ISSN 2186-7437

NIl Shonan Meeting Report

No. 217

Trusted Automated Programming

Corina Pasareanu
Abhik Roychoudhury
Adish Singla

January 20-23, 2025

=O\ HETEH
NIl SHONAN MEETING

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan



Trusted Automated Programming

Organizers:
Corina Pasareanu (NASA Ames and CMU, USA)
Abhik Roychoudhury (NUS, Singapore)
Adish Singla (MPI-SWS, Germany)

January 20-23, 2025

1 Introduction and Meeting Overview

The task of programming, both in terms of intent capture as well as in the gener-
ation of correct code, has occupied much of the computing profession for the last
50-60 years. There has been significant progress in modeling and system design
to support accurate intent capture leading to the growth of formal specifications.
However, despite all the progress, software engineers are reluctant to write for-
mal specifications, and for large software systems a formal description of intent
is not available leading to tremendous hardship in debugging and fixing errors.

Subsequently, the developments have moved to testing and analysis meth-
ods to help develop trustworthy codebases despite the lack of formal capture
of intent. These works often go with the goal of achieving higher behavioral
coverage as in testing, and often work with simple test-oracles, such as the use
of crash-freedom oracles in the widely popular fuzzing techniques. Since the
oracles denote the expected behavior of test-cases by assuming trivial oracles,
the need for specifying the programmer’s intent formally is obviated. Fuzzing
methods have witnessed tremendous popularity in the recent decade, with a
huge number of vulnerabilities being found in widely used software systems via
fuzzing. Nevertheless, the quest to achieve functional correctness in software
without having to author voluminous formal specifications remains.

Recent developments in automated code generation from large language
models (LLMs) provide us with a fresh perspective in this regard. Since LLM-
based code generation allows for programming from natural language specifica-
tions, it seems to indicate a promise to achieve the goal of auto-coding. This
raises not only the overall question of correctness of automatically generated
code, but at what point we can start trusting automatically generated code.
In past decades, niche industries have generated code from models, however
there is no precedent of automatically generated code from natural language
specifications being used widely.

In this Shonan Meeting, we coordinated an exchange among researchers
in formal methods, software engineering, and machine learning to address the
following questions:

e What is the acceptable evidence for which code from LLMs can be inte-
grated into a software project?



e How do the trust boundaries shift when we integrate automatically gener-
ated code instead of manually written code? Are the acceptability criteria
likely to be more stringent for automatically generated code?

e Can automatic program repair methods be used to improve the code gen-
erated from LLMs? Can repair techniques generate evidence so that the
improved code can be accepted into codebases?

e An emerging pattern is counterexample guided synthesis, similar to coun-
terexample guided inductive synthesis (CEGIS), where the LLM is used as
a blackbox synthesis engine and one can verify the product of it. Can this
approach be used to obtain the required guarantees for the code produced
by LLMs?

e Improvement in precision of the LLM models can complement the goal of
trustworthiness of automatically generated code. Can these dual criteria
lead to a tunable set of parameters in the future, i.e., code from smaller
LLMs will need to go through a stringent set of checks and improvement?

e Another approach could be to constrain the output of the LLMSs, as fine-
tuning LLMs may not be effective in practice; this would be similar to
current neuro-symbolic approaches but applied to LLMs. What techniques
can be used to effectively constrain the LLMs outputs to obtain desired
guarantees?

e How can the advances in LLMs impact programming education and pro-
gramming teaching of the future? Can it lead to intelligent tutoring sys-
tems which interact with both students and LLMs?

e Last but not least, what is the appropriate user study design which will
allow us to examine the level of trust developers have in code from LLMs?

We had 28 researchers attending the meeting; the meeting took place over
4 days and comprised talks from researchers, panel sessions, and plenty of time
allocated for discussions. In the rest of this report, we provide the list of par-
ticipants, the schedule of the meeting, the list of talks, a summary of discussion
sessions, and the outcome of discussions from the meeting.



2

List of Participants

Rui Abreu (Faculdade de Engenharia da Universidade do Porto, Portugal)
Leonhard Applis (National University of Singapore, Singapore)
Rajeev Alur (University of Pennsylvania, USA)

Yuriy Brun (University of Massachusetts Amherst, USA)

Cristian Cadar (Imperial College London, UK)

Saikat Chakraborty (Microsoft Research, USA)

Premkumar Devanbu (University of California Davis, USA)

Sumit Gulwani (Microsoft, USA)

Wei Le (Iowa State University, USA)

Claire Le Goues (Carnegie Mellon University, USA)

Lei Ma (University of Tokyo, Japan)

Ravi Mangal (Colorado State University, USA)

Sergey Mechtaev (Peking University, China)

Yannic Noller (Ruhr University Bochum, Germany)

Corina Pasdreanu (NASA Ames and Carnegie Mellon University, USA)
Trung T. Pham (FAA, USA)

Michael Pradel (University of Stuttgart, Germany)

Abhik Roychoudhury (National University of Singapore, Singapore)
Adish Singla (Max Planck Institute for Software Systems, Germany)
Youcheng Sun (MBZUAI, UAE and Universiry of Manchester, UK)
Charles Sutton (Google DeepMind, USA)

Lin Tan (Purdue University, USA)

Guowei Yang (University of Queensland, Australia)

Jooyong Yi (UNIST, South Korea)

Dongmei Zhang (Microsoft Research Asia, China)

Lingming Zhang (University of Illinois Urbana-Champaign, USA)
Yuntong Zhang (National University of Singapopre, Singapore)

Ying Zou (Queen’s University, Canada)






3 Meeting Schedule

Check-in Day: January 19 (Sunday)

19:00 — 21:00

Welcome banquet

Dayl: January 20 (Monday)

07:30 — 09:00
09:00 — 09:20
09:20 — 09:45
09:45 — 10:30
10:30 — 11:00
11:00 — 11:30
11:30 — 12:00
12:00 - 13:30
13:30 — 14:00
14:00 — 14:30
14:30 — 15:00
15:00 — 15:30
15:30 - 16:00
16:00 - 17:00
17:00 - 18:00
18:00 — 19:30

Breakfast

Shonan video and introduction by organizers
Participants self-introductions
Talk by Rajeev Alur

Coffee break

Talk by Yuriy Brun

Talk by Claire Le Goues
Lunch

Talk by Michael Pradel

Talk by Yuntong Zhang

Talk by Lingming Zhang
Coffee break

Talk by Wei Le

Panel discussion session

Free time

Dinner

Day2: January 21 (Tuesday)

07:30 — 09:00
09:00 — 09:45
09:45 — 10:30
10:30 — 11:00
11:00 — 11:30
11:30 — 12:00
12:00 — 12:15
12:15 — 13:30
13:30 - 17:00
17:00 - 18:00
18:00 — 21:00

Breakfast

Talk by Sumit Gulwani
Talk by Trung T. Pham
Coffee break

Talk by Ying Zou

Talk by Saikat Chakraborty
Group photo

Lunch

Excursion along with Japanese tea ceremony
Free time

Banquet

Day3: January 22 (Wednesday)

07:30 — 09:00
09:00 - 09:30
09:30 — 10:00
10:00 - 10:30
10:30 — 11:00
11:00 — 11:30
11:30 — 12:00
12:00 - 13:30
13:30 — 14:00
14:00 — 14:30
14:30 — 15:00
15:00 — 15:30
15:30 - 16:00

Breakfast

Free time

Talk by Charles Sutton
Talk by Jooyong Yi
Coffee break

Talk by Lin Tan

Talk by Rui Abreu
Lunch

Talk by Yannic Noller
Talk by Leonhard Applis
Talk by Lei Ma

Coffee break

Talk by Adish Singla



e 16:00 — 17:00
e 17:00 — 18:00
e 18:00 — 19:30

Fishbowl discussion session
Open discussions
Dinner

Day4: January 23 (Thursday)

07:30 — 09:00
09:00 — 09:30
09:30 — 10:00
10:00 — 10:30
10:30 — 11:00
11:00 — 11:30
11:30 — 12:00
12:00 - 13:30

Breakfast

Free time

Talk by Sergey Mechtaev

Talk by Youcheng Sun

Coffee break

Talk by Ravi Mangal

Summary of discussions by organizers
Lunch



4 Overview of Talks

Neurosymbolic Programming for Trustworthy Al

Rajeev Alur

Neurosymbolic programming combines the complementary worlds of deep
learning and symbolic reasoning. It thereby enables more accurate, interpretable,
and domain-aware solutions to Al tasks. In this talk, I will give an overview of
the state of the art in neurosymbolic programming. I will give examples of how
computational problems can be naturally expressed in neurosymbolic frame-
works as a composition of a deep neural network followed by a program written
in a traditional programming language. The key technical challenge then is
to train the neural network based only on end-to-end input-output labels for
the composite. I will review some recent learning algorithms addressing this
challenge both when the symbolic component is written in a differentiable logic
programming language and when the symbolic part is a black-box component.
This latter class of algorithms can also support calls to modern LLMs such as
GPT-4. T will conclude with an analysis of relative merits of the neurosymbolic
approach on benchmarks, potential applications, and remaining challenges. Rel-
evant references: [1, 2

In Software We Trust
Yuriy Brun

Software is ubiquitous, and trusting it is no longer optional. Unfortunately,
modern software has been caught lying, discriminating, and even causing deaths.
This talk explores how we can measure trust in software, understand what fac-
tors affect trust, and increase software trustworthiness. First, I describe how
trust games, an instrument from psychology, can identify what affects users’
trust in software. We find, for example, that women prioritize fairness in soft-
ware more than men do, and that whether text or graphics describe software
properties significantly affects users’ perception [3]. Second, I introduce Sel-
donian algorithms that fundamentally re-envision machine learning to produce
models that are probabilistically guaranteed to satisfy fairness and safety re-
quirements, even on unseen data [4, 5, 6, 7]. Third, I'll show how cutting-edge
natural language processing has enabled fully automatically proving software
correctness, the ultimate goal in software trustworthiness. These techniques
can synthesize guaranteed-correct proofs (in languages such as Coq and Isabelle)
despite machine learning inaccuracies and LLM hallucinations, making formal
verification the killer app for LLMs and ensemble learning [8, 9, 10, 11, 12, 13].
Overall, T describe significant progress toward understanding software trust and
improving software trustworthiness and lay out the challenges that lay ahead.

Agentic LLM Repair
Claire Le Goues

This talk discusses LLM-based agents for automated program repair, with
the idea of using adversarial reasoning to infer the program intent for improved



bug repair.

LLM Agents for Program Repair and Project Setup
Michael Pradel

Large language models (LLMs) are revolutionizing many aspects of software
engineering, by providing rich code understanding, code generation, and code
editing abilities. Most past work to leverage LLMs in software engineering inter-
acts with the LLM through an a-priori fixed control flow and by providing a fixed
set of information to the model. This talk instead presents an agentic approach,
where an LLM interacts with a codebase via a set of tools to autonomously
perform a specific software engineering task. We present two such approaches:
RepairAgent, which addresses the task of program repair, and ExecutionAgent,
which addresses the task of automatically installing and setting up a project so
that its tests can be executed. Our results show that agentic approaches out-
perform prior work, providing a new level of LLM-based automation in software
engineering. Relevant references: [14, 15]

AutoCodeRover: LLM Agent for Program Improvement
Yuntong Zhang

Recent advancements in Large Language Models (LLMs) have significantly
impacted the software development process, enabling developers to leverage
LLMs for code generation. However, LLMs still require manual prompting to
generate code a specific program locations. We introduce AutoCodeRover, an
LLM agent that autonomously handles software maintenance (e.g., program re-
pair) and evolution (e.g., feature addition). AutoCodeRover combines LLMs
with advanced code search capabilities to produce program modifications or
patches. Rather than treating a software project as a collection of files, Au-
toCodeRover operates on a program’s Abstract Syntax Tree (AST) to retrieve
relevant code context. Analysis techniques such as spectrum-based fault lo-
calization further refine the code search. In addition, AutoCodeRover extracts
explicit natural-language specifications during the search phase, which guide the
subsequent code generation process. AutoCodeRover has demonstrated its effec-
tiveness in autonomously resolving GitHub issues and addressing security vul-
nerabilities identified through fuzz testing on OSS-Fuzz. Related reference: [16].

Automatic Programming in the Age of LLMs
Lingming Zhang

In recent years, Large Language Models (LLMs), such as GPT-4 and Claude-
3, have shown impressive performance in various downstream applications, in-
cluding automatic programming. In this talk, I will discuss the potential impact
of modern LLMs on the important problems of test generation (e.g., TitanFuzz)
and program repair (e.g., AlphaRepair). Moreover, I will further discuss the re-
cent trend of AI software engineer, and introduce our recent work (Agentless)
along this promising direction.



Al for Finding Security Bugs
Wei Le

Vulnerability detection has been a challenging task for program analysis
and Al, as it requires an understanding of program semantics. In this talk,
I will first illustrate the challenge of this problem by presenting our studies
of recent models and state-of-the-art LLMs. I will then highlight our recent
work on building different AT models for vulnerability detection, including (1)
dataflow inspired models, (2) causality-based approaches, and (3) models built
with program traces. The work will shed light on AI for other SE tasks.

Program Synthesis: User Experiences and Neuro-Symbolic
Techniques

Sumit Gulwani

Program Synthesis can automate a wide variety of tasks for spreadsheet
users (e.g., string transformations, table extraction, advanced data analysis),
developers (e.g., debugging, repeated or associated edits), and students (e.g.,
grading, feedback or hint generation). In this talk, I will demonstrate that user
intent can be expressed not only through natural language but also via input-
output examples, static and temporal context, and broken artifacts for repair.
The most natural way for a user to express intent depends on the task at hand.
Additionally, I will advocate for leveraging neuro-symbolic techniques, which
combine the power of large language models (LLMs) with logical-reasoning-
based symbolic techniques, to build more effective solutions for specific verticals.

Verification of Programming Codes Generated

Trung T. Pham

This talk discusses challenges and methods to certify various components in
large-scale, real-world software deployments.

Automated Function Synthesis using LLM Supported Agents
Ying Zou

With the advent of Large Language Models (LLMs), software development
has witnessed significant advancements. These models, trained on extensive
datasets, have demonstrated remarkable capabilities in performing various cod-
ing tasks such as code completion, bug fixing, and code generation. Tools like
GitHub Copilot and ChatGPT have gained widespread adoption, with surveys
indicating that over 50% of developers now rely on Al-assisted tools in the devel-
opment process. Studies have also shown that developers using these tools com-
plete tasks significantly faster than those relying solely on traditional methods.
Despite these achievements, LLMs face substantial challenges when handling
complex coding tasks. While the LLMs can often generate syntactically correct
and logically coherent code, their ability to address multi-step programming



problems remains limited. In our work, we propose a novel multi-agent frame-
work that leverages the collaborative strengths of three specialized LLM-based
agents for generating an initial code solution, iteratively refining the generated
code and dynamically updating fixing strategies to improve the overall perfor-
mance in code generation. We evaluated the proposed framework using three
benchmarks—Live Code Bench, MBPP, and HumanEval—and compared its
performance against two baseline approaches: Vanilla LLM and a Self-Repair
strategy. The experimental results demonstrate that our framework consistently
outperforms both baselines, particularly in Pass@10 and Pass@50 metrics, indi-
cating its ability to iteratively improve generated solutions over multiple repair
attempts.

From Intent Formalization to Neural Synthesis: Trustwor-
thy Programming with LLM

Saikat Chakraborty

Integration of artificial intelligence with formal verification techniques is es-
sential to ensure robust, reliable, and efficient systems. With test-driven in-
teractive coding, we demonstrate that guided intent clarification—where devel-
opers iteratively refine their requirements through unit tests—can significantly
improve code generation accuracy by large language models. This approach ad-
dresses the inherent ambiguity in natural language, enabling the transition from
informal specifications to executable test cases. Parallel progress in automated
specification inference further bridges the gap between developer intent and for-
mal software design. By translating natural language requirements into precise,
machine-checkable specifications, these methods empower developers to not only
generate code but also rigorously validate it against intended behaviors. This
automated formalization process is pivotal for establishing trust in Al-generated
code, as it provides a systematic pathway for ensuring correctness. In the do-
main of proof-oriented programming, the integration of computational content
with formal proofs has opened new avenues for constructing verified software.
Leveraging extensive datasets of program and proof pairs—augmented by Sat-
isfiability Modulo Theories solvers—we have demonstrated that even a smaller
fine-tuned language models can rival larger counterparts in synthesizing both
code and correctness proofs. This synergy of Al and formal methods reduces
the manual effort typically associated with proving program correctness, thereby
streamlining the development process.

LLM Security Agent
Charles Sutton

This talk discusses LLM-based security agents for software vulnerability de-
tection, in particular, for finding input that triggers sanitizer crash.

Security Patch Verification
Jooyong Yi

Timely patching of security vulnerabilities is crucial for maintaining the se-

10



curity of software systems. With the advancement of automated vulnerability
detection techniques such as fuzzing, finding security vulnerabilities is becom-
ing easier. However, the process of patching these vulnerabilities is still largely
manual. This technological gap between automated vulnerability detection and
manual patching can, contrary to the motivation behind the research on au-
tomated vulnerability detection, make the software ecosystem more vulnerable
to attacks. To fill this gap, researchers have proposed automated vulnerability
repair (AVR) techniques. Given a vulnerable program, AVR techniques auto-
matically generate a patch that fixes the vulnerability. However, most AVR
techniques only generate a patch with little or no evidence that the patch is
correct. Without evidence for correctness, it is difficult for software develop-
ers/maintainers to make an informed decision on whether to apply the patch,
which can result in delaying or avoiding the security patch application. In or-
der for an AVR technique to be practically useful, generating a patch is not
enough [17]; the automatically generated patch must be verified to ensure its
correctness. In this talk, I will present our recent work on patch verification.
Our key innovation is to perform bounded verification [18] around the program
state that triggers the manifestation of vulnerability.

LLMs for Programming: Benchmark and Domain Knowl-
edge

Lin Tan

This talk discusses Large Language Models (LLMs) for code generation in
a broad sense. Here “code” in this context extends beyond source code ([19],
[20], and [21]) to include binaries ([22], [23]), HTML and CSS style files ([24]),
and LaTeX sources ([25]). We also go beyond the functional correctness of
code to consider the security of the code ([26]). For evaluating code genera-
tion techniques, we need good benchmarks. RepoCod ([27]) establishes a new
code generation benchmark, which contains general code generation tasks, in-
stead of just pull requests from GitHub issues. In addition, RepoCod tasks
have repository-level context, whole-function generation, and rigorous valida-
tion using test cases. It consists of real-world complex tasks with the longest
average canonical solution length (331.6 tokens) and the highest average cy-
clomatic complexity (9.00). RepoCod includes 314 developer-written test cases
per instance for better evaluation. We evaluate ten state-of-the-art LLMs on
RepoCod and find that none achieves more than 30% pass@1 on RepoCod, in-
dicating the necessity of building stronger LLMs that can help developers in
real-world software development.

Moving Faster and Reducing Risk: Using LLMs in Release
Deployment

Rui Abreu
This talk discusses the challenge of determining what should be released in
large-scale software development such as at Meta’s scale. To address this we

developed models to determine the risk of a pull request (diff) causing an outage
(aka SEV). We trained the models on historical data and used different types of

11



gating to predict the riskiness of an outgoing diff. The models were able to cap-
ture a significant percentage of SEVs while gating a relatively small percentage
of risky diffs. We also compared different models including logistic regression
BERT-based models and generative LLMs and found that the generative LLMs
performed the best. Related reference: [28]

Simulated Interactive Debugging

Yannic Noller

Debugging software, i.e., the localization of faults and their repair, is a main
activity in software engineering. Therefore, effective and efficient debugging is
one of the core skills a software engineer must develop. However, the teaching
of debugging techniques is usually very limited or only taught in indirect ways,
e.g., during software projects. As a result, most Computer Science (CS) stu-
dents learn debugging only in an ad-hoc and unstructured way. In this talk, we
present our approach called Simulated Interactive Debugging that interactively
guides students along the debugging process. The guidance aims to empower the
students to repair their solutions and have a proper “learning” experience. We
envision that such guided debugging techniques can be integrated into program-
ming courses early in the CS education curriculum. Furthermore, we will present
the results from an initial evaluation with eight undergraduate CS students. We
developed a prototypical IDE-integrated implementation using traditional fault
localization techniques and large language models. Students can use features
like the automated setting of breakpoints or an interactive chatbot. Based on
the responses, we conclude that the participants liked the systematic guidance
by the assisted debugger. In particular, they rated the automated setting of
breakpoints as the most effective, followed by interactive debugging and chat-
ting. Finally, we will outline our plan to further develop this technology towards
agentic workflows for debugging education. Relevant reference: [29]

USEAgent - Unified Software Engineering with Agentic
Systems

Leonhard Applis

Agentic Systems are starting to reach software engineers: Their appealing
idea is to combine LLMs with the necessary tools, allowing iterative solutions to
more complex challenges. Today, most agentic systems specialise in individual
tasks like program repair or test execution, resulting in a fragmented landscape
of expert tools. This fragmentation might lead to unsustainable solutions - each
individual system will need maintenance and introduce barriers through their
setup-requirements. What would a better approach look like? We propose a
unified software engineering Agent (USEagent), that utilizes other agents and
tools to construct a task-specific workflow on the fly. We introduce USEBench,
a meta-benchmark combining multiple repository-level SE tasks behind a single
API, alongside USEAgent, the latest iteration on AutoCodeRover which targets
the diverse tasks of USEBench. USEAgent is capable to self-adjust for program
repair, finishing partial fixes, producing test-coverage or generating features

12



from documentation. We highlight some of the changes to AutoCodeRover,
discuss design options and highlight early results.

Towards Understanding the Core of AI Systems in the LLM
Era

Lei Ma,

In recent years, Large Language Models (LLMs) have significantly advanced
artificial intelligence, finding applications across various domains such as soft-
ware engineering and natural language processing. However, concerns regard-
ing their trustworthiness have emerged, potentially hindering their widespread
adoption. Distinct features of LLMs, including self-attention mechanisms, vast
model sizes, and autoregressive generation, differentiate them from traditional
AT models like Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs), posing new challenges for quality analysis. In this presenta-
tion, I will discuss our early exploratory study on analyzing the trustworthiness
of LLMs and LLM-enabled systems, highlighting the potential to advance this
critical area.

GenAl-Powered Educational Technology for Computational
Thinking and Programming

Adish Singla

Recent advances in generative Al, in particular deep generative and large
language models like ChatGPT, are having transformational effects on the ed-
ucational landscape. On the one hand, these advances provide unprecedented
opportunities to enhance education by creating unique human-machine collabo-
rative systems. On the other hand, the advanced capabilities of these generative
AT models have brought unexpected challenges for educators and policymakers
worldwide. This talk provides an overview of the research opportunities and
challenges in applying generative Al methods for improving computing and
programming education. Related references: [30, 31, 32, 33]

Synergizing Program Analysis with Machine Learning

Sergey Mechtaev

This talk discuss techniques to leverage LLMs for automatic program repair
in real-world settings. Related references: [34, 35].

Fuzzing Autonomous Systems via Large Language Models

Youcheng Sun

Fuzz testing effectively uncovers software vulnerabilities; however, it faces
challenges with Autonomous Systems (AS) due to their vast search spaces and
complex state spaces, which reflect the unpredictability and complexity of real-
world environments. This paper presents a universal framework aimed at im-
proving the efficiency of fuzz testing for AS. At its core is SAFLITE, a predictive

13



component that evaluates whether a test case meets predefined safety criteria.
By leveraging the large language model (LLM) with information about the test
objective and the AS state, SAFLITE assesses the relevance of each test case.
We evaluated SAFLITE by instantiating it with various LLMs, including GPT-
3.5, Mistral-7B, and Llama2-7B, and integrating it into four fuzz testing tools:
PGFuzz, DeepHyperion-UAV, CAMBA, and TUMB. These tools are designed
specifically for testing autonomous drone control systems, such as ArduPilot,
PX4, and PX4-Avoidance. The experimental results demonstrate that, com-
pared to PGFuzz, SAFLITE increased the likelihood of selecting operations
that triggered bug occurrences in each fuzzing iteration by an average of 93.1%.
Additionally, after integrating SAFLITE, the ability of DeepHyperion-UAV,
CAMBA, and TUMB to generate test cases that caused system violations in-
creased by 234.5%, 33.3%, and 17.8%, respectively. The benchmark for this eval-
uation was sourced from a UAV Testing Competition. Related reference: [36].

Concept-Based Semantic Analysis of Deep Neural Networks
Ravi Mangal

The analysis of vision-based deep neural networks (DNNs) is highly desir-
able but very challenging due to the difficulty of expressing formal specifica-
tions for vision tasks and the lack of efficient verification procedures. We first
describe a logical specification language designed to facilitate writing specifica-
tions about vision-based DNNs in terms of high-level, human-understandable
concepts. Next, we propose to leverage emerging multimodal, vision-language,
foundation models (VLMs) as a lens through which we can reason about vision
models. VLMs have been trained on a large body of images accompanied by
their textual description, and are thus implicitly aware of high-level, human-
understandable concepts describing the images. To encode and formally verify
our concept-based specifications, we build a map between the internal represen-
tations of a given vision model and a VLM, leading to an efficient verfication
procedure for vision models. We demonstrate our techniques on a ResNet-
based classifier trained on the RIVAL-10 dataset using CLIP as the multimodal
model. We finally conclude by speculating how similar techniques could be used
for analysis of code LLMs. Related reference: [37]

14



5 Overview of Discussion Sessions

Panel Discussion Session: Are Agents the Right Solution
or Should We Only Improve LLMs?

Coordinated by Prem Devanbu

The discussion session coordinated by Prem Devanbu looked into the role
of agentic Al in automatic programming. Several participants remarked on the
fast pace in this research space. Abhik Roychoudhury commented on how agents
represent an autonomous workplan and differ significantly from prompts.

Fishbowl Discussion Session: Challenges of Testing, Verifi-
cation, and Symbolic Reasoning in the LLM Era

Coordinated by Cristian Cadar
The discussion session coordinated by Cristian Cadar looked into trust issues

in automatically generated code. The importance of verification approaches was
emphasized by several participants, including Corina Pasareanu.

6 Outcome of the Discussions

A report co-authored by some of the organizers has been posted on arXiv as an
opinion piece [38], and is attracting attention. The final picture jointly drawn
and signed by the participants appears below.

15



References

[1]

Ziyang Li, Jiani Huang, Jason Liu, Felix Zhu, Eric Zhao, William Dodds,
Neelay Velingker, Rajeev Alur, and Mayur Naik. Relational Programming
with Foundational Models. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pages 10635-10644, 2024.

Alaia Solko-Breslin, Seewon Choi, Ziyang Li, Neelay Velingker, Rajeev
Alur, Mayur Naik, and Eric Wong. Data-Efficient Learning with Neural
Programs. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS), 2024.

Aimen Gaba, Zhanna Kaufman, Jason Cheung, Marie Shvakel, Kyle Wm
Hall, Yuriy Brun, and Cindy Xiong Bearfield. My Model is Unfair, Do
People Even Care? Visual Design Affects Trust and Perceived Bias in
Machine Learning. IEEE Transactions on Visualization and Computer

Graphics (TVCG), 30(1):327-337, 2024.

Philip S. Thomas, Bruno Castro da Silva, Andrew G. Barto, Stephen
Giguere, Yuriy Brun, and Emma Brunskill. Preventing Undesirable Be-
havior of Intelligent Machines. Science, 366(6468):999-1004, 2019.

Blossom Metevier, Stephen Giguere, Sarah Brockman, Ari Kobren, Yuriy
Brun, Emma Brunskill, and Philip S. Thomas. Offline Contextual Bandits
with High Probability Fairness Guarantees. In Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS), pages
14893-14904, 2019.

Stephen Giguere, Blossom Metevier, Yuriy Brun, Bruno Castro da Silva,
Philip S. Thomas, and Scott Niekum. Fairness Guarantees under Demo-
graphic Shift. In Proceedings of the International Conference on Learning
Representations (ICLR), 2022.

Austin Hoag, James E. Kostas, Bruno Castro da Silva, Philip S. Thomas,
and Yuriy Brun. Seldonian Toolkit: Building Software with Safe and Fair
Machine Learning. In Proceedings of the International Conference on Soft-
ware Engineering (ICSE) Demo Track, pages 107-111, 2023.

Emily First, Yuriy Brun, and Arjun Guha. TacTok: Semantics-Aware
Proof Synthesis. Proceedings of the ACM on Programming Languages
(PACMPL) Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA) issue, 4:231:1-231:31, 2020.

Emily First and Yuriy Brun. Diversity-Driven Automated Formal Verifi-
cation. In Proceedings of the International Conference on Software Engi-

neering (ICSE), pages 749-761, 2022.

Alex Sanchez-Stern, Emily First, Timothy Zhou, Zhanna Kaufman, Yuriy
Brun, and Talia Ringer. Passport: Improving Automated Formal Verifica-
tion Using Identifiers. ACM Transactions on Programming Languages and
Systems (TOPLAS), 45(2):12:1-12:30, 2023.

16



[11]

[13]

[14]

[15]

[16]

Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-
Proof Generation and Repair with Large Language Models. In Proceedings
of the ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering (ESEC/FSE), pages
1229-1241, 2023.

Robert Thompson, Nuno Saavedra, Pedro Carrott, Kevin Fisher, Alex
Sanchez-Stern, Yuriy Brun, Jodo F. Ferreira, Sorin Lerner, and Emily First.
Rango: Adaptive Retrieval-Augmented Proving for Automated Software
Verification. In Proceedings of the International Conference on Software
Engineering (ICSE), 2025.

Alex Sanchez-Stern, Abhishek Varghese, Zhanna Kaufman, Dylan Zhang,
Talia Ringer, and Yuriy Brun. QEDCartographer: Automating Formal
Verification Using Reward-Free Reinforcement Learning. In Proceedings of
the International Conference on Software Engineering (ICSE), 2025.

Islem Bouzenia, Premkumar T. Devanbu, and Michael Pradel. RepairA-
gent: An Autonomous, LLM-Based Agent for Program Repair. CoRR,
abs/2403.17134, 2024.

Islem Bouzenia and Michael Pradel. You Name It, I Run It: An LLM Agent
to Execute Tests of Arbitrary Projects. CoRR, abs/2412.10133, 2024.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Au-
toCodeRover: Autonomous Program Improvement. In Proceedings of the
ACM SIGSOFT International Symposium on Software Testing and Anal-
ysis (ISTA), pages 1592-1604, 2024.

Ridwan Shariffdeen, Yannic Noller, Lars Grunske, and Abhik Roychoud-
hury. Concolic Program Repair. In Proceedings of the ACM SIGPLAN In-
ternational Conference on Programming Language Design and Implemen-
tation (PLDI), pages 390-405, 2021.

Xianghua Deng, Jooyong Lee, and Robby. Bogor/Kiasan: A k-bounded
Symbolic Execution for Checking Strong Heap Properties of Open Systems.
In Proceedings of the International Conference on Automated Software En-
gineering (ASE), pages 157-166, 2006.

Nan Jiang, Thibaud Lutellier, Yiling Lou, Lin Tan, Dan Goldwasser, and
Xiangyu Zhang. KNOD: Domain Knowledge Distilled Tree Decoder for
Automated Program Repair. In Proceedings of the International Conference
on Software Engineering (ICSE), pages 1251-1263, 2023.

Jinhao Dong, Yiling Lou, Dan Hao, and Lin Tan. Revisiting Learning-
based Commit Message Generation. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 794-805, 2023.

Ruixin Wang, Zhongkai Zhao, Le Fang, Nan Jiang, Yiling Lou, Lin Tan,
and Tianyi Zhang. Show Me Why It’s Correct: Saving 1/3 of Debugging
Time in Program Repair with Interactive Runtime Comparison. Proceed-
ings of ACM Programming Languages, (OOPSLA), 2025.

17



[22]

[23]

[26]

[29]

[30]

[31]

Danning Xie, Zhuo Zhang, Nan Jiang, Xiangzhe Xu, Lin Tan, and Xiangyu
Zhang. ReSym: Harnessing LLMs to Recover Variable and Data Structure
Symbols from Stripped Binaries. In Proceedings of the SIGSAC Conference
on Computer and Communications Security (CCS), 2024.

Nan Jiang, Chengxiao Wang, Kevin Liu, Xiangzhe Xu, Lin Tan, Xiangyu
Zhang, and Petr Babkin. Nova: Generative Language Models for Assembly
Code with Hierarchical Attention and Contrastive Learning. In Proceedings
of the International Conference on Learning Representations (ICLR), 2025.

Shanchao Liang, Nan Jiang, Shangshu Qian, and Lin Tan. WAFFLE:
Multi-Modal Model for Automated Front-End Development. CoRR,
abs/2410.18362, 2024.

Nan Jiang, Shanchao Liang, Chengxiao Wang, Jiannan Wang, and Lin
Tan. LATTE: Improving Latex Recognition for Tables and Formulae with
Iterative Refinement. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2025.

Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin
Tan, Petr Babkin, and Sameena Shah. How Effective Are Neural Networks
for Fixing Security Vulnerabilities. In Proceedings of the SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA), pages
1282-1294, 2023.

Shanchao Liang, Yiran Hu, Nan Jiang, and Lin Tan. Can Language
Models Replace Programmers? REPOCOD Says ‘Not Yet’. CoRR,
abs/2410.21647, 2024.

Rui Abreu, Vijayaraghavan Murali, Peter C Rigby, Chandra Sekhar Mad-
dila, Weiyan Sun, Jun Ge, Kaavya Chinniah, Audris Mockus, Megh Mehta,
and Nachiappan Nagappan. Moving Faster and Reducing Risk: Using
LLMs in Release Deployment. In Proceedings of the International Confer-
ence on Software Engineering: Software Engineering in Practice (ICSE-
SEIP), 2025.

Yannic Noller, Erick Chandra, Srinidhi HC, Kenny T. W. Choo, Cyrille
Jégourel, Oka Kurniawan, and Christopher M. Poskitt. Simulated Interac-
tive Debugging. CoRR, abs/2501.09694, 2025.

Tung Phung, Victor-Alexandru Padurean, José Cambronero, Sumit Gul-
wani, Tobias Kohn, Rupak Majumdar, Adish Singla, and Gustavo Soares.
Generative Al for Programming Education: Benchmarking Chatgpt, Gpt-
4, and Human Tutors. In Proceedings of the Conference on International
Computing Education Research (ICER) - Volume 2, 2023.

Tung Phung, Victor-Alexandru Padurean, Anjali Singh, Christopher
Brooks, José Cambronero, Sumit Gulwani, Adish Singla, and Gustavo
Soares. Automating Human Tutor-Style Programming Feedback: Leverag-
ing GPT-4 Tutor Model for Hint Generation and GPT-3.5 Student Model
for Hint Validation. In Proceedings of the Learning Analytics and Knowl-
edge Conference (LAK), pages 12-23, 2024.

18



[32]

[38]

Nachiket Kotalwar, Alkis Gotovos, and Adish Singla. Hints-In-Browser:
Benchmarking Language Models for Programming Feedback Generation.

In Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS), 2024.

Victor-Alexandru Padurean, Paul Denny, and Adish Singla. BugSpotter:
Automated Generation of Code Debugging Exercises. In Proceedings of the
Technical Symposium on Computer Science Education (SIGCSE), 2025.

Nikhil Parasaram, Huijie Yan, Boyu Yang, Zineb Flahy, Abriele Qudsi,
Damian Ziaber, Earl T. Barr, and Sergey Mechtaev. The Fact Selection
Problem in LLM-Based Program Repair. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE), 2025.

David Williams, James Callan, Serkan Kirbas, Sergey Mechtaev, Justyna
Petke, Thomas Prideaux-Ghee, and Federica Sarro. User-Centric Deploy-
ment of Automated Program Repair at Bloomberg. In Proceedings of the
International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP), pages 81-91, 2024.

Taohong Zhu, Adrians Skapars, Fardeen Mackenzie, Declan Kehoe, William
Newton, Suzanne M. Embury, and Youcheng Sun. SAFLITE: Fuzzing Au-
tonomous Systems via Large Language Models. CoRR, abs/2412.18727,
2024.

Ravi Mangal, Nina Narodytska, Divya Gopinath, Boyue Caroline Hu, Anir-
ban Roy, Susmit Jha, and Corina S Pasareanu. Concept-Based Analysis of
Neural Networks via Vision-Language Models. In International Symposium
on AI Verification (SAIV), pages 49-77. Springer, 2024.

Abhik Roychoudhury, Corina Pasareanu, Michael Pradel, and Baishakhi
Ray. Agentic Al Software Engineer: Programming with Trust. CoRR,
abs/2502.13767, 2025.

19



