing end users’ re-
quirements in a typical kind of ubiquitous systems, the smart home. We cate-
gorize the needs of smart home into three levels of abstraction and propose a
multi-level requirements description language which can illustrate the progres-
sive refinement of smart home requirements. Third, a set of problem decoupling
strategies is proposed to separate system problem concerns and transform com-
plex problems into a set of relatively simpler problems which can be specified
by a set of specification patterns. Finally, the talk is trying to explore the
possibility of generating the code for the specification patterns.

8

Engineering DSLs for Constructing Dependable Ubiquitous
Systems

Zhenjiang Hu – Peking University, China

Safe and user-friendly domain-specific languages (DSLs) are gaining traction
in ubiquitous computing for their ability to specify domain-specific computation
directly, enabling non-programmer experts to write code using familiar terminol-
ogy and operations. However, crafting DSLs tailored to these experts remains
challenging. Traditional embedded DSLs offer rapid prototyping but require
intimate knowledge of the host language, creating barriers for domain users
unfamiliar with their syntax or semantics. In this talk, we introduces a novel
approach to streamline DSL development and corresponding IDE construction.
It consists of three key components: (1) an extensible general-purpose core lan-
guage, (2) a DSL definition framework leveraging syntactic sugars to simplify
domain abstraction, and (3) a language-lifting process that automatically gen-
erates DSL implementations alongside an IDE optimized for DSL workflows.
This approach decouples DSLs from host-language intricacies, allowing domain
experts to focus on problem-solving rather than technical implementation. To
validate this method, we developed Osazone, a system used to create multiple
DSLs across diverse domains (e.g., healthcare, finance). The results demonstrate
flexibility in adapting to domain-specific needs, efficacy in reducing development
time, and practicality in empowering domain experts to independently design
and deploy DSLs.

Why Ethical Thinking must Inspire Development of Au-
tonomous Systems

Carlo Ghezzi – Politecnico di Milano

The world in which we live relies on digital technologies, and in particular
on software, which operates and interacts with the physical world and humans.
In the digital era, software engineers are the demiurges who are creating a new
cyber-physical world, where humans, autonomous agents powered by AI, and
physical entities live together in a new kind of society. Already in the late
1990’s constitutionalist L. Lessig said that software defines the laws that govern
the world and asked for reflection and action, because of the potential disrup-
tive consequences. This is even more urgent today, due to to the phenomenal
progress of AI and AI-generated software, which led to an increasing pervasive-
ness of software-enabled functions, with more and more intimate relation with
humans and society. This raises the urgent need for re-thinking the way we
do research, the competences and responsibilities of technologists who conceive
and develop software, and the skills they should acquire through education. Re-
thinking should start by asking questions like: Should software engineers care
about the human values involved while conceiving/developing new applications?
About possible future uses and ethical implications? Can they do it by them-
selves? What kind of skills would they need?

The talk mainly aims at setting the stage for opening a much needed and
urgent discussion, which should involve software researchers and educators and
has to be broad and open, especially to social sciences and humanities.

9

Formal Modelling of Socially-aware Autonomous Systems

Livia Lestingi – Politecnico di Milano

Autonomous systems are increasingly deployed in complex contexts where in-
teraction with humans is required. When such contexts are also safety-critical,
as is the case with emergencies, guaranteeing safety is paramount. This talk
presents FormIDEAble, a framework for the formal modelling of socially-aware
autonomous systems and the automated synthesis of safe cooperation strate-
gies with humans. The formal model, a Priced Timed Markov Decision Process
(PTMDP) network, incorporates social identity as a source of uncertainty when
synthesising a cooperation strategy at runtime. While existing work uses social
identity theory and game theory to engineer socially-aware autonomous systems
software, it does not provide safety guarantees. The FormIDEAble framework
uses Uppaal Stratego, which is a verification tool for PTMDPs, to synthesise
strategies optimising performance metrics while guaranteeing safety properties
(such as actions within a given time bound). Experimental results show that
FormIDEAble balances optimisation and safety guarantees and that improves
the autonomous system’s performance by 24% on average. Moreover, FormIDE-
Able provides those safety guarantees while introducing minimal overhead with
an average running time of under 2.5s.

Failure Analysis in Cyber-Physical Systems

Ezio Bartocci – TU Wien

Cyber-physical systems (CPS) combine continuous physics elements with
discrete control logic, making the diagnosis of faults very complex: physical
anomalies may masquerade as logical failures, propagate across components and
time scales, and evade detection until they breach high-level safety requirements.
In this talk I surveyed four complementary research efforts we have developed
as a toolbox for systematic failure analysis in Simulink/Stateflow models.

CPSDebug [1] combines specification mining, differential testing and trace-
based reasoning to automatically construct human-readable explanations of ob-
served failures. By separating continuous from discrete variables during invari-
ants generations, CPSDebug localises the root cause of a violation and visualises
its temporal–spatial propagation.

FIM (Fault Injection & Mutation) [2] provides an open-source infrastructure
for injecting transient or persistent faults at arbitrary model locations. Fine-
grained activation flags and parameterised mutation operators enable controlled
experimentation and large-scale robustness studies without manual model edit-
ing.

To precisely localise the components that trigger a failure, we combine [3]
formal requirements with search-based test generation. Given a failing test
and its requirement, our method synthesises a closely related passing test; con-
trasting the two executions isolates the minimal set of suspicious blocks and
variables—even under multiple simultaneous faults.

Finally, we extend classical mutation testing with a property-based perspec-
tive [4]. A mutant is considered relevant only if it can influence the satisfaction
of a given requirement, and it is meaningfully killed only when that requirement

10

is violated. This approach provides metrics that are both more informative for
safety assurance and better aligned with requirement-driven test generation.

Together, these techniques move CPS failure analysis from ad-hoc, man-
ual debugging toward an automated, property-aware workflow that spans fault
injection, detection, explanation and quantitative evaluation. The case stud-
ies in automotive and avionics domains demonstrate significant reductions in
debugging effort and sharper insights into system resilience.

[1] Ezio Bartocci, Niveditha Manjunath, Leonardo Mariani, Cristinel Mateis,
Dejan Nickovic: CPSDebug: Automatic failure explanation in CPS models. Int.
J. Softw. Tools Technol. Transf. 23(5): 783-796 (2021)

[2] Ezio Bartocci, Leonardo Mariani, Dejan Nickovic, Drishti Yadav: FIM:
fault injection and mutation for Simulink. ESEC/SIGSOFT FSE 2022: 1716-
1720

[3] Ezio Bartocci, Leonardo Mariani, Dejan Nickovic, Drishti Yadav: Search-
based Testing for Accurate Fault Localization in CPS. ISSRE 2022: 145-156

[4] Ezio Bartocci, Leonardo Mariani, Dejan Nickovic, Drishti Yadav: Property-
Based Mutation Testing. ICST 2023: 222-233

11

4 List of Participants

Name Affiliation Country

Prof. Christos Tsigkanos University of Bern & University of Athens Switzerland
Prof. Carlo Ghezzi Politecnico di Milano Italy
Prof. Zhenjiang Hu Peking University Japan/China
Prof. Romina Spalazzese Malmö University Sweden
Prof. Fuyuki Ishikawa National Institute of Informatics Japan
Prof. Luciano Baresi Politecnico di Milano Italy
Prof. Marjian Sirjani Mälardalen University Sweden
Prof. Xiaoxing Ma Nanjing University China
Prof. Soichiro Hidaka Hosei Univeristy Japan
Prof. Carla Ferreira NOVA University Lisbon Portugal
Prof. Javier Camara Universidad de Malaga / University of York Spain
Prof. Ezio Bartocci Technische Universität Wien Austria
Prof. Kenji Tei Institute of Science Tokyo Japan
Prof. Katinka Wolter Free University Berlin Germany
Prof. Shahar Maoz Tel Aviv University Israel
Dr. Martina De Sanctis Gran Sasso Science Institute (GSSI) Italy
Prof. Yao Guo Peking University China
Prof. Zhi Jin Peking University China
Prof. Bernhard Rumpe RWTH Aachen University Germany
Prof. Michele Loreti University of Camerino Italy
Prof. Elisa Gonzalez Boix Vrije Universiteit Brussel Belgium
Dr. Livia Lestingi POLITECNICO DI MILANO Italy
Dr. Ilias Gerostathopoulos VU Amsterdam The Netherlands
Prof. Hiroyuki Nakagawa Osaka University Japan
Dr. Hiroyuki Kato NII Japan

12

5 Meeting Schedule

Engineering Dependable Ubiquitous Systems
March 17 - 20, 2025 (Check-in: March 16, 2025)

Monday

Time Session
09:30-10:00 Welcome
10:00-10:45 Introductions

Break
11:15-12:00 Introductions (cont.)

Lunch
14:00-15:30 Introductions (cont.)

Break
16:00-17:30 Ubiquitous and CPS Systems (I)

• Shahar Maoz – An Overview on Reactive Synthesis and Specifications

• Marjan Sirjani – Formal Verification, Vulnerability Analysis, and
Attack Detection in Cyber-Physical Systems

• Discussion

Dinner

Tuesday

Time Session
9:00-10:30 Programming Models for Ubiquitous Computation

• Michele Loreti – Runtime Monitor of Ubiquitous Systems

• Xiaoxing Ma – Towards Neuro-Symbolic Formal Reasoning

• Discussion

Break
10:45-12:30 Software-defined Everything

• Ezio Bartocci – Failure Analysis of Cyber-Physical Systems

• Luciano Baresi – Resource provisioning with emphasis on ML

• Discussion

13

Time Session
Lunch

13:30-15:30 Ethics for Autonomous and Intelligent Systems

• Zhi Jin – Environment Modeling-driven Software Requirements
Engineering

• Zhenjiang Hu – Engineering DSLs for Constructing Dependable
Ubiquitous Systems

• Carlo Ghezzi – Why Ethical Thinking must Inspire Development of
Autonomous Systems

• Discussion

Break
16:00-16:30 Panel: Bootstrapping Questions

• Programming for Ubiquitous Computing: What programming
models and language features are needed to effectively support the
development and deployment of dependable ubiquitous systems across
diverse platforms and environments?

• Verification and Validation: How can we effectively model, specify,
and verify properties of ubiquitous systems, particularly at runtime, to
ensure their dependability and resilience?

• Rethinking Software Engineering: How can we adapt current
principles and practices to better address ethical considerations and
human values in the context of dependable ubiquitous systems?

• Engineering Ethical Autonomous Systems: What are the
challenges in designing and building trustworthy AI systems, and how
can we ensure they remain human-centric and beneficial to society?

• AI and Machine Learning: What are the key considerations for
developing dependable and self-adaptive ML-based systems, and how
can we address the challenges posed by AI-enabled cyber-physical
systems?

16:30-17:30 Discussion and Group Forming
Dinner

14

Wednesday

Time Session
9:00-10:30 Ubiquitous and CPS Systems (II)

• Livia Lestingi – Formal Modelling of Socially-aware Autonomous
Systems

• Discussion

Break
10:45-11:30 Group Breakout
11:30-12:00 Intermediary Group Presentations and Feedback

Lunch
14:00 Onwards Excursion/Social Event: Visiting Kenchoji Temple with

”ZAZEN”.

Thursday

Time Session
9:00-10:00 Group Breakout

Break
10:30-12:00 Final Group Presentations

• Discussion and Action Plan

Lunch

15

6 Summary of Discussions

The meeting convened experts from the domains of software engineering, pro-
gramming models, and distributed systems, specifically within the context of
ubiquitous computing. The workshop’s structure comprised three distinct phases:

• An initial plenary session wherein each participant provided a concise
self-introduction, followed by a presentation of their current research and
salient research themes. This served as a foundational step towards estab-
lishing a shared understanding of the diverse expertise present.

• A subsequent phase involving focused presentations delivered by selected
attendees. These presentations were strategically curated by the orga-
nizers to serve as catalysts for in-depth discussions on the pre-identified
thematic areas. The structuring of these presentations around specific
topics was intended to foster the formation of discussion groups.

• The concluding phase consisted of the formation of break-out groups
tasked with the interactive exploration and elaboration of specific top-
ics. While the precise topics for these groups were intended to emerge
organically during the meeting itself, the organizers prepared a prelimi-
nary set of themes to bootstrap initial discourse. These proposed themes
critically engaged with the following complex challenges:

– Advancements in programming language paradigms to effectively ad-
dress the landscape of software-defined everything.

– The necessary language features and underlying models for robustly
supporting the technical specifications and configuration parameters
of diverse execution platforms, and the mechanisms through which
seamless deployment and provisioning can be realized across geo-
graphically distributed and heterogeneous infrastructure.

– Methodologies for instrumenting sophisticated control, coordination,
and self-healing mechanisms within the software fabric of ubiquitous
systems, with a specific emphasis on the integration of regulatory
frameworks to ensure ethically-aligned behaviors within such complex
distributed environments.

– Strategies for effectively managing and abstracting core business logic
from intricacies of underlying infrastructure capabilities, thereby pro-
moting portability and resilience.

– Whether non-traditional computational paradigms, such as AI work-
flows or formal verification processes, necessitate the development of
novel programming and system-level models.

– The identification and rigorous analysis of critical factors and run-
time attributes that present significant challenges to the engineering
of ubiquitous systems, including, but not limited to, inherent data
locality constraints, dynamic environmental variability, and the in-
trinsic distribution of computational processes.

– The development of methodologies for the continuous monitoring of
runtime aspects and the detection of both anticipated and emer-

16

gent system behaviors that could potentially compromise depend-
ability, and critically, adherence to established ethical values. Fur-
thermore, the exploration of proactive counteractions through self-
adaptive mechanisms was considered paramount.

– The optimal form in which programming support for ubiquitous soft-
ware systems should be manifested, encompassing conceptual frame-
works, specialized middleware solutions, or entirely novel program-
ming model abstractions.

– A critical examination of how ethical considerations can be funda-
mentally embedded within the engineering lifecycle of autonomous
technologies, particularly within the nuanced context of self-adaptive
systems.

Discussions were documented to facilitate the subsequent distillation of key
workshop findings, the precise articulation of remaining open research problems,
and the formulation of proposals for future research directions and collaborative
initiatives.

6.1 Programming Languages and Abstraction

The discussion group centered on the challenges and potential solutions for pro-
gramming dependable ubiquitous computing systems from the programming
languages perspective. Participants explored desirable programming language
models including event-based, ambient-oriented, data-driven, and context-aware
programming, as well as the use of Domain-Specific Languages (DSLs). Key
challenges identified included interoperability, privacy, security, safety, the need
for domain-expert-friendly abstractions, scalability, and the development of ef-
fective debugging tools and programming environments. The group discussed
plans to address these issues through a position paper, potential collaborations,
and device demonstrations.

6.2 Specification and Verification

At the specification and verification group, the discussion revolved around the
definition of a problem exemplar that can be used as a vehicle to drive research in
the area. Self-adaptive ubiquitous computing systems are increasingly deployed
in critical domains that require run time adaptation to changes in dynamic
environments affected by multiple sources of uncertainty. One such domain
is assistive care, where there is a tight interaction between software, physical
elements, and human participants. Unlike other types of self-adaptive systems,
self-adaptive ubiquitous systems must continuously balance an array of concerns
that include competing technical, ethical, and human-centric requirements.

6.3 Ethics for Autonomous and Intelligent Systems

This group focused on the crucial goal of raising awareness about ethics in the
realm of software engineering. The discussion prioritized key concepts, setting
aside process and education as secondary concerns for this initial phase. The
overarching aims involve not only training and informing technical individuals
about ethical considerations but also extending this awareness to professionals

17

in other disciplines, such as law and human sciences. A significant aspect of this
outreach includes addressing legal compliance, exemplified by the contrasting
regulations surrounding robocalls in the EU and the US.

Furthermore, the group considered establishing channels with authorities
and lawmakers about the technological possibilities and limitations as necessary,
particularly concerning enforcement challenges. The discussion also highlighted
the need to re-evaluate existing regulations, noting that the EU AI Act, for
instance, was formulated before the advent of transformer models and may
require updates to account for broader technological impacts. Ultimately, the
group sought to encourage a fundamental rethinking of the decision-making
processes employed in the development and deployment of software systems in
line with ethical guidelines.

Transparency emerged as a central theme, with an emphasis on ”accessible
transparency” as a guiding principle for designing ethical systems. This entails
ensuring that the intents behind a system are clear and explicit, and that the tar-
get users are unambiguously defined. Accessibility was recognized as going be-
yond mere usability, requiring explicit consideration of inclusivity/exclusivity in
design choices, acknowledging the potential gap between educated/uneducated
users. It is crucial to clearly communicate why and for what purposes a user can
reliably depend on a system, and to explicitly identify all relevant stakehold-
ers, including end-users and policymakers. The concept of explainable systems
was also discussed, stressing that explanations should be tailored to the spe-
cific claims being made by a software system and the intended audience of
the system. Moreover, the sustainability implications of systems, encompassing
not just financial costs but also time, energy consumption, and carbon diox-
ide emissions, should be made explicit. The trustworthiness of a system hinges
on whether the guarantees it provides are proven, even if probabilistically, ac-
knowledging the often uncertain environments in which these systems operate.
Finally, the discussion addressed the growing challenges in digital identity veri-
fication due to technologies like AI deepfakes, raising the fundamental question
of distinguishing between human and artificial interaction.

The area of specification and verification highlighted the complexities arising
from differing societal conceptions of ethics (e.g., as illustrated by the trolley
problem). The limitations of standard temporal logics for capturing nuanced
ethical concepts were noted, suggesting the potential of deontic-like logics in
this domain. The group advocated for systems that offer various levels of per-
sonalization to accommodate individual values. While acknowledging the ex-
istence of global ethical principles, the discussion also recognized the necessity
of exceptions, and the inherent difficulties in managing these exceptions within
logical frameworks and practical rules. Defining abstract notions like fairness
and bias and translating them into precise specifications remains a significant
challenge, although ongoing research, including approaches using hyperprop-
erties and metamorphic testing, offers potential avenues. The specific impact
of bias in transfer learning was also raised as a critical concern. Ultimately,
the view presented by the system must be trusted, trustworthy, provable, and
readily explainable to all stakeholders involved.

The interaction between users and autonomous systems was also consid-
ered as relevant for defining ethical interactions, particularly in the context
of robotics. Finally, the discussion acknowledged the continuous evolution of
both software systems and the broader ethical landscape, necessitating ongoing

18

attention and adaptation of ethical considerations.

19

7 Identified Issues and Future Directions

7.1 Programming Languages and Abstraction

The discussion group participants identified several key challenges in the de-
velopment of dependable ubiquitous computing (DUC) systems. A primary
concern is interoperability, ensuring that diverse components and systems can
effectively communicate and collaborate. The need to address privacy, security,
and safety is also paramount, alongside enabling autonomous operation of these
systems. Furthermore, there’s a recognized gap between current tools and the
needs of domain experts; programming languages and tools should be friendly to
domain experts, allowing them to contribute to development. Effective abstrac-
tion is crucial to manage the complexity inherent in DUC systems. Scalability
presents another significant hurdle, as these systems must handle increasing
amounts of data and devices. The group also highlighted the importance of
establishing robust methodologies for developing DUC systems and the diffi-
culties associated with debugging distributed and pervasive systems. Finally,
the limitations of current programming environments (IDEs) were noted as an
impediment to efficient development.

To address these identified issues, the discussion group outlined several fu-
ture directions. The first is to draft a position paper that articulates a frame-
work encompassing WASM, OS, DSLs, APIs, event-driven and data-driven pro-
gramming paradigms, and bidirectional synchronization techniques such as BX,
CRDTs, and OT. A key strategy involves fostering collaborations among pro-
gramming language experts, operating system teams, and the IoT industry
to leverage diverse expertise. The group also emphasized the importance of
practical demonstrations, with plans to showcase solutions on devices like the
M5StickC to provide hands-on evidence of their feasibility and effectiveness.

The discussion group identified several promising programming language
models for dependable ubiquitous computing (DUC) systems and also high-
lighted key challenges in the field. Good programming models for DUC include
event-based programming languages, ambient-oriented programming, middle-
ware/APIs, data-driven programming models, context-aware programming lan-
guages, and Domain-Specific Languages (DSLs). However, significant challenges
remain, such as ensuring interoperability among diverse systems, addressing
privacy, security, and safety concerns, creating tools that are user-friendly for
domain experts, developing effective abstractions, achieving scalability, estab-
lishing robust methodologies, and improving debugging and programming envi-
ronments.

7.2 Specification and Verification

The specification and verification group centered its discussion on defining a
problem exemplar to guide their research efforts and identify challenges. This
research focuses on self-adaptive ubiquitous computing systems, which are in-
creasingly used in critical areas demanding real-time adaptation to dynamic and
uncertain environments. Assistive care serves as a key domain, highlighting the
complex interplay between software, physical components, and human users,
requiring a continuous balance of technical, ethical, and human-centric consid-
erations unlike other adaptive systems. Some of the distinctive challenges in the

20

area include:

• Multiple modalities of human involvement. A fundamental challenge in
such systems stems from the tight involvement of human participants
in multiple roles. Participants are not only passive recipients of assis-
tance but can also actively participate as monitors, analysts, and decision-
makers. They contribute to run time validation processes through contin-
ual feedback (Human-on-the-Loop), and may be required to take actions
that are difficult for automated systems to perform (Human-in-the-Loop).
This deep integration of human and automated system capabilities intro-
duces complexities in decision-making, as the system must accommodate
varying levels of human engagement and trust while ensuring that adap-
tation strategies remain effective.

• Tradeoffs among technical and social goals and constraints. Furthermore,
the operation of these systems is governed by a delicate balance between
technical system goals and broader socio-technical constraints. While sys-
tem designers typically prioritize goals such as safety, availability, cost
efficiency, and timeliness, real-world deployments must also adhere to eth-
ical principles, legal regulations, and compliance standards—referred to
as SLEEC (Social, Legal, Ethical, Environmental, and Cultural) consid-
erations. The interplay between these objectives is potentially conflicting,
as optimizing one dimension may come at the expense of another. For
example, ensuring strict adherence to safety properties (e.g., avoiding col-
lisions of an assistive mobile robot that is sharing the physical space with
a human user) might reduce system availability or increase operational
costs, requiring trade-offs that must be carefully managed at run time.

• Local vs. Global Goals. An additional layer of complexity arises from
the potential misalignment between local and global goals. In assistive
care settings, system-wide optimization strategies (e.g., minimizing oper-
ational costs, maximizing coverage of users receiving service) may conflict
with preferences or constraints of individual human users (e.g., maximiz-
ing quality of the received service). Unlike other fully automated sys-
tems where all components operate in unison, ubiquitous self-adaptive sys-
tems must accommodate the autonomy of human participants. Users may
choose to disregard system recommendations, or prioritize personal pref-
erences over the system’s prescribed actions. These variations in behavior
introduce unpredictability and make it challenging to enforce system-wide
adaptation strategies effectively.

Given these complexities, the group identified the need for exemplar prob-
lems that encapsulate these challenges and provides a foundation for evaluating
self-adaptive ubiquitous computing systems. The discussion at the group boot-
strapped such a problem, highlighting the critical interdependencies between
human actors, technical constraints, and ethical considerations.

7.3 Ethics for Autonomous and Intelligent Systems

The initial discussion highlighted several critical points for fostering ethical con-
siderations in technology. It emphasized the need for strong technical awareness

21

among developers to build ethically sound systems, alongside robust interdis-
ciplinary engagement to bridge the gap with fields like law and human sci-
ences. The group also stressed the importance of informing legal and regulatory
bodies about the nuances of technology, especially regarding enforcement chal-
lenges and the timeliness of existing laws. Finally, a fundamental rethinking
of decision-making processes was deemed necessary in the age of increasingly
autonomous systems.

Based on these discussions, several next steps and recommendations were
proposed to advance the goal of raising ethical awareness. These include devel-
oping accessible educational materials for diverse audiences, fostering interdis-
ciplinary dialogue through workshops and forums, investigating formal methods
for ethical specification, conducting research on bias in machine learning, en-
gaging with regulatory bodies to inform policy evolution, and promoting best
practices for achieving transparency in system design and documentation. This
report lays the groundwork for future efforts aimed at integrating ethical con-
siderations as a fundamental aspect of software engineering practices and culti-
vating a wider societal understanding of the ethical dimensions of technology.

22

