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Background and introduction

In the last decade, deep learning has become ubiquitous in Computer Vision
to solve various tasks ranging from object recognition to 3D and 4D capture.
A vast majority of recent scientific papers published in top level venues such
as the international conference on Computer Vision and Pattern Recognition
(CVPR), the International Conference on Computer Vision (ICCV) or the IEEE
Transaction on Pattern Analysis and Machine Intelligence (TPAMI) rely on
deep neural models formulated in the linear algebra. This is because of the
simplicity of the basic operations in the neurons: scalar multiplication and
addition, and the availability of many existing tools such as auto differentiation
in pytorch. However, for some tasks such as 3D transformation, other algebras
such as Clifford Algebra (also called Geometric Algebra) have proven to be more
efficient. Deep neural networks formulated with geometric algebra have been
proposed recently, with promising applications in Computer Graphics. However,
none has been applied yet to solve Computer Vision tasks.
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Overview of the meeting

The meeting is envisaged to focus on new settings and applications of AI models
defined with Geometric algebra for tasks in Computer Vision such as 3D and 4D
capture. The meeting will invite internationally leading and renown researchers
in the fields of Geometric Algebra, Computer Vision and Computer Graphics,
whose contributions are likely to be essential to the field. We anticipate that the
meeting will foster discussions and new ideas to open a new research area at the
frontier between Geometric Algebra, Computer Vision and Computer Graphics.
The meeting will also be a wonderful opportunity to strengthen existing collab-
orations and create new collaborations between top-level researchers in Japan
and abroad. The meeting will focus on the following two topics.

Deep learning with Geometric Algebra

Equipping deep neural networks with geometric priors has achieved several suc-
cesses ([1, 2]) to model geometric transformations of 3D shapes. Some very
recent Geometric Algebra based networks, such as Clifford Neural Layers, em-
bed some powerful properties like equivariance (i.e. invariance with respect to
the 3D symmetry group) that strongly simplifies some standard networks. Other
networks, like Geometric Clifford Algebra Network (GCANs), provide several
interesting advantages over classical linear algebra that could open new possibil-
ities in the field of Computer Vision: (1) GCANs naturally and efficiently encode
the transformations and the invariant elements of classic geometries. (2) In Ge-
ometric Algebra, objects transform covariantly with transformations of space.
This means that a single function can transform multiple types of objects, in-
cluding vectors, points, lines and planes. (3) geometric algebra generalizes over
dimensions in the sense that transformations and objects are constructed con-
sistently regardless of the dimensionality of the space. The objective of this
seminar is to give an overview of recent successes of deep learning with geo-
metric priors and revisit classical Computer Vision problems from a geometric
algebra perspective. A first target will be to clarify formulation of deep neural
networks using geometric algebra and existing tools to implement them. A sec-
ond objective will be to find promising future research directions and concrete
applications. For this purpose, the seminar will invite international experts in
the domain of geometric algebra, computer vision and computer graphics.

3D and 4D capture with the support of Geometric AI

Research on Neural Radiance Fields (NeRF) has recently gained significant at-
tention within the realms of 3D Vision and Computer Graphics. Notably, the
combination of NeRF with Signed Distance Fields (SDF) has demonstrated im-
pressive outcomes in the field of multi-view 3D scene reconstruction. There
is a current surge in exploring the adaptation of established concepts for re-
constructing dynamic scenes. In this context, the introduction of neural warp
fields has been proposed to capture non-rigid 3D shape transformations across
multiple images. While recent findings show promise, they are constrained by
their efficacy primarily in handling minor motions and often demand extensive
training periods. Furthermore, these models exhibit limitations in interpolation
and extrapolation capabilities. The fact that Geometric Algebra is especially
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performant for such interpolation tasks is promising to find new solutions and
improve current state-of-the-art. The primary objective of this seminar is to
provide a comprehensive overview of existing alternatives for modeling 3D non-
rigid deformations. The initial focus will involve exploring novel formulations
of 3D neural warp fields capable of learning to deform 3D shapes and volumes
based on input images and videos. A secondary aim is to identify exciting new
applications of Geometric AI, specifically employing deep learning with Geomet-
ric Algebra, for various tasks in Computer Vision. This involves elucidating the
advantages of geometric algebra over classical linear algebra and highlighting
the available tools for implementing concrete solutions. To achieve these goals,
the seminar aims to bring together participants from diverse backgrounds. This
includes experts in Geometric Algebra with a keen interest in its applications in
Computer Vision, as well as specialists in Computer Vision intrigued by alter-
native approaches to modeling 3D shape transformations and manipulations.
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Overview of Talks

Keynote & Workshop: The Power of Geometric Algebra in
Modern Computer Vision

Martin Roelfs, University of Antwerp & Flanders Make

In order to give an introduction into the modern framework of Projective
Geometric Algebra (PGA) and the modern kingdon GA library[3], this keynote
talk combines a theoretical introduction with a hands-on workshop.

The theoretical part introduces the plane-based mindset of (P)GA, and the
geometric interpretation of the elements and binary operators of (P)GA. This
serves as a build up to one of the most important features of plane-based (P)GA:
dimension agnostic thinking. This mindset has as a consequence that (if proper
care is taken) algorithms will work in any number of dimensions. The talk
showed some examples, like the thin lens and the tesseract on a string.

In the workshop the participants then get some hands-on experience with
kingdon, by working through several selected exercises in the kingdon teahouse
1.

Keynote: Statistical Approaches for Internal Anatomy Pre-
diction

Marilyn Keller, Kyushu University

The talk ”Statistical Approaches for Internal Anatomy Prediction” presents
recent advances on research about generating personalized anatomical digital
twins, which are essential for medicine, computer graphics, and biomechan-
ics. Observing internal anatomy usually requires expensive medical imaging.
Instead, we can leverage the correlation between external body shape and in-
ternal structures to predict the anatomy directly from a subject’s appearance
[4, 5]. Learning this correlation raises three key challenges: building datasets
with paired observations of body shapes and internal anatomy, annotating these
datasets, and learning models that capture the correlation between external and
internal features. In this talk, Marilyn showcased how we became able to pre-
dict skeleton geometry, bone location, and soft tissue distribution solely from
external body shape

Keynote: Geometric Algebra in Medicine

Eckhard Hitzer, International Christian University

The talk ”Geometric Algebra in Medicine” focused on novel computational
workflows for natural and biomedical image processing based on hypercomplex
algebras and on the project of the venture business company ORamaVR2 toward
Accelerating Computational Medical XR (Founded by G. Papagiannakis et al).
At the beginning it was shown how within the feature-rich hypercomplex setting
(in particular that of quaternion algebra applied to color image processing [6]),

1https://tbuli.github.io/teahouse/
2https://oramavr.com/
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novel image processing workflows can be realized for natural and biomedical
images enabling alternative visual representations, offering effective solutions
to current problems in computer vision and digital pathology, and generally
expanding the scope and impact of hypercomplex image processing across a
wide range of applications.

Then we showed how GA leads to impactful XR computer graphics, where
GA serves as single virtual human enabling simulation framework. ORamaVR
provides platforms for medical XR training developed in collaboration with
medical institutions, institutes and universities across the globe. Compara-
tive analysis confirms the VR training effectiveness. ORamaVR also provides
international real time shared medical surgery VR collaboration. A key com-
ponent is the ability to deform, cut and tear a skinned model using CGA. The
ORamaVR developed MAGES 4.0 framework allows for automation in action
development, VR recorder capture and replay of VR session, realistic real-time
cut, tear and drill algorithm, AR and mobile (ios) support, has a dissected edge
physics engine, provides edge-cloud remote visual rendering, optimized network-
ing layering with collaboration of AR/VR devices, convolutional neural network
automatic assessment, and new template applications (open source). The inte-
gration of generative models revolutionizes ORamaVR content creation.

The background are an over 150 year old outdated medical educational res-
idency model of master and apprentice, an expected short fall of 10 million
medical professionals by 2030, and that 5 billion people lack access to afford-
able surgical & anesthesia care according to the WHO. ORamaVR achieves

1. Democratized XR content development and access

2. Increased medical XR curricula adoption

3. Increased trainee competency & proficiency

with its leading medical-XR authoring, training & Assessment software plat-
form, which offers for educators: Create, Record, Publish your medical XR
training simulation, for learners: See, Do, Teach to achieve competency, pro-
ficiency, expertise, and finally objective metrics, performance analytics and AI
co-tutors for all.

Keynote: Optimisation under geometric constraints for de-
signing Kinematic Chains

Shizuo Kaji, Kyushu University

Kinematic chains, such as those found in robotic arms, have joint states
that can be represented using geometric algebra. The overall configuration of
the arm, given a specified position of the end effector, corresponds to a subspace
of the direct product of geometric algebras. The design problem for kinematic
chains can thus be formulated as the minimisation of an energy function de-
fined on this subspace. Focusing particularly on closed chains known as Kalei-
docycles, this talk introduces two types of energy functions: (1) a discretised
elastic energy and (2) total torsion. It is shown that optimising these functions
yields structures with special properties, such as one degree of freedom (1-DoF)
[7, 8, 9].
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Keynote: Corrected curvature measures — A unified ap-
proach for the geometric analysis of discrete data

Jacques-Olivier Lachaud, University Savoie Mont Blanc

We propose a new mathematical and computational tool for inferring the
geometry of shapes known only through approximations, such as triangulated
or digital surfaces. The main idea is to decouple the position of the shape
boundary from its normal vector field. To do so, we extend a classical tool of
geometric measure theory, the normal cycle, so that it takes as input not only
a surface but also a normal vector field. We formalize it as a current in the
oriented Grassmann bundle. By choosing adequate differential forms, we define
geometric measures like area, mean, and Gaussian curvatures. We then show
the stability of these measures when both position and normal input data are
approximations of the underlying continuous shape. As a byproduct, our tool is
able to correctly estimate curvatures over polyhedral approximations of shapes
with explicit bounds, even when their natural normals are not correct, as long
as an external convergent normal vector field is provided. We show that this
framework induces state-of-the-art curvature estimations on polyhedral surfaces,
digital surfaces, and even point clouds with normal data [10, 11, 12]. This talks
gather joint works with Pascal Romon, Boris Thibert, David Coeurjolly, and
Céline Labart.
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Meeting Schedule

Check-in Day: May 18 (Sun)

19:00–21:00 Welcome Banquet

Day 1: May 19 (Mon)

09:00–09:15 Welcoming address - Diego Thomas, Vincent Nozick, Takuya Fu-
natomi

09:15–10:00 Research introductions (5 mn by each participant)

10:00–10:30 Coffee break

10:30–12:00 Research introductions (5 mn by each participant)

12:00–14:00 Lunch

14:00–15:00 Tutorial 1 - Martin Roelfs

15:00–15:30 Coffee break

15:30–16:30 Tutorial 2 - Martin Roelfs

16:30–17:00 Break

17:00–18:00 Breakout session 1

18:00–19:30 Dinner

Day 2: May 20 (Tue)

07:30–09:00 Breakfast

09:00–09:15 Program briefing

09:15–10:00 Breakout session 2

10:00–10:30 Coffee break

10:30–12:00 Breakout session 3

12:00–13:30 Lunch

13:30–14:00 Keynote 1 - Marilyn Keller

14:00–14:30 Keynote 2 - Eckhard Hitzer

14:30–15:00 Keynote 3 - Shizuo Kaji

15:00–15:30 Coffee break

15:30–16:00 Keynote 4 - Shohei Hidaka

16:00–16:30 Keynote 5 - Jacques-Olivier Lachaud

16:30–18:00 Breakout session 4

18:00–19:30 Dinner
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Day 3: May 21 (Wed)

07:30–09:00 Breakfast

09:00–09:15 Program briefing

09:15–10:00 Breakout session 5

10:00–10:30 Coffee break

10:30–12:00 Breakout session 6

12:00–13:30 Lunch

13:30–20:45 Excursion and Main Banquet

Day 4: May 22 (Thu)

07:30–09:30 Breakfast and check-out

09:30–10:00 Final presentations by each group

10:00–10:30 Coffee break

10:30–11:00 Group photo

11:00–11:30 Final presentations by each group

11:30–12:00 Conclusion and wrap-up
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Figure 1: View of Mount Fuji on the last day of the meeting.
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Summary of discussions

Introduction and Tutorials

The first day of the Shonan Meeting began with an engaging tutorial led by
Prof. Roelf, who introduced participants to the kingdon GA library and the
foundational principles of Projective Geometric Algebra (GA). Through a series
of interactive demonstrations, the tutorial offered a hands-on approach to un-
derstanding how GA provides a powerful framework for geometric computing.
Participants actively explored key operators such as the meet operator, gaining
a deeper understanding of how GA can be used to represent and manipulate
geometric relationships in an elegant and efficient way.

Beyond the theoretical explanations, the kingdon GA library was presented
as both a pedagogical resource and a computational tool. On the one hand, its
ability to produce dynamic, interactive geometric drawings makes it an excel-
lent platform for teaching and conceptual visualization. On the other hand, the
library also holds promise as a potential alternative to traditional linear alge-
bra approaches in modern optimization pipelines. Participants discussed how
GA’s expressive geometric modeling could complement or, in some cases, re-
place matrix-based methods in applications ranging from robotics to computer
graphics.

Collaborative Group Work

At the heart of the meeting were the collaborative group activities. Participants
were divided into interdisciplinary teams, each typically consisting of four key
roles: a senior researcher with deep domain knowledge, a younger researcher
with strong programming and implementation skills, a participant with a real-
world problem to solve, and an expert in geometric algebra. This carefully bal-
anced composition fostered rich interdisciplinary collaboration and knowledge
exchange.

Over the course of three days, these groups engaged in focused efforts to ap-
ply GA tools to real-world problems in Computer Vision and Computer Graph-
ics. The working sessions were characterized by lively and productive discus-
sions, both within each group and informally during breaks, where cross-group
dialogues emerged. Participants explored concrete use cases ranging from 3D
reconstruction and camera geometry to surface modeling and transformation
analysis.

Final Presentations and Reflections

On the final day of the meeting, each group presented their findings, highlighting
both the progress made and the challenges encountered. These presentations
led to a broader roundtable discussion where participants reflected on the po-
tential and limitations of Geometric Algebra in current research and industrial
applications.

A key insight that emerged from these discussions was that many of the
practical problems initially posed could indeed be revisited — and in some
cases, significantly simplified — using existing GA tools. Geometric Algebra
was praised for offering intuitive, coordinate-free representations that enhance
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Figure 2: Representative slides of discussions about Geometric Algebra at
Shonan meeting #226.

conceptual clarity. In particular, its ability to unify various geometric trans-
formations under a single algebraic framework was seen as both educationally
valuable and practically powerful.

Future Directions and Challenges

While the benefits of GA were enthusiastically acknowledged, participants also
recognized the current technological and computational gaps that need to be
addressed for broader adoption. One significant challenge lies in the performance
optimization of GA libraries like kingdon GA library. At present, many state-
of-the-art optimizations—such as GPU acceleration, vectorized operations, and
parallel computing—are more mature and accessible in linear algebra-based
toolkits.

Bridging this performance gap represents a promising area for future de-
velopment. Enhancing the computational efficiency of GA libraries would not
only make them more competitive with established linear algebra frameworks
but also open the door to their use in high-performance applications, including
real-time rendering, simulation, and deep learning pipelines.

Figures and Illustrations

• Figure 2 illustrates the range of theoretical and methodological topics
discussed by experts in Geometric Algebra during the meeting.

• Figure 3 presents a selection of application domains where GA shows sig-
nificant promise, based on the concrete problem-solving efforts of the work-
ing groups.
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Figure 3: Representative slides of discussions about Concrete applications of
Geometric Algebra in Computer Vision and Graphics at Shonan meeting #226.
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Summary of new findings

Project A: Fitting faces of Voronoi diagram to a point cloud

Motivation and Background

Voronoi diagrams defined over discretized 3D volumes provide an alternative
method for extracting 3D meshes from volumetric data, offering notable ad-
vantages such as improved regularity and a reduced number of cells needed to
capture fine details. When 3D shape observations are available as point clouds,
there is considerable interest in aligning the faces of the Voronoi diagram with
these observations to enhance the quality of 3D mesh reconstruction. Since
the vertices of a Voronoi diagram can be described as intersections of bisectors,
Geometric Algebra (GA) holds promise for developing efficient representations
and more effective optimization strategies.

Goal

PyTorch offers a user-friendly optimization framework with built-in automatic
differentiation through its autograd system. Inspired by recent approaches that
formulate differentiable Voronoi diagram optimization using standard linear al-
gebra, the goal of this project is to reformulate the problem using Geometric
Algebra (GA). Specifically, we aim to implement a PyTorch-based pipeline that
directly optimizes the positions of Voronoi sites using only GA operations, as
provided by the kingdon GA library [3].

Outcome

We transcribed the algorithm proposed in VoroMesh [13] onto the board and
reformulated all its operations using Geometric Algebra (GA) operators. We
then implemented the algorithm using the kingdon GA library and conducted
basic 2D experiments, where we fit the faces of a Voronoi diagram to a set of
points randomly sampled along a circle.

(Centroidal) Voronoi Tessellation. A tessellation of a 3D space is a disjoint
set of polyhedron that fills the 3D space of interest. Centroidal Voronoi Tesse-
lation (CVT) are used in a wide range of applications in Computer Graphics as
it provides an elegant tool to compute a regular and optimized discretization of
the 3D space [14]. Voronoi tessellation is the dual of the Delaunay triangulation
and is defined by its sites: a set of 3D points in space.

A Voronoi cell Vi is associated with its site xi and consists of all points in
space that are closest to xi:

{p ∈ R3 / ||p− xi|| < ||p− xj ||, j ∈ [1,K], j ! = i}

The bisectorB(i, j) of two sites xi and xj is the set of points {p ∈ R3/ d(p, xi) =
d(p, xj)}. In 2D it is a line, in 3D it is a plane. The bisector of multiple sites
is the intersection between the bisectors of the pairs of sites. In 2D this creates
segments. In 3D this creates polygons that can be subdivided into triangles.
Each site i is associated with a set of bisectors Bi that represents a polygon
and is composed of triangles. This also can be understood as the flat membrane
that separates two sites. When each site of a Voronoi tessellation coincides with
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Figure 4: The original Voromesh algorithm.

the centroid of its associated cell, the tessellation is called a Centroidal Voronoi
Tessellation (CVT).

Differentiable fitting of the faces of a Voronoi Diagram (VoroMesh).
As illustrated in Fig. 4, the core idea behind VoroMesh is to compute the dis-
tance from a point within a Voronoi cell to its boundary by finding the minimum
distance to the bisectors formed between the cell’s site and itsK-nearest neigh-
bors. This formulation is fully differentiable, enabling optimization through
PyTorch’s Adam optimizer.

We express the computation of minimum distances and bisectors using Ge-
ometric Algebra (GA). To integrate the kingdon GA library with PyTorch and
leverage its autograd capabilities, each site is represented as a bivector with
parameters defined as PyTorch tensors. The corresponding implementation is
shown in Fig. 5.

The VoroMesh algorithm begins by identifying the Voronoi cell that contains
each target point, which is equivalent to finding the closest site for each point.
This is achieved using the meet operator (&) followed by an argmin operation.
As shown in Fig. 6, this step can be implemented in a single line of Python code,
where Pts represents the target points and Sites denotes the Voronoi sites.

The distance from each target point to the boundary of its corresponding
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Figure 5: Connecting the kingdon| GA library bivectors with Pytorch

to access autograd.

Figure 6: Identifying closest points with the meet operator.

Voronoi cell is computed as the minimum distance to the bisectors formed be-
tween the closest site and all other sites.3 This is implemented using the meet
operator (&) and the reject operator (|). The corresponding code is shown in
Fig. 7.

By leveraging the Pytorch autograd functions we repeat the optimization
step several times (about 60 times) to converge to the final solution.

Experiments and preliminary results. As shown in Fig.8, we conducted
a simple experiment by initializing a uniform grid of points to define the initial
Voronoi diagram and randomly sampling points along a circle of radius 1. We
then applied the GA-based VoroMesh implementation to fit the Voronoi faces
to the target point cloud. The resulting fits are presented in Fig.9.

These results demonstrate that the kingdon GA library, with its GA op-
erators, integrates smoothly with the PyTorch optimization framework. The
Voronoi faces adapt well to the structure of the target point cloud.

However, the optimization process was relatively slow, despite involving only
100 target points.

3This process can be accelerated using a K-nearest neighbors approach, but for simplicity
and proof of concept, we use a naive algorithm here.
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Figure 7: Compute the distance of target points to Voronoi cells.

Conclusions. In this project, we demonstrated that Geometric Algebra (GA)
libraries can be effectively integrated into modern PyTorch optimization frame-
works. We also showed that classical computer vision tasks can be re-expressed
with just a few lines of code using GA. However, our experiments indicate that
more sophisticated optimization techniques are necessary for practical appli-
cations that aim to compete with standard, highly optimized linear algebra
implementations. How such optimizations might be achieved remains an open
question. Nevertheless, GA libraries like kingdon GA library serve as excellent
educational tools and offer a promising new perspective for rethinking computer
vision problems.
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Figure 8: Initial state.

Figure 9: Final state after optimization.
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Wedge prism

Risley prism

Figure 10: Wedge prism and Risley prism.

Project B: Snell’s law and its application to Risley prism

Motivation and Background

A wedge prism (Fig. 10) is an optical element with a trapezoidal cross-section,
formed by two slightly tilted (non-parallel) flat surfaces. The angle between
these surfaces is referred to as the “wedge angle.” When light passes through a
wedge prism, its propagation direction is slightly refracted and deviated. The
deflection angle is determined during fabrication based on the wedge angle, and
wedge prisms are typically used for fine image displacement or precise laser
beam steering.

By combining two wedge prisms and allowing each to rotate independently,
a configuration known as a Risley prism (Fig. 10) can be constructed. The
rotation of each prism enables continuous control over both the direction and
magnitude of beam deflection. This allows a single device to scan a beam over
a wide angular range in two dimensions.

Both wedge and Risley prisms lack rotational symmetry with respect to the
optical axis, causing light to be refracted asymmetrically when passing through.
As a result, describing the behavior of light rays in these systems using conven-
tional coordinate-based methods can become geometrically complex.

However, Projective Geometric Algebra (PGA) enables a compact and uni-
fied representation of Snell’s law that does not require any explicit trigonometry.
Since the surfaces composing wedge and Risley prisms are planar, they can also
be expressed very simply within the PGA framework. Therefore, PGA is a
highly suitable and efficient mathematical tool for modeling light-ray behavior
in these optical systems.

Goal

To derive a general expression for Snell’s law using PGA. A wedge prism is
described by two planar surfaces, and it will be shown that the behavior of a
light ray passing through it can be concisely expressed by applying Snell’s law.
Similarly, a Risley prism, composed of two independently rotating wedge prisms,
will be described using PGA, and it will be demonstrated that the propagation
of a light ray through this system can also be efficiently described.
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Figure 11: Snell’s law solved on a whiteboard.

Outcome

Snell’s law was solved on a whiteboard as presented in Fig. 11, then light-ray
behavior was demonstrated using kingdon GA library [3].

Snell’s law in Projective Geometric Algebra. We denote the incident
ray as r and the interface as l (see Fig. 12). The intersection point x of them is
determined by the outer product.

x = r̂ ∧ l, (1)

where r̂ is the normalized r. This formula works in both 2D and 3D, where l is
a line or a plane respectively, while r is always a line.

The normal a perpendicular to l at the intersection point x is computed via
the inner product.

a = x · l (2)

â =
a√
aã

, (3)

where ã is the reverse of a, i.e., â is the normalized a.
To analyze light refraction according to Snell’s law, ordinarily it is essential

to determine the angle between the incident ray r and the interface normal a.
In geometric algebra however, this angular relationship can be captured by

20



r

r’

l

a

b

x

θi

θt

Figure 12: Snell’s law

the geometric product of the normalized incident ray r̂ and the reverse of the
interface normal ˜̂a, thereby eliminating the need to explicitly calculate angles.

The geometric product encapsulates both the inner and outer products.
Thus, taking the geometric product of the normalized incident ray and the
reverse of the normalized interface normal yields a scalar part that corresponds
to the cosine of the incident angle and a bivector part that corresponds to the
sine.

r̂˜̂a = cos θi + b̂ sin θi, (4)

where b̂ is the normalized binormal, which is the perpendicular direction to
the plane of incidence. In geometric terms, the reverse of the normal vector ˜̂a
serves to express the incident ray in the frame defined by the interface normal.
The geometric product r̂˜̂a can thus be interpreted as expressing the incident
ray in the coordinate frame defined by the normal vector, allowing geometric
extraction of angular information. By extracting the grade-2 component, we
obtain a quantity proportional to sin θi, where θi is the angle of incidence. This
is used to determine whether refraction or total internal reflection occurs.

b̂ sin θi =
〈
r̂˜̂a

〉
2

(5)

The refracted ray can be computed by following the process in reverse. First,
scaling the bivector component by the ratio of the refractive indexes n1/n2 leads
to obtain the sine of the transmitted angle θt as

st = b̂ sin θt =
n1

n2

〈
r̂˜̂a

〉
2
. (6)

The scalar component can be computed by

cos θt =
√
1− sts̃t. (7)

By adding them, the bireflection r′ ˜̂a on the other side of the interface is formed:

r′ ˜̂a = cos θt + b̂ sin θt, (8)

where r′ denotes the refracted ray. Finally, the refracted ray can be computed
as

r′ = (r′ ˜̂a)â =
(
cos θt + b̂ sin θt

)
â

=
(√

1− sts̃t + st

)
â. (9)
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When sts̃t > 1, indicating that no real solution exists for the refracted
direction, total internal reflection occurs and the reflected ray can be computed
by reflecting the incident ray about the normal.

r′ = âr̂˜̂a (10)

Snell’s law was expressed using PGA. A function was implemented with
the kingdon GA library [3], which took as input the incident ray, the refractive
interface, and the relative refractive index, and returned the refracted ray as
output.

def snells_law(interface , ray_i , refractive_index):

r = ray_i.normalized ()

intersection = r^interface

normal = (intersection|interface).normalized ()

binormal_sin_i = (r/normal).grade (2)

binormal_sin_o = (refractive_index * binormal_sin_i)

cos_o = (1- binormal_sin_o.normsq ())**.5

rp_a = (cos_o + binormal_sin_o)

ray_o = rp_a*normal

return ray_o , intersection

def prism_refraction(prism , ray_i):

ray_g , i_g = snells_law(prism[0], ray_i , r_air/r_glass)

ray_o , i_o = snells_law(prism[1], ray_g , r_glass/r_air)

return ray_o , (i_g ,i_o)

Listing 1: The functions of Snell’s law and refraction through wedge prism.

Figure 13 illustrates the result of applying Snell’s law to a single planar
interface. The visualization confirms the correctness of the geometric algebra-
based refraction computation, showing both the incident and refracted rays and
their interaction with the refractive plane.

A wedge prism was defined by its refractive index and three parameters for
each of its two planar surfaces. It was demonstrated that the behavior of a light
ray passing through the prism could be precisely described for any incident
ray. For the Risley prism, two wedge prisms were defined, and their respective
rotations around the optical axis were represented using rotors in PGA. It was
shown that the behavior of any incident ray passing through the Risley prism
could be explicitly described.

Building upon this, Fig. 14 demonstrates the behavior of a light ray passing
through a Risley prism, composed of two independently rotating wedge prisms.
The figure visualizes how each prism contributes to the overall beam deviation.
This simulation confirms that the combined effect of the two prisms can be
effectively modeled using rotors in PGA.

It is known that when two wedge prisms are rotated at a fixed angular ve-
locity ratio, the refracted light ray forms an epitrochoid. An epitrochoid is the
curve traced by a point on a circle rolling around another. The epitrochoid pat-
tern arises because each rotating prism imparts a direction-dependent angular
shift to the beam. When these shifts are applied in a coupled, periodic manner,
the cumulative effect leads to the characteristic looping curve.

In our demonstration (Fig. 15), two sliders were used to define the angular
velocity of the prisms. Based on these input, rotors were constructed and ap-
plied to each wedge prism to rotate them independently about the optical axis.
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Figure 13: Visualization of Snell’s Law using Projective Geometric Algebra
(PGA) in the kingdon GA library. The figure shows the incident ray, refracted
ray, and the interface plane, demonstrating the PGA-based computation.

As a light ray passed through both rotating prisms, its direction was dynami-
cally altered. By plotting the endpoint of the refracted ray at each time step,
we visualized the resulting epitrochoid trajectory. Each prism shifts the beam
direction, and their combined effect produces a smooth periodic curve. This
demonstration shows how Risley prisms steer light and how PGA can simulate
it accurately.
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Figure 14: Simulation of light propagation through a Risley prism using king-
don GA library. Two wedge prisms rotate independently, and their combined
refractions are modeled using rotors in PGA, allowing accurate and compact
representation of the ray path.

Figure 15: Visualization of the epitrochoid trajectory formed by the endpoint
of a refracted light ray passing through two rotating wedge prisms. As the
prisms rotate with a fixed speed ratio, the beam traces a smooth periodic curve,
accurately modeled via PGA.
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Project C: Man in the mirror — What is the curve that
makes you see yourself embedded in the mirror?

Motivation and Background

There is a type of visual illusion called anamorphosis, that an image perceived
through reflection by a cylindrical mirror look natural, but the original image
is distorted. As it is natural to consider mirror reflection as one of the basic
concepts in Geometric Algebra (GA), as explained by Martin Roelfs, GA is
expected to be useful to design some visual illusion like anamorphosis.

Goal

Being inspired by anamorphosis, we consider to device a double-mirror setting
with which one can see some three dimensional object in the mirror. Specifically,
we pose the question if it is possible to construct a natural image of the viewer
him/herself through the reflection by the cylindrical mirror.

We set the basic setting, which can be varied upon request, as follows. Sup-
pose that there is a cylinder, whose surface is orthogonal to the horizontal plane,
and the circle parallel to the horizontal plane has its center at the origin and
its radius being 1 (Figure 1 below). A viewer is supposed at another circle
with its center at origin and its radius being larger than 1 (outside of the cylin-
der depicted as the blue broken circle in Figure 1), and the one gazes at the
some point, called target point, inside the cylinder, with the coordinates (0, z),
−1 < z < 1 on the horizontal plane. Then our goal is to design some curve
(depicted as the red curve in Figure), that reflects the light from the viewer
to the viewer’s view point via the cylindrical mirror. In this way, one can
walk around the cylindrical mirror, and see oneself is in the cylindrical mirror.
Moreover, changing his/her view point would change does not change the target
point, where the image of viewer inside the mirror is located. This invariance of
the target location would let the viewer perceive some three dimensional inside
the mirror. In this sense, this setting is considered to be a new visual illusion,
which is neither just anamorphosis nor double mirror (which gives only reflect
planer image from one view point).

Outcome

We first consider a simplified problem ask what is the point of reflection on the
cylinder for any two given points in the horizontal plane. Prof. Hidaka has
solved this problem, and find the coordinate of the points of reflection on the
cylinder can be roots of a sixth-degree polynomial equation. However, Prof.
Ochiai reformulate the same problem and found that it can be reduced to a
fourth-degree polynomial equation, not the six-degree one. We confirmed that
Hidaka’s six-degree polynomial has essentially Ochiai’s fourth-degree poly-
nomial as its factor, by resorting symbolic computation performed by Math-
ematica. Martin Roelfs reformulated the same problem in terms of GA, and
visualize and solve it numerically using kingdon, his GA library developed for
python.

Next, we worked the original problem to design the curve. Prof. Kaji pro-
poses another variation of the problem that fixes the curve and let the walk path
of the viewer as variable. Clément Chomicki worked to formulate and solve the
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Figure 16: Cylinder-mirror anamorphosis problems.

problem by (conformal) GA. Later, Prof. Ochiai has integrates the two varia-
tions of the problem, fixed walk path vs fixed second mirror, and reformulate
the problem. Further Prof. Ochiai drew a sketch describing a general solution
for the integrated problem by those geometric objects represented on the com-
plex plane (another document attached). The complex plane is equivalent to a
geometric algebra R1,1, which is effective approach to the integrated problem.
Although we could not reach the specific result for the original problem, we got
a solid approach to the solution formulated by GA. Though this project, we
have experienced and learn GA, and how it worked for specific problems.

Project D: Exploring Geometric Algebra in Machine Learn-
ing

Our group explored the possibilities of using Geometric Algebras (GA) in ma-
chine learning.

Key Property We first considered an important property:

• A geometric algebra A represents a certain symmetry group G, which is
generated by reflections in all its geometric objects (e.g., planes in PGA,
spheres in CGA).

• The polynomials resulting from the geometric product in this algebra are
equivariant under the transformation group G.

This can be demonstrated algbraicaly. Consider A polynomial P of n vari-
ables X1, . . . , Xn and V a versor:
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Hence P
(
V X1V

−1, . . . , V XnV
−1

)
= V P (X1, . . . , Xn)V

−1 which means
that the polynoms of geometric a algebra are equivariant for the transformation
group that this algebra is able to represent through its versors.

For more details, see [15]
This can be illustrated by the Fig. 17 . If given an equivariant function

computing a contour from a point cloud. The contour can be computed after
or before any rigid transformation as this transformation will be ”ignored” by
the function.

Figure 17: A neural network equivariant for the group of rigid transformation
will treat these four object as identical.

Relevant Literature Several papers already explore the application of GA
in neural networks. We were particularly interested in the following:

27



• GATr: a transformer architecture using PGA for its layers [1]

• Clifford-Steerable Neural Networks [16]

• Clifford Group Equivariant Neural Networks [15]

Our Project: Learning Shapes from Oriented Point Clouds
We focused on an optimization problem involving oriented point clouds: learn-
ing a shape by learning how to displace points from a sphere to match
an input point cloud.

We explored several approaches in parallel:

• Starting with the simpler G2 algebra as a baseline.

• Using PGA, which naturally includes rigid transformations and is com-
monly used in this context.

– Using the Flag method: adding a 3-vector to represent the point
and a 1-vector for a plane to capture orientation. See Fig. 1 of this
introduction: zenodo.org/record/15030773

• Using CGA, which supports all conformal transformations at the cost of
one extra coordinate (or doubling for general multivectors).

– CGA’s point pairs allow the representation of oriented points. See:
zenodo.org/record/15043692

We started doing some experiments to test the two first items. The chosen
geometric algebra model is a motion neural network since the learned elements
are versors. The neural layers include a multivector layer with a multivector
valued activation function, a normalisation layer that simply consists in dividing
by the squared norm of the input multivector, please refer to the code as shown
in Listing 2

class CGEBlock(nn.Module):

def __init__(self , algebra , in_features , out_features):

super().__init__ ()

self.layers = nn.Sequential(

MVLinear(algebra , in_features , out_features),

MVSiLU(algebra , out_features),

SteerableGeometricProductLayer(algebra , out_features),

MVLayerNorm(algebra , out_features)

)

def forward(self , input):

# [batch_size , in_features , 2**d] -> [batch_size ,

# out_features , 2**d]

return self.layers(input)

class CGEBlockFull(nn.Module):

def __init__(self , algebra , in_features , hidden_features ,

out_features , num_layers =2):

super().__init__ ()

net = [

FullyConnectedSteerableGeometricProductLayer(

algebra , in_features , hidden_features

),

]
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for _ in range(num_layers - 1):

net.append(MVSiLU(algebra , hidden_features ,

invariant='norm'))

net.append(

FullyConnectedSteerableGeometricProductLayer(

algebra , hidden_features , out_features

)

)

self.net = nn.Sequential (*net)

def forward(self , input):

return self.net(input)

Listing 2: Geometric Algebra neural block.

The forward pass merely consists in computing the sandwiching product between
the input point cloud and the trained versors. The loss is computed as the MSE
between the resulting output point cloud and the target point cloud as follows

loss =
1

N
∥(V piV − p′i)∥2 (17)

where pi refers to the ith input point cloud and p′i to the ith target point cloud.
Briefly, the resulting training loss is 15 lower than a MLP for the same number
of iteration (300). Please refer to Listing 3 for the forward pass code.

model = CGEMLP(ca , in_features =1, hidden_features =16, out_features

=1, n_layers =2)

adam = optim.Adam(model.parameters (), lr=1e-3)

for i in range (1000):

adam.zero_grad ()

transformationMultivector = model(input_cl)

reverse_signs = torch.tensor ([1.0 , 1.0, 1.0, -1.0],

device=transformationMultivector.

device ,

dtype=transformationMultivector.

dtype)

reversed_transformationMultivector = transformationMultivector

* reverse_signs

outputTrain = ca.sandwich(transformationMultivector , input_cl ,

reversed_transformationMultivector)

loss = F.mse_loss(outputTrain , output_cl)

loss.backward ()

adam.step()

if i %100== 0:

print(f"Step: {i}. Loss: {loss.item():.12f}")

Listing 3: Our forward pass with a CGENN block.

Conclusion We concluded that all these methods are worth testing and com-
paring. We note however that the results using the simple G2 algebra were
promising enough to suggest that Geometric Algebra can be effectively applied
in neural networks. The potential computational overhead is likely to be offset
by the advantages it brings.
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Identified points of collaborations and future di-
rections

• The passionate discussions during the meeting made it clear that Geo-
metric Algebra holds significant potential to offer fresh insights and novel
perspectives on a wide range of tasks in Computer Vision and Computer
Graphics. We believe it can play a key role in fostering new ideas, driving
innovation in both fields, and opening up new avenues of research in the
future.

• In Dr. Roelfs’ tutorial, we learned that efficient tools are already available
and ready to be applied to real-world problems. These tools can also be
integrated into deep neural network frameworks. Beyond serving as intu-
itive educational resources, they open a new path toward the development
of future Geometric AI.

Participants of this Shonan meeting will continue their collaboration through
the established communication channel (Slack). Some have already submitted
proposals for international collaboration aimed at enhancing research outcomes,
driving innovation, and nurturing the next generation of top-tier researchers.
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