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(Université libre de Bruxelles, Belgium)

Kyoung-Sook Kim
(National Institute of Advanced Industrial
Science and Technology (AIST), Japan)

Peer Kröger
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1 Background and introduction

The proliferation of handheld GPS enabled devices, spatial and spatio-temporal
data is generated, stored, and published by billions of users in a plethora of
applications. Multiple communities, in computer science, outside computer sci-
ence, and in industry, have responded to the pertinent challenges and proposed
solutions to individual problems. These communities include mobile data man-
agement, spatial data mining, geography, transportation engineering, spatial
privacy, and spatial epidemiology. In addition, the AI and machine learning
communities have also started exploring spatio-temporal and mobility data.
Integrating these communities around the common interest of AI and data sci-
ence around spatio-temporal and mobility-related problems is the best chance
to achieve impactful end-to-end solutions to real world problems in our cities.
This Shonan meeting followed the success of the Dagstuhl Seminar on Mobility
Data Science held in January 2022, and expand it to the Mobility AI (or GeoAI)
community.

Aims

The meeting was aimed at discussing three main topics. First, the foundation
of mobility data science and mobility AI research, that is, the open large-scale
datasets. Second, the reproducibility of algorithms and models. Finally, fu-
ture directions, especially cross-discipline directions and cross-country collabo-
rations. For each topic, we will discuss several research questions described as
follows.
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2 Overview of the meeting

The seminar was run fully in person with a handful of participants joining online.
Participants come from different discipline areas and with different expertise,
including databases and data mining, geography / geographical information
science, AI and machine learning, agent-based simulation, and human-computer
interaction.

We designed the seminat to be mostly interactive and hands on. We divide
the day over two major broad sessions – morning and evening. The overall
topics of discussions were set per session. Participants were encouraged to post
ideas on the ideas board, which were then voted on by the rest of the group.
Further, the groups that were assigned randomly then get to decide the topic
that they would like to propose or discuss under the major umbrella topics set
for that session.

The following are the major topics set by the organizers that guide the overall
discussion over the sessions.

Open Large-scale Datasets.

The success of developing advanced models for various applications largely de-
pends on high-quality large-scale datasets. In mobility data science and mobility
AI research, most research works still rely on traditional datasets like Geolife,
Gowalla, TaxiPorto, and FourSquare, which were introduced a decade ago. The
meeting will discuss the challenges and questions towards developing large-scale
open datasets such as:

• What are the challenges of collecting and publishing modern mobility
data?

• How to assess the quality of mobility data?

• How to address the privacy concerns in releasing large-scale mobility data?

• Which data models facilitate the integration of heterogeneous data from
multiple sources?

Spatio Temporal Foundation Models.

• What are the downstream tasks?

• How is this going to work across all domains, regions, time?

Reproducibility and Standardization.

In comparison to other research communities such as CV and NLP, the re-
producibility in the mobility data science/AI research area is overlooked. For
example, a proposed model or algorithm is rarely evaluated globally. We cannot
guarantee the utility of a model in a new scenario even if its implementation is
available. We will discuss questions related to the reproducibility, including:

• What are the main reproducibility issues in the community?

• Can we develop a centralized platform for cross-region reproduction?
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• How can we design a reproducibility checklist for mobility data science/AI
research?

• How to conduct benchmarking research for each mobility data science/AI
research task?

New Directions.

Another important aspect of this meeting is to shape the future of mobility data
science and mobility AI (e.g., in the next 10 years). We believe with proper
designing, the research of mobility could bring many benefits to our daily life
in multiple ways. Research questions discussed will include:

• What are the priority areas of focus for the advancement of mobility data
science/AI?

• How can we conduct responsible mobility data science/AI research for
other disciplines such as for Intelligent Transportation, business intelli-
gence, emergency and disaster response?

• How can we strengthen the cross-country collaborations to leverage data
with more diverse geographical characteristics?

• How to foster interdisciplinary collaborations on a regular basis?
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3 Overview of Sessions

Day 1 Morning: Self Introductions

This session started with a 3-minute introduction of all participants and their
research. The list of the participants can be found in the next section.

Day 1 Afternoon: Discussions on Open Large-Scale Datasets

This session discussed the wide range of publicly available datasets, including
trajectory, spatio-temporal, and synthetic datasets.

Day 1 Afternoon (Part 2): Group Discussions and Presentations on
Open Large-Scale Datasets

In the second session we split up into five groups of five selected randomly to
discuss the datasets needed to build a spatio-temporal foundation model. Differ-
ent groups came with different views of large scale datasets, and the taxonomy
thereof.

Day 2 - Morning: Group Discussions and Presentations on Open
Large-Scale Datasets

We continued the discussions from the end of day 2, with groups reporting back
their results.

Day 2 - Afternoon: Discussions on Spatio-Temporal Foundation Mod-
els

This session discussed the challenges of developing spatio-temporal foundation
models. Three sub-groups were formed based on the development stages: Pre-
training, Fine-tuning, and Systems and Interfaces.

Day 3 Morning: Writing Session

In this session we spent the whole morning to write up the discussions and
tabulated the discussions in a working journal paper to be submitted post the
workshop.

Day 4 Morning: Conclusion and Future Directions

We wrapped up the discussion from the previous days and discussed the plan
for the journal paper and future directions. We closed the session with partic-
ipants sharing the highlights from this Shonan seminar – the positives and the
drawbacks, and their main takeaways.

5



4 List of Participants

• Taylor Anderson, George Mason University, USA

• Yang Cao, Institute of Science Tokyo, Japan

• Gilles Dejaegere, Université libre de Bruxelles, Belgium
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Figure 1: Group photo of participants

5 Meeting Schedule

Check-in Day: February 16 (Sun)

• Welcome Banquet

Day1: February 17 (Mon)

• Talks and Discussions

Day2: February 18 (Tue)

• Talks and Discussions

Day3: February 19 (Wed)

• Talks and Discussions

• Group Photo

• Excursion and Main Banquet

Day4: February 20 (Thu)

• Talks and Discussions

• Wrap up
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6 Summary of discussions

6.1 Discussion on Datasets

In the first afternoon session on Monday we discussed the topic of “Datasets for
Spatio-Temporal Foundation Models”. This discussion highlighted the complex-
ity of selecting and utilizing datasets for training models that capture spatial
and temporal dynamics. A key point is that spatio-temporal data is not limited
to trajectories; it encompasses a broader spectrum, including origin-destination
(OD) data, edge weights, and other mobility-related features. While OD data
can sometimes be transformed into trajectory data, it often lacks granularity,
particularly when zones are large, leading to a loss of critical movement infor-
mation. The conversation also emphasizes the need for a taxonomy of datasets,
categorizing available data, their utility, and associated challenges such as reso-
lution, representation (raw, aggregated, or derived models), and encoding stan-
dards.

A crucial debate arised around high-resolution data. While valuable, it is not
always necessary, as models can achieve good results with limited high-quality
data. The use of synthetic or simulated data is another point of contention;
while simulations must be carefully calibrated to real-world data to avoid learn-
ing artificial biases, fields like chemistry and astrophysics successfully leverage
simulated data to infer knowledge. The distinction between algorithmically
generated and model-driven simulations is also becoming increasingly blurred.

Data collection remains a significant challenge, particularly for academic
research, which lacks access to large-scale datasets collected by industry. The
discussion suggests exploring agent-based models and LLM-driven simulations
for generating trajectories, as seen in computer vision, where pretraining on
randomly generated images has proven effective. Future steps involve a deeper
exploration of different mobility data types (e.g., indoor vs. outdoor) and the
development of a multi-view taxonomy to systematically address open problems
in spatio-temporal modeling.

We discussed the increasing volume of collected data which creates challenges
in managing and storing this data. Current practices like using compression
techniques are insufficient in the long term. Innovative approaches involving
AI and ML could enable more effective ways to retain only the necessary data
and ’decay’ or delete the rest efficiently. Such strategies would allow for the
restoration of important data from compact forms when needed.

Finally, we agreed that defining and standardizing metadata for both real
and synthetic datasets is essential. This would facilitate the integration and de-
tailed understanding of various datasets, enabling more effective data utilization
and management through formats like Geoparquet, which provide a structured
approach to handling extensive datasets efficiently.

A diverse array of datasets is critical for advancing mobility research. Here
is a list of mobility-related datasets that was listed by seminar participants :

• YJMob100K: A city-scale and longitudinal dataset of anonymized hu-
man mobility trajectories. Available at: https://zenodo.org/records/
10142719

• NOAA OISST V2: Optimum Interpolation Sea Surface Temperature.
More information: https://psl.noaa.gov/data/gridded/data.noaa.
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oisst.v2.html

• Pseudo-PFLOW Dataset: https://pflow.csis.u-tokyo.ac.jp/data-service/
pseudo-pflow/

• New York Taxi: TLC Trip Record Data. Access the data at: https:

//www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

• COVID-19 Mobility Data Network: https://www.covid19mobility.
org/

• U.S. Dynamic Human Mobility Flow During COVID-19: https:
//github.com/GeoDS/COVID19USFlows

• Semantic Trails: https://figshare.com/articles/dataset/Semantic_
Trails_Datasets/7429076

• UCR Star: An interactive tool for accessing public geospatial datasets.
https://star.cs.ucr.edu

• UCR Spider: A tool for generating synthetic spatial data. https://

spider.cs.ucr.edu

• MobilityTwin.Brussels: Provides real-time and static datasets for pub-
lic transport and bike positions.

• OpenUAS: A dataset representing urban usage patterns with Area2Vec
embeddings. https://github.com/UCLabNU/OpenUAS

• Yelp Open Dataset: Includes business reviews, photos, check-ins, and
attributes. https://business.yelp.com/data/resources/open-dataset/

• National Household Travel Survey NextGen OD data: https:

//nhts.ornl.gov/od/

• LODES: Origin-Destination commuting flows data. https://lehd.ces.
census.gov/data/

• Semantic trajectories (Geolife and OSM): https://github.com/
chiarap2/MAT_Builder/tree/master/datasets

• PISA: a dataset that includes the foot traffic flow data of POIs, used for
prompt-based or LLM-based forecasting. https://github.com/HaoUNSW/
PISA

• A comprehensive survey on trajectory datasets can be found in the ACM
publication: https://dl.acm.org/doi/10.1145/3440207

• XXLTraffic: An Extremely Long Traffic Dataset that contrains Califor-
nia in USA and NSW in Australia. https://github.com/cruiseresearchgroup/
XXLTraffic
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Figure 2: A taxonomy of trajectory data

6.2 Discussion on Taxonomy of Spatio-Temporal Data

In the second afternoon session on Monday, we asked the large team to split into
five separate groups of 5-6 people each to continue the discussion on datasets
for spatio-temporal foundation models. The five groups met in separate rooms
for an hour and then reported their results back to the larger group in the last
hour of the day.

Taxonomy of Trajectory data

The discussion emphasizes that tasks should drive data selection, as different
trajectory types (e.g., drive routes, trips) vary in structure and timestamps.
Trajectory data can be classified as discrete or continuous, often requiring exten-
sive preprocessing to address missing values. Two key definitions are proposed:
Definition A, which categorizes trajectories based on movement patterns (e.g.,
point-to-point, segmented, check-ins, and dwell-time-based data), and Defini-
tion B, which classifies trajectories by spatial (point-based vs. label-based) and
temporal (regular vs. irregular) perspectives, forming a 3D framework of time,
space, and labels. Figure 2 summarizes the discussions of Group 1.

Taxonomy of Spatio-temporal data

We highlighted that a clear taxonomy of spatio-temporal data is essential to un-
derstand what types of information can be derived from different data sources
and how they interrelate. Transferability of models is a critical challenge, as
models trained in one city may not generalize well to another due to differences
in infrastructure, mobility patterns, and socio-economic factors; identifying the
necessary conditions for successful transfer remains an open problem. Data for-
mat and accessibility also play a significant role, with datasets ranging from pub-
lic and semi-public sources to proprietary or private business-controlled data,
impacting both research transparency and model applicability.

We also discussed that a comprehensive taxonomy of spatio-temporal data
must account for multiple dimensions that influence data utility and applica-
bility. Key factors include source technology (e.g., GPS, sensors, simulations,
social media) and data format (e.g., point, trajectory, raster, graph, OD, or time
series). The taxonomy must also consider spatial and temporal granularity, cov-

10



Figure 3: Data-driven versus Theory-driven synthetically generated spatio-
temporal datasets

erage, and access level (public, paid, or private), as well as privacy constraints
(e.g., de-identified, aggregated, or regulated).

Additional critical aspects include update frequency (historical vs. real-
time), uncertainty levels (certain vs. noisy), and the classification of moving
objects (humans, vehicles, animals, etc.), with potential constraints. Further-
more, understanding the source organization (e.g., owner, publisher, or simula-
tor) and the intended task (e.g., mobility analysis, map matching) is crucial for
evaluating dataset suitability.

Taxonomy of Synthetic and Simulated Datasets

We discussed various methods for synthesizing spatio-temporal data, focusing on
both agent-based simulation and generative AI approaches. Within simulation-
based methods, the group distinguished between top-down (data-driven) ap-
proaches, which resimulate existing real-world datasets, and bottom-up (theory-
driven) approaches, which generate simulations without direct data input and
later calibrate parameters to align with observed real-world patterns. These two
categories of synthetic data generation are illustrated in Figure 3, providing a
conceptual overview of their distinctions.

Additionally, a classification of synthetic datasets along the data-driven vs.
theory-driven spectrum is presented in Figure 4, offering a structured framework
for comparing different synthetic data methodologies. Understanding these ap-
proaches is essential for evaluating the reliability and applicability of synthetic
data in spatio-temporal modeling.
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Figure 4: Classification of existing synthetic spatio-temporal datasets

7 Spatio-Temporal Foundation Models

The research focuses on identifying the necessary components for building hu-
man mobility foundation models, emphasizing transferability across different
cities. Key components include spatial data (e.g., trajectories), modality (sim-
plified mobility characteristics), and context information (e.g., land use, POI).
The process involves extracting general features and biases separately, applying
spatial normalization, and ensuring broad spatial and temporal coverage, with
simulated data used to impute missing information. Evaluation dimensions span
multiple tasks, including classification (e.g., anomaly detection, urban/rural
classification), clustering, regression (e.g., travel time, edge weights), and gen-
erative tasks (e.g., next-location prediction, trajectory reconstruction). Addi-
tionally, optimization tasks (e.g., departure time prediction), fusion with large
language models (LLMs), and transferability methods (zero-shot and few-shot
learning) are essential for assessing model performance across diverse datasets
and scenarios.

Pretraining

Building a unified foundation model for spatio-temporal data presents chal-
lenges due to irregular timestamps, spatial granularity differences, and seman-
tic incompatibilities across data types, such as ship trajectories versus check-in
locations. Different datasets—e.g., GPS trajectories, check-in data, and POI
locations—vary in their structure, frequency, and resolution, requiring a frame-
work that can generalize across them. A potential solution is to encode hetero-
geneous data types into a shared latent space using specialized encoders that
preserve their inherent characteristics. Additionally, domain-specific tokeniz-
ers are necessary to process different modalities separately, ensuring that each
data type maintains its unique vocabulary (e.g., ships cannot logically check in
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at McDonald’s). By leveraging spatio-temporal points (coordinates + times-
tamps) as base tokens, the model can flexibly represent both sparse and dense
trajectories. This approach enables pretraining strategies where tokens are gen-
erated independently but later aligned through embedding techniques, allowing
the model to generalize across diverse downstream tasks. Furthermore, fine-
tuning on specific tasks can activate relevant domain experts, optimizing task
performance while preserving cross-domain adaptability. The key challenge re-
mains in defining the optimal encoding and tokenization strategy to effectively
connect disparate data representations within a robust foundation model.

Downstream Tasks

In the exploration of trajectory data applications, various functionalities are
essential, organized into categories like similarity-based tasks, prediction-based
tasks, and trajectory understanding, with additional focus on data augmenta-
tion tasks. Critical within these applications is trajectory anomaly detection,
where atypical movement patterns are identified that diverge from normative
behaviors. This function is vital across sectors such as fraud detection, safety
monitoring, and event detection.

Another pivotal function is trajectory classification, which organizes move-
ment patterns into predefined categories based on spatial and temporal char-
acteristics. This is crucial for urban planning and transportation management,
allowing for the differentiation between various types of transportation modes
and routine activities through the analysis of location sequences.

Trajectory forecasting and recovery are also significant, focusing on predict-
ing future movements and reconstructing incomplete trajectory data, respec-
tively. Forecasting leverages historical data to predict future locations with
considerations of human intentions and external conditions, whereas recovery
deals with filling in missing trajectory points to ensure data completeness.

Extended capabilities include trajectory generation, which synthesizes re-
alistic human movement data for privacy enhancement and machine learning
purposes; travel time estimation, which calculates times for different routes by
considering various spatio-temporal factors; and trajectory-based recommenda-
tions, which propose potential future locations or social connections based on
past movement patterns. These features showcase the system’s ability to deliver
a broad spectrum of analytical tools that can cater to needs ranging from traffic
simulation to enhanced social networking applications.

Additionally, model collapse -— the degradation of model performance when
applied to out-of-distribution data — poses risks to transferability, highlighting
the need for robust adaptation strategies.

Systems and Interfaces

To advance research and practical applications in mobility foundation models,
we envision the development of a centralized platform for browsing, testing,
and training models. Despite numerous papers claiming to provide founda-
tion models for trajectory analysis, few offer readily available implementations.
This platform would serve as a ”Hugging Face for Mobility”, enabling users
to evaluate existing models on diverse downstream tasks, upload datasets, and
transfer trained models across different cities. A core requirement is an exten-
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sible model database for managing and updating model weights, along with a
pluggable interface that standardizes input/output formats and supports new
tasks. Additionally, a dataset repository would centralize mobility datasets
while incorporating metadata for spatial and temporal attributes. Given the
unreliability of OpenStreetMap (OSM) data, we propose a structured repository
to store essential attributes like maximum speed, lane count, and flow speed,
indexed by OSM node and segment IDs. This would enable users to access the
latest dataset versions, contribute new data, and visualize completion levels on
an interactive map. Ultimately, the platform aims to provide a standardized,
collaborative space for improving spatio-temporal mobility models.

8 Summary of new findings

The collection of real data poses its set of challenges, particularly for academic
researchers who lack the extensive resources that industries possess to gather
large-scale data via methods like crowdsourcing. Despite this, the value of
real data in training robust AI models cannot be understated. Furthermore,
the discussion extends to the need for a canonized method to encode spatio-
temporal (ST) data, enhancing the models’ ability to learn and generalize from
such data effectively.

A pivotal area of discussion is the distinction between synthetic and simu-
lated data. While synthetic data is generated through models that may or may
not adhere closely to real-world dynamics, simulated data is typically algorith-
mically crafted to mimic specific real-world processes. The nuances between
these types and the blurred lines in their definitions within the simulation com-
munity need clearer articulation. Additionally, the utility of simulated data is
contingent on its generation rules; if these rules are too simplistic or detached
from reality, the model’s learning potential is constrained. Therefore, simula-
tion models must be calibrated against real-world data to ensure their efficacy
and relevance.

In many fields, such as chemistry and astrophysics, reliance on simulated
data is common due to the prohibitive costs of experimental data collection.
These fields have demonstrated that valuable insights can still be achieved from
well-designed simulations. This precedent suggests that mobility data science
could also benefit from sophisticated simulations, especially when real data is
scarce or unavailable.

9 Feedback from Participants

In the final session, we asked participants to share their positive aspects and
areas for improvement of this Shonan workshop. We summarize the feedback
received as follows:

Positive Aspects

• Knowledge Sharing & Learning – Many participants highlighted the wealth
of knowledge gained, including new research papers, emerging methodolo-
gies, and technical insights. The ability to learn directly from experts,
rather than just through published papers, was particularly appreciated.
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• Networking & Collaboration – The event facilitated new connections among
researchers and experts in mobility, foundation models, and AI, leading
to potential future collaborations.

• Diverse Perspectives – The seminar brought together researchers from
different domains, providing a variety of viewpoints on mobility foundation
models, from trajectory data to urban planning.

• Idea Generation & Conceptualization – Discussions sparked new ideas,
especially around the potential of foundation models for geospatial ap-
plications, trajectory-based learning, and their relevance across different
fields (epidemiology, ecology, urban planning).

• Community Building – There was enthusiasm for creating a stronger com-
munity around mobility foundation models, potentially leading to joint
projects and shared datasets.

Challenges & Areas for Improvement

• Lack of Industry Representation – Many felt the absence of industry stake-
holders limited discussions on practical applications and real-world chal-
lenges of mobility foundation models.

• Fragmented Discussions – While discussions were rich, they often diverged
in multiple directions, making it difficult to converge on clear research
priorities or solutions.

• Unclear Applicability of Foundation Models – Some participants ques-
tioned whether mobility foundation models are truly feasible or beneficial
beyond existing techniques, particularly in the context of geocoding and
spatial-temporal relationships.

• Insufficient Time & Structure – The seminar lacked a hands-on component
where researchers and students could work together on prototypes, due to
limited time and participation constraints.

• Noise & Technical Issues – Attendees joining remotely on Zoom found it
challenging to follow discussions due to background noise and technical
limitations in the meeting environment.
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10 Identified issues and future directions

The group identified the following key takeaways and future directions:

• Potential of a Unified Geocoding Foundation Model – Discussions pointed
toward the need for a robust geocoding foundation model that can under-
stand location semantics worldwide.

• Data Standardization is Crucial – Many agreed that before foundation
models can be effective, mobility datasets need to be better structured
and standardized.

• Cross-Domain Collaboration Needed – Bringing in perspectives from other
fields (e.g., epidemiology, urban planning) could help shape meaningful use
cases for mobility foundation models.

• Building a Stronger Research Community – Participants expressed inter-
est in forming a more structured community around mobility foundation
models, with shared datasets, projects, and potential summer schools.

• Future Workshops Should Include Industry & Applied Use Cases – To
enhance practical impact, future events should invite industry representa-
tives to share real-world challenges and applications.

• Overall, the seminar was highly valued for fostering discussion and net-
working, but there is a need for more structured collaboration, hands-on
work, and industry engagement to advance the field effectively.

• A comprehensive taxonomy of datasets is essential. This taxonomy should
delineate which datasets are available, their potential applications, and the
inherent challenges they pose, such as issues with resolution. It should also
categorize the types of data representations available, ranging from raw
data to aggregated or compressed forms and derived models. There’s a
need to critically evaluate whether high-resolution data is necessary for
all tasks, as even limited amounts of high-quality data can yield robust
results.

• Looking forward, examining different types of mobility data (e.g., indoor
vs. outdoor, moving objects) and identifying existing and open problems
in a multi-view taxonomy could enrich the field.

The discussions during this Shonan seminar will be further expanded into a
journal paper.
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