ISSN 2186-7437

NIl Shonan Meeting Report

No. 207

Anti-patterns and Defects: Synergies,
Challenges, and Opportunities

Fabio Palomba
Raula Gaikovina Kula
Shane McIntosh
Takashi Kobayashi

December 2-5, 2024

FEFA = iE

NIl SHONAN MEETING

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan



Anti-patterns and Defects: Synergies, Challenges,
and Opportunities

Organizers:

Fabio Palomba (University of Salerno, Italy)
Raula Gaikovina Kula (The University of Osaka, Japan)
Shane McIntosh (University of Waterloo, Canada)
Takashi Kobayashi (Institute of Science Tokyo, Japan)

December 2-5, 2024

Background and Introduction

Source code anti-patterns, also known as code smells, are poor design or im-
plementation choices applied by programmers when evolving a software system
that can eventually lead to the introduction of defects, i.e., incorrect software
system behavior [1]. For decades, the software engineering research community
has been actively investigating anti-patterns and defects in isolation. While the
advances that the research community has made with respect to anti-patterns
and defects are numerous (e.g., [2,3]), there is room for each community to
benefit from the other. Furthermore, in light of trending topics like generative
Artificial Intelligence (AI) for Software Engineering, there is a growing need for
these two sub-communities, which are naturally related to each other; however,
few studies have investigated this intersecting boundary. Early results have in-
vestigated specific aspects, such as the defect-proneness of anti-patterns [1,4],
yet there is much more to be explored. As a consequence, several relevant key
aspects are still unknown:

e Are we able to characterize the boundary between anti-patterns and de-
fects?

e Can complex anti-pattern removal activities be prioritized based on the
likelihood of cross-cutting from anti-pattern to concrete defects?

e How can anti-pattern detection inform defect identification and vice-versa?
For instance, how advances in the use of machine learning approaches for
defect prediction can be exploited to improve the prompt identification of
anti-patterns?

e How do these challenges translate to the current trending topics in Soft-
ware Engineering, such as generative AI?

The aim is not only to foster an exchange of ideas, but also to outline a clear
set of concrete grand challenges and propose a roadmap for how those challenges
can be met by future work.



Overview of the meeting

Our meeting brings together 27 experts from diverse regions around the world,
each with unique experiences and qualifications from the Software Engineering
domain. This diversity enables us to explore and understand software quality
from a wide range of perspectives. The primary objective of this gathering is
to establish clear definitions of software quality, reflecting the varied viewpoints
represented by the participants. By doing so, we aim to dismantle the silos
that have formed between different ideas of anti-patterns and defects, and how
software quality is perceived in this current time. This collaborative effort will
allow us to identify synergies, overcome challenges, and uncover opportunities,
providing a clear vision for the direction of work in software quality research
over the next 5-6 years.

Originally proposed in 2019, the idea of this Shonan meeting has changed
immensely. Covid-19 and advancements of Large Language Models has led to
a disruption in the field, especially with how developers now develop code. In
this manner, the workshop had to address this elephant in the room, with the
core question becoming, what is the current state, and how do anti-patterns
and defects look like in the future. Based on these changes, organizers decided
to propose a much large framework for the participants to work:

e User Perspective - From the user’s perspective, software quality is assessed
based on its ability to meet their needs, expectations, and preferences.

e Developers Perspective - From the developer’s perspective, software qual-
ity focuses on maintainability, scalability, and code quality.

e Quality Assurance Perspective - The quality assurance (QA) perspective is
centered on ensuring that the software meets predefined quality standards
and functions as expected in all scenarios.

e Operator Perspective - From the operator’s perspective, software qual-
ity is defined by its reliability, deployability, and ease of monitoring in a
production environment.

Unlike previous Shonan meetings, the format of this event was designed to
focus entirely on breakout sessions, fostering deeper engagement and collabora-
tion. To further encourage relationship-building and idea exchange, all social
events were scheduled during the initial days of the meeting, creating a foun-
dation of camaraderie and trust before diving into focused discussions. The
event then progressed with three intensive breakout sessions, culminating in
concrete discussions aimed at actionable research agendas. These discussions
were designed to outline collaborative ideas and projects that research teams
could pursue together, ensuring that the outcomes of the meeting would have a
tangible impact.

A notable feature of our breakout sessions was the inclusion of a walking
session, which provided participants with an informal setting for closer, more
personal discussions. This unique approach fostered a relaxed yet productive
environment, allowing participants to engage in meaningful conversations that
complemented the structured breakout groups. This blend of formal and in-
formal discussions proved invaluable in building connections and enriching the
depth of the meeting’s outcomes.



Meeting Schedule

Check-in Day: December 1st 2024 (Sun)
e Welcome Reception
Dayl: December 2nd 2024 (Mon)
e Introduction to Shonan and Participant Introductions.
e Discussion Topics Brainstorming
e Shonan Excursion to Enoshima and Banquet Dinner
Day2: December 3rd 2024 (Tue)
e Breakout Session 1
e Report on Breakout Session 1
e Breakout Session 2
e Report on Breakout Session 2
Day3: December 4th 2024 (Wed)
e Breakout Session 3 (Walking)
e Report on Breakout Session 3 (Walking)
e Concrete Ideas Session 4 (Breakout into groups on concrete ideas)

e Report on Concrete Ideas Session 4 (Summary and updates of the studies
to be conducted)

Day4: December 5th 2024 (Thu)

e Wrapping Up, concrete ideas and follow-up on potential collaborations.



List of Participants

Fabio Palomba, University of Salerno, Italy

Raula Gaikovina Kula, The University of Osaka, Japan
Shane Mclntosh, University of Waterloo, Canada

Takashi Kobayashi, Institute of Science Tokyo, Japan
Brittany Reid, Nara Institute of Science and Technology, Japan
Gemma Catolino, University of Salerno, Italy

Thomas Zimmermann, University of California, Irvine, USA
Kelly Blincoe, University of Auckland, New Zealand

Valeria Pontillo, Vrije Universiteit Brussel, Belgium

Earl Barr, University College London, United Kingdom
Coen De Roover, Vrije Universiteit Brussel, Belgium

Daniel German, University of Victoria, Canada

Mahmoud Alfadel, University of Calgary, Canada

Michele Lanza, USI Lugano, Switzerland

Yutaro Kashiwa, Nara Institute of Science and Technology, Japan
Hideaki Hata, Shinshu University, Japan

Joao F. Ferreira, INESC-ID / University of Lisbon, Portugal
Dario Di Nucci, University of Salerno, Italy

Shinpei Hayashi, Institute of Science Tokyo, Japan

Andrian Marcus, George Mason University, USA

Takashi Ishio, Future University Hakodate, Japan

Akond Rahman, Auburn University, USA

Csaba Nagy, USI Lugano, Switzerland

Moritz Beller, Meta, USA

Chaiyong Ragkhitwetsagul, Mahidol University, Thailand



Overview of Breakouts

Breakout 1 - Antipatterns and Defects in Configurations

Participants: Akond Rahman, Moritz Beller, Yutaro Kashiwa, Andrian Mar-
cus, Shane MclIntosh, Dario Di Nucci, Joao F. Ferreira, Mahmoud Alfadel

Context : Riskiness of code changes that impact downstream revenue through
outages. Configuration changes are much higher than that of regular code
changes, much of which are LLM-generated Gradual rollout of configuration
changes To determine the riskiness you rely on metrics, that are not in the
same granularity as the production deployment Similar to code changes, config-
uration changes can be tangled within a single diff Metrics are hard to improve
because of the scale of the development process at Meta that involves impacting
the workflow of thousand developers Configuration changes are of two types:
Python-based (e.g., changes in variable values) and Prioritizing configuration
value changes is challenging Configuration testing: gradual rollouts, simulation,
and canary deployment (e.g., replay production traffic and see breaks or not)

State of the art: Measure metrics to determine the oracle If a configuration
change does not impact performance, perhaps this is a less risky set LLMs
can be used for configuration validation (https://tianyin.github.io/pub/ciri.pdf)
Existing solutions are limited based on scale Existing resources: NIST-glossary
and NIST-document Semantics of configuration code changes sounds promising
as per SOSP paper

Open challenges: What paths are promising to test configurations at scale?
What paths should we avoid? What does it mean to test the entire configuration
set for systems of systems? (long-term) What is the likelihood of this particular
configuration change breaking ? Riskiness is a probability-based model and
how do you convince the stakeholders that the risk-based solution will work?
Especially in the cases of false positives and false negatives Configurations that
span across microservices ... how do we make sure we are testing them well,
e.g., with integration testing? What are the recurrent root causes for large-scale
outages [long-term goal]

Proposed solutions: Categorize the configurations: declarative vs impera-
tive, infrastructure vs product, Prioritize misconfigurations based on certain
attributes, such as scheduling, routing, queueing, and region availability Au-
tomate testing activities as much as we can possibly with Al agents or LLMs
Automated testing works to some extent for example for unit tests but what
about simulating users? Simulation testing is considered a hack in the context
of configuration testing that is distributed in nature. Can we understand the
root causes of why simulation testing fails for testing configurations? Can Al
assistants, i.e., assistants beyond LLMs use Al to generate valid configuration
values?



Breakout 1 - Human-In-The-Loop

Participants: Chaiyong Ragkhitwetsagul, Fabio Palomba, Gemma Catolino,
Kelly Blincoe, Michele Lanza, Thomas Zimmermann, Hideaki Hata, Takashi
Kobayashi, Shinpei Hayashi

Context: The rise of Large Language Models (LLMs) is reshaping the tradi-
tional software engineering process, raising questions about the evolving role of
humans, particularly developers. Traditionally, developers have been central to
all stages of the software lifecycle, from requirements engineering (RE) to oper-
ation, maintenance, and evolution. However, LLMs are increasingly automating
these stages, introducing new dynamics in software creation, while still posing
risks such as technical debt, defects, and anti-patterns.

State of the art: Currently, humans remain crucial in requirements engineer-
ing, where their expertise drives the effective use of LLMs. The design phase is
another area where developers maintain significant influence, shaping the project
direction. As the project progresses, LLMs become more autonomous, executing
tasks with decreasing human intervention. However, challenges persist in lever-
aging LLMs effectively, particularly in ensuring code quality, comprehensibility,
and maintainability. Current tools lack sufficient mechanisms for evaluating and
refining outputs from LLMs.

Open challenges: Several critical challenges arise in integrating LLMs into
the development workflow. The team identified two main endpoints where de-
velopers would still be fundamental. First, pull request and issue request as-
sessment face significant challenges. There is an absence of robust metrics to
evaluate the quality of code generated by LLMs, which hampers developers’ abil-
ity to make informed decisions. Additionally, the lack of effective visualization
tools complicates the process of understanding and reviewing LLM-generated
content. Second, testing mechanisms also present notable limitations. Current
approaches for non-functional testing are inadequate, leaving gaps in assessing
crucial qualities, e.g., performance and security, in the code automatically gen-
erated by Al assistants. In this respect, there remains a pressing need for human
oversight to ensure that these aspects are thoroughly evaluated and aligned with
the desired system requirements. Human involvement is critical not only for ver-
ifying the correctness and relevance of the test cases generated by LLMs but also
for providing contextual judgment and addressing edge cases that automated
tools may overlook. Such oversight can enhance the reliability and robustness
of the overall testing process.

Proposed solutions: To address these challenges, a few potential solutions
are proposed, focusing on enhancing quality assessment both in the prompts
(inputs to LLMs) and in the generated contents by LLMs (outputs from LLMs)
to better integrate human oversight and LLM capabilities. This can be done
starting by understanding the metrics that can be used to describe the properties
of the prompts (e.g., NLP-based metrics) and the metrics that can be used to
evaluate the quality of the generated contents (e.g., code) by LLMs.



Breakouts 1 - Program Analysis: Present and in the Future

Participants: Coen De Roover, Valeria Pontillo, Csaba Nagy, Brittany Reid,
Raula Gaikovina Kula, Earl Barr, Daniel German, Takashi Ishio

Problems As developers start to use LLMs to generate code, a major chal-
lenge is analyzing suggestions generated by large language models (LLMs).
These analyses must contend with the assumption of whole-program analysis
while dealing with the reality of partial, syntactically incorrect code. Poten-
tial solutions include employing compositional program analysis or adapting
analyses designed for Stack Overflow snippets, although these approaches may
require addressing the unique characteristics of placeholders used in code sug-
gestions. Another short-term issue is the quality of suggestions provided for
“low-resource ecosystems,” which are often plagued by hallucinated or nonsen-
sical code. Addressing this involves quantifying the quality of suggestions using
ecosystem-specific confidence metrics and feeding these metrics back into pro-
gram analyses. There is also the question of whether program analyses can
influence prompt design, such as enabling prompts like “lower cyclomatic com-
plexity, please,” which may represent a significant technical challenge.

In the long term, the integration of LLM-generated suggestions into actual
codebases requires a longitudinal analysis, similar to those conducted in Min-
ing Software Repositories (MSR) studies. Key challenges include addressing
non-determinism and ensuring traceability of the context, prompts, and the
developer’s own edits. Potential solutions include developing tooling to recog-
nize generated code and maintaining its history for better accountability and
analysis.

Opportunities In the short term, there is an opportunity to explore data-
driven alternatives to traditional, engineering-heavy program analyses. This
is particularly relevant in the diverse and ever-changing landscape of software
development, where algorithmic support for every single feature or language
ecosystem is impractical. Techniques highlighted in studies like ” A Few Billion
Lines of Code Later” could inform such approaches. Additionally, Al-enhanced
program analysis could leverage natural language semantics to identify likely
sources and sinks of sensitive information, enabling more sophisticated and flex-
ible tools.

In the long term, the information conveyed by well-defined interfaces for
black-box LLM-generated components presents a promising avenue for innova-
tion. Enhancing program comprehension support for LLM users is also crucial,
as they must now balance writing and reviewing code simultaneously. Finally,
verifying contracts between LLMs and developers, and safeguarding the integrity
of the remaining software, could create a more robust and trustworthy ecosystem
for integrating LLM-generated code.

Breakout 2 - New Artifacts, Old Bugs

Participants: Brittany Reid, Dario Di Nucci, Raula Gaikovina Kula, Daniel
German, Andrian Marcus, Gemma Catolino, Michele Lanza



Context: Developers are increasingly incorporating LLM usage into their soft-
ware development workflows. As they write tests, deploy code etc. this neces-
sitates the creation of new artifacts. Similar to the concept of Infrastructure
as Code (IaC), where specifications are maintained as files under source control
just like code, it’s possible that data like LLM input, output, context or exam-
ples used in few-shot training could also be considered an artifact. Under this
paradigm, we posit that new and similar issues may emerge in the handling of
such artifacts. We ask: what kinds of new issues may emerge, and how could
current state-of-the-art still apply to new types of artifacts?

State of the art: In current software development practice of Infrastructure
as Code (TaC), everything that is created and put into operation during software
development (library dependencies, source code, test cases, production metrics,
software bill of materials (SBOMs) etc.) should be considered an artifact treated
similarly to code. Additionally, there are already examples of leveraging code
developed by others that must be trusted, for example with library usage or
reuse of code from Stack Overflow. However, developers are currently generating
parts of their programs using LLMs, but not recording which parts, or what
input was provided to generate that part.

Open Challenges: Key challenges include:

e As new artifacts arise from the usage of LLMs, should versioned data
like prompts, and few-shot learning examples become artifacts that are
persisted?

e To what extent will these new artifacts impact program comprehension
and team collaboration?

e “The context is the king.” A kind of issue could be related to the difference
between the expected code and the generated one. There is a new trade-off
between the context size and costs.

e Nondeterminism of LLMs is an issue that hinders the reproducibility of
the results.

e Will students go from “zero to hero” if learning basic concepts is becoming
less and less relevant?

e Will we have a major software crisis due to developers strongly relying on
LLMs, which will eventually not have new code to learn from?

e What are the effects of LLMs on developer-to-developer communication?

e Some developers do not like Copilot because it changes their job from
designing code to reviewing code; what impacts will LLMs have on how
developers see their jobs?

e What are the effects of LLMs as personal tutors on education?



Proposed solutions:

e In a world where code is fully developed by machines, software quality, e.g.,
comprehensibility, could radically change. Think about bytecode quality.
However, code could also be developed hybrid, e.g., using LLMs to code
methods, write test cases, and document code portions.

e We need to educate students on the pros and cons of using LLMs to deliver
SE tasks.

Breakout 2 - Dynamic Analysis, GenAl and vice versa

Participants: Takashi Ishio, Takashi Kobayashi, Yutaro Kashiwa, Hideaki
Hata, Akond Rahman, Mahmoud Alfadel, Csaba Nagy

Context: How can we make use of LLMs for dynamic analysis problems such
as debugging and log analysis? (Al for dynamic analysis) How can we make
use of dynamic analysis for analyzing generated code? (Dynamic analysis for
AT) Note that dynamic analysis for the development of generative Al is out of
scope.

State of the art: Established dynamic analysis problems are now being repli-
cated with generative Al. We learned about prior work that has used generative
AT that involves dynamic execution of software artifacts as follows.

e Debugging: LLM is employed to automate fault diagnosis tasks. The ac-
curacy of fault diagnosis by ChatGPT can be improved by using program
execution traces in prompts [5].

e Crash report analysis: LLM is employed to analyze the root cause of a
crash in code and environment and automatically fix the problem [6-8].

e Obfuscation detection: LLM is employed to detect the location of the
TADA (anti-dynamic analysis) implementation in the code, to help reverse
engineers place breakpoints used in debugging [9].

e Log parsing and anomaly detection: LLM is a promising tool to automat-
ically parse log messages [10]. It is also applied to log anomaly detec-
tion [11].

e Fuzzing: LLM is also employed as a Fuzzer to analyze the behavior of a
program [12,13].

e Assessment of generated code: A study compared the performance (speed
and memory consumption) of generated code with those of human-written
code and reported that some of generated codes had performance prob-
lems [14].



Open Challenges: Comprehension is more important for generated source
code. Dynamic information can help in supporting related tasks. The discussion
identified open challenges as follows:

e How can we analyze generated code? It might be incomplete.

e How can we understand the behavior of generated code? The generated
code itself might be difficult to understand.

e How can we deal with large execution traces for LLMs? How can we
summarize execution traces so that LLMs and developers can understand?

Breakouts 2 - Developer’s Interactions and Anti-Patterns:

Participants: Moritz Beller, Kelly Blincoe, Shinpei Hayashi, Chaiyong Ragkhitwet-
sagul, Fabio Palomba, Valeria Pontillo, Thomas Zimmermann

Context: After discussing the proposed solutions of the session Human-In-
The-Loop, we observed that in some phases of software development, i.e., Re-
quirements Engineering and Design Phases, developers are required to maintain
a higher level of focus compared to other phases. This raises questions about
the ideal level of involvement throughout the process: should it remain consis-
tent, or should it adapt based on the phase? Developers must also understand
how their engagement levels should change in response to varying demands of
the development lifecycle. Additionally, the interaction between developers and
Generative Al could introduce new socio-technical challenges, such as redefining
anti-patterns and assessing their implications on trust and collaboration.

State of the art: Traditional anti-patterns, often aligned with code smells,
primarily target functional aspects of the generated code. However, in the
context of Gen Al, anti-patterns extend beyond traditional definitions to in-
clude non-functional requirements, such as usability, security, and performance.
Current research has yet to explore specific anti-patterns related to Large Lan-
guage Models (LLMs), particularly those emerging from the interaction between
developers and Al systems. Existing tools focus on code smell detection, bug
identification, and defect prediction but do not adequately address anti-patterns
specific to LLM-generated artifacts or their socio-technical implications.

Open challenges: Key challenges include:

e Defining anti-patterns specific to LLMs, not limited to code but encom-
passing non-functional requirements.

e Establishing trust metrics based on these anti-patterns.

e Detecting and addressing anti-patterns in the interaction between devel-
opers and Gen Al systems.

e Managing the inherent non-determinism of LLM outputs, which compli-
cates the consistent identification of issues.

10



e Developing metrics to assess prompt quality, such as length, entropy,
grammar, structure, and atoms of confusion.

e Integrating these metrics into a framework capable of analyzing both
prompts and responses for anti-patterns.

Proposed solutions: We propose a two-layered framework for analyzing and
mitigating anti-patterns:

1. Developer-to-LLM Layer: This layer focuses on prompt verification to
identify anti-patterns within the input. Basic metrics, including NLP
metrics (length, entropy, grammatical accuracy, and structural coherence),
as well as atoms of confusion, will be computed to assess prompt quality.

2. LLM-to-Developer Layer: This layer evaluates the LLM’s responses for
anti-patterns. Techniques such as code smell detection, bug prediction,
defect analysis, and security assessments will be employed to measure the
quality and reliability of the generated output.

Breakouts 3 (Concrete Ideas)- Emergence of Policy as Code
in the Era of Infrastructure Automation

Participants: Mahmoud Alfadel, Akond Rahman, Coen De Roover, Yutaro
Kashiwa, Raula Gaikovina Kula

The discussion centered on the potential of Policies as Code (PaC) to en-
hance the management and automation of software infrastructure configuration.
PaC encodes governance rules (e.g., compliance, resource limits, and access con-
trol) as executable code, allowing automated enforcement and validation. This
research initiative aims to explore the capabilities, adoption, and challenges of
PaC within infrastructure configuration.

Research Focus

e Understanding PaC Adoption: How widely are PaC tools (e.g., Open
Policy Agent, HashiCorp Sentinel) used in real-world projects? What
types of policies (security, compliance, optimization) are most common?

e Analyzing Policy-Configuration Interactions: How do configuration
changes impact defined policies? Can patterns in policy violations or
updates be systematically mined?

e Challenges in PaC Development: What are the technical and organi-
zational barriers to adopting PaC? How can policy drift and ambiguities
in translating intent to code be addressed?

Proposed Research Methodology

e Empirical Study of PaC Projects: Survey open-source projects that
use PaC tools to understand adoption patterns, policy types, and valida-
tion practices.

11



e Data Mining for Policy Insights: Analyze repositories for change
patterns in policies and their associated configurations. Identify trends in
policy violations, updates, and their impact on system stability.

e Prototyping and Tool Enhancement: Develop prototypes to auto-
mate policy generation and validation, integrating with tools like Kuber-
netes or Terraform. Explore LLMs for policy recommendation and conflict
detection.

Challenges and Opportunities

Challenges: Policy drift, ambiguity in policy definition, and scalability in dy-
namic systems.

Opportunities: Automating policy creation, aligning configurations with gov-
ernance standards, and integrating PaC into DevOps pipelines.

Next Steps

e Conduct a survey of open-source projects using PaC tools to gather in-
sights on practices and challenges.

e Develop benchmarks to evaluate PaC tools in terms of effectiveness and
coverage.

e Initiate a case study to observe policy evolution and its impact in real-
world infrastructure projects.

Expected Outcomes: This research will establish a foundational under-
standing of PaC for infrastructure configuration to enhance its adoption and
reliability in modern software systems.

Breakouts 3 (Concrete Ideas) - The Role of Al in the Soft-
ware Development Cycle

Participants: Daniel German, Moritz Beller, Shane McIntosh

Context: When discussing Al and its impact on software development, con-
versations often suffer from misunderstandings that impede progress. Terminol-
ogy is highly generic, which inherently creates confusion.

State of the art: While some research has explored the past state and future
roadmaps of Al-supported Software Engineering (SWE), these studies have fo-
cused on isolated examples and far-future projections. We argue that significant
progress has been made in the field in the last two years, having begun to trans-
form SWE profoundly. At the same time, despite this momentum, we contend
that SWE will not be entirely dominated by Al in the near or mid-term future.

e https://arxiv.org/pdf/2410.20791

e https://arxiv.org/pdf/2410.06107

12



e https://dLacm.org/doi/abs/10.1145/3663529.3663849

e https://iceexplore.ieee.org/stamp/stamp.jsp?arnumber=9360852

Open challenges: In this discussion group, we set out to tackle this challenge
by (a) providing a framework to structure thinking and (b) creating a common
nomenclature.

Proposed solutions: We propose to align discussions along the following
dimensions:

e Stakeholders

— Traditional software stakeholders plus. ..
— Model creators

— Model operators

— Al itself

e Agency

— Who initiates?
x Al itself
* Developer
x User

— Who approves Al decisions?

x Al itself
* Developer
* User

— Stage of software cycle

— Interaction with the Al: The actions of an AI can be classified in two
major dimensions:
x Interaction trigger: what initiates the actions of the Al

% Agent initiated (the AI is continuously running and deciding
when to act)

* Developer initiated
* End-user initiated: this can only occur at run-time when the
End-user is in control
* Interaction type:
- No-human-in-the-loop: once started, the AI does not need
any
- interaction with the human (request, or approval)
- Explicit-request. A human makes a explicit request via either
an API or a prompt
- Implicit-request: The Al is observing the actions of the hu-
man and suggests actions that need to be approved by the
human.

13



— Size of the intervention

*

Program

*

Component
Function
Statement

*

*

AT as a component: Software will continue to be component based. Al will
be instantiated in software systems (during development and during run-time)
via components with clear interfaces. In a way, this is a natural evolution from
Agent components.

AT components will greatly increase the challenges present in Component
and Agent-based software engineering. For example:

e A component requires an interface: input/output

— Prompts vs traditional APIs

— Text output vs structured output
e Al components are non-deterministic in nature

— They are expected to make errors
* how do we assess their quality?
% Short term and long term stability (do they behave the same
over time)?
* Versioning

e Components will be used by different stakeholders:

— Software developer

— End-user, and this affects the state of the software development
e Who operates the models:

— Where does the model run?

x As part of the end-user application?

% As a service (running remotely and connected to the end-user
application using the Internet)

— When the model is operated by a different entity,

* What is the service contract? Quality? Cost? Intellectual prop-
erty issues?

— Retraining issues

Breakouts 3 (Concrete Ideas) - In Search for Metrics for
Prompt Quality Assessment

Participants: Gemma Catolino, Shinpei Hayashi, Csaba Nagy, Chaiyong Ragkhitwet-
sagul, Brittany Reid, Fabio Palomba, Valeria Pontillo, Thomas Zimmermann

14



Context: The discussion highlighted the need to create and propose tailored
metrics for evaluating developers’ interactions with LLMs. This involves LLMs
outputs at different phases of project development, recognizing that challenges
such as antipatterns may impact entire conversations or isolated parts of them.
This research opens an avenue for further exploration, particularly in under-
standing the granular effects of such antipatterns on LLM-generated content.

State of the Art: There is limited research on tailored metrics to evaluate
developer interactions with LLMs, particularly across different phases of project
development. The DevGPT dataset [15], which links prompts to responses,
offers a foundational resource for such evaluations. Natural language processing
(NLP) techniques, such as those used in readability studies, unstructured text
mining, and quality assessments in requirements engineering, provide inspiration
for defining prompt and response metrics. In software engineering, established
metrics like code smells and technical debt indicators are commonly used to
assess code quality but are not yet systematically applied to LLM-generated
outputs.

Open Challenges: Key issues identified in the outputs generated by LLMs
include non-determinism, completeness, correctness, context limitations (such
as forgetting information or missing links in multi-interaction scenarios), and the
overall amount of detail and quality of the responses. These problems highlight
the importance of evaluating both prompts and responses systematically and
comprehensively. The discussion revolved around this point.

Proposed Solutions: A proposed preliminary study would focus on individ-
ual prompt-level analysis to investigate whether specific textual patterns influ-
ence the quality of responses. Metrics to evaluate prompts could include size,
the number of common words, the number of code elements, cosine similarity (to
measure alignment with contextual prompts), readability, vocabulary richness,
typos, abbreviations, and the presence of identifiable prompt patterns. Inspira-
tion for these metrics could be drawn from natural language processing (NLP)
techniques, such as those used in readability studies, unstructured text min-
ing, and requirements engineering quality research. The DevGPT dataset [15],
which includes connections between prompts and responses, offers a practical
foundation for this analysis. For measuring responses, the discussion suggested
metrics to assess completeness (e.g., examining comments in pull requests), cor-
rectness (e.g., comparing generated code to actual code), and the amount of
detail (e.g., size, number of comments). Quality could be further evaluated
through established metrics for software quality, such as code smells and tech-
nical debt indicators. This approach, leveraging the DevGPT dataset and a
combination of NLP and software engineering metrics, aims to systematically
assess the relationship between prompts and responses, providing insights into
optimizing LLM use for project development tasks.

In particular, once the quality attributes of prompts and the response at-
tributes have been measured, a statistical analysis is envisioned to explore their
relationship. In this analysis, quality attributes of prompts will be treated as
independent variables, while response attributes will serve as dependent vari-
ables. To address the non-deterministic nature of LLMs, prompts will be exe-

15



cuted multiple times so differences in responses can be computed to understand
variability and reliability. The statistical analysis will incorporate variations in
quality attributes, achieved through prompt mutations. This iterative approach
aims to capture the effects of prompt quality on the consistency, completeness,
and correctness of responses over multiple iterations, offering a framework for
evaluating and improving the use of LLMs in software development tasks.

A potential follow-up study is to investigate the effects of the changes that
are made to the prompts, while still preserving the prompt’s intention, on the
quality of the responses. The results from the previous phase can be used as the
baseline for comparison. Some of the text perturbation techniques introduced
by Ribeiro et al. [16] can be adopted, such as negation, robustness (swapping
characters to create typos), and vocabulary (i.e., replacing words by their syn-
onyms). By submitting the perturbed versions of the prompts, we can identify
modifications that positively impact the quality of the prompt responses. The
findings from this study can lead to an automated prompt-improving technique
or tool.

Breakouts 3 (Concrete Ideas) - LLMs for Specification Gen-
eration

Participants: FEarl Barr, Takashi Kobayashi, Hideaki Hata, Joao F. Ferreira,
Dario Di Nucci, Takashi Ishio

When available, specifications precisely document code and allow us to au-
tomatically prove properties of our code. Despite their value, developers rarely
write them. We posit that this is due to the cost of writing them. LLMs are
already revolutionising development; here, we ask whether the LLM revolution
will extend to specification writing by reducing their cost.

We will start by identifying which specification languages LLMs generate
candidate specifications that speed a developer’s creation of a “good enough”
specification. We apply the “good enough” principle because specifications will
vary by task and context. The LLM’s candidate specifications could even be
incorrect or arbitrarily imprecise because our goal is to produce candidate spec-
ifications that will speed developer’s formulation of the specification. In short,
we view LLMs as bicycles for the mind, as tools to speed and augment, not
replace, human reasoning.

On languages which appear frequently in pretraining data, LLMs repeatedly
demonstrate shockingly effective performance on many tasks. On languages for
which we lack data and resources, LLMs tend to fall short of this high bar. These
languages are low-resource languages. Because developers tend not to write
specifications, it is not clear whether specification languages are low-resource
languages. We aim to answer the research question: Which specification lan-
guages are low-resource languages?

There are many axes along which to answer this question. We will focus our
inquiry on three axes: specification languages, input type and granularity, and
formality of the specification language. LLMs are omnivorous: they consume
and produce arbitrary sequences. Of the many input types and granularities
LLMs can consume, we will start with code and its natural granularities — i.e.,
file, method, and loop. Specification languages vary widely in formality, from
coarse-grained weak-type systems to rich program logics. Along this axis, we

16



look to establish a correlation between the features of specification languages and
their data availability. Specifically, are low-resourced specification languages
more expressive or more strict?

This is a programme. It will start empirically, as sketched above, to get the
lay of the land. Promising directions include:

All LLM work suffers from a largely unacknowledged, validity threat: that
the test data has already appeared in the pretraining data, so that per-
formance is due to memorisation, not interpolation. We will develop new
techniques to generate valid code not present in pretraining data.

User studies to understand to what extent the proposed solution facilitates
developers in writing formal specifications at different levels of granulari-
ties.

Empirical studies aiming to analyse the effectiveness of LLM-based spec-
ification generation for property-based testing and other applications.

Case studies to verify to what extent the automated generation of the
formal specification can be employed in the context of smart contract
development in Solidity, eventually featuring industrial use cases.

Building tooling that leverages our empirical findings. For example, if
we identify code features that correlate with LLMs effectively generating
specifications for that code, we could build a classifier that enables us to
apply LLMs only to such code.

Support methods based on the generated specifications, such as leveraging
the generated specifications as input for automated test generation.

Next Steps: We will schedule regular meetings to progress this project.
We will work to identify relevant funding sources for this research programme
across Portugal, Italy, the United Kingdom, and Japan, e.g., JSPS International
Joint Research Program, JST ASPIRE, EU MSCA Doctoral Networks, Horizon
Europe.

17



Summary of discussions and new findings

One clear finding is that Large Language Models (LLMs) are here to stay (evi-
dent by the large portion of the plenary session discussing its usage), becoming
integral to software development and other domains. While there is some push-
back regarding their widespread adoption—driven by concerns over trust, ethics,
and over-reliance—there remains significant research and practical work outside
the realm of generative Al. For instance, issues like mis configuration and its
management continue to demand attention, highlighting that not all advance-
ments hinge on LLMs or generative Al disruption. These areas underscore the
need for a balanced focus across traditional and emerging challenges in the field.

The discussions encompass a range of critical topics in software development.
These include Antipatterns and Defects in Configurations, examining recurring
configuration mistakes; Human-In-The-Loop for New Dynamics in Software Cre-
ation, addressing the balance of innovation with risks like technical debt and
anti-patterns; and Program Analysis: Present and in the Future, focusing on
evolving techniques to address both traditional and emerging challenges. Ad-
ditional topics explore New Artifacts, Old Bugs, highlighting the persistence of
longstanding issues in the context of generative AI; Dynamic Analysis, Gen-
erative Al and Vice Versa, delving into the mutual influence between these
technologies; and Developer’s Interactions and Anti-Patterns, investigating the
role of developer behaviors in shaping software quality. Four potential concrete
research ideas that arose from this meeting is as follows:

Potential for studying Policy as Code.

Investigate the role of Al in the Software Development Cycle.

Software Quality Assurance applied to Prompting of generative Al tech-
nologies.

Formal Specifications applied to LLMs and other generative AI technolo-
gies.

Participants drew inspiration from various concept designs and understand-
ing how the developer would interact with an LLM to get suggestions. Thus
anti-patterns and defects may also creep into the new artifacts now that include
both the prompt and the outputted code.

Identified points of collaboration and future di-
rections

e Large Language Models are here to stay! The Era of LLMs has arrived,
reshaping the developer workspace whether experts like it or not. This is
evident from the fact that three out of four proposed research topics are
related to generative Al

e Anti-patterns and defects will persist. Experts agree that traditional re-
search topics, such as anti-pattern and defect detection for software quality
assurance, remain crucial. While these issues may evolve in the future, the
core problems researchers must address remain fundamentally the same.

18



Participants will continue to work on collaborations via the communication
channel (discord). All participants agreed to add the Shonan 207 meeting as
acknowledgment in future publications. The discussion points from this report
may be extended for an article that could be uploaded as an arxiv technical
document.

References

[1] Foutse Khomh, Massimiliano Di Penta, Yann-Gaél Guéhéneuc, and Giu-
liano Antoniol. An exploratory study of the impact of antipatterns on class
change- and fault-proneness. Empirical Softw. Engg., 17(3):243-275, June
2012.

[2] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massi-
miliano Di Penta, Andrea De Lucia, and Denys Poshyvanyk. When and
why your code starts to smell bad (and whether the smells go away). IEEE
Trans. Softw. Eng., 43(11):1063-1088, November 2017.

[3] S. Hangal and M.S. Lam. Tracking down software bugs using automatic
anomaly detection. In Proceedings of the 24th International Conference on
Software Engineering. ICSE 2002, pages 291-301, 2002.

[4] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano,
Rocco Oliveto, and Andrea De Lucia. On the diffuseness and the impact
on maintainability of code smells: a large scale empirical investigation.
Empirical Softw. Engg., 23(3):1188-1221, June 2018.

[5] Takafumi Sakura, Ryo Soga, Hideyuki Kanuka, Kazumasa Shimari, and
Takashi Ishio. Leveraging execution trace with chatgpt: A case study
on automated fault diagnosis. In 2023 IEEFE International Conference on
Software Maintenance and Evolution (ICSME), pages 397-402, 2023.

[6] Maroa Mumtarin, Md Samiullah Chowdhury, and Jonathan Wood. Large
language models in analyzing crash narratives — a comparative study of
chatgpt, bard and gpt-4, 2023.

[7] Priyanka Mudgal, Bijan Arbab, and Swaathi Sampath Kumar. Cra-
sheventllm: Predicting system crashes with large language models, 2024.

[8] Xueying Du, Mingwei Liu, Juntao Li, Hanlin Wang, Xin Peng, and Yiling
Lou. Resolving crash bugs via large language models: An empirical study,
2023.

[9] Haizhou Wang, Nanqging Luo, and Peng LIu. Unmasking the shadows: Pin-
point the implementations of anti-dynamic analysis techniques in malware
using llm, 2024.

[10] Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun Peter Chen, and
Shaowei Wang. LLMParser: An Exploratory Study on Using Large Lan-
guage Models for Log Parsing . In 202/ IEEE/ACM J6th International
Conference on Software Engineering (ICSE), pages 1209-1221, Los Alami-
tos, CA, USA, April 2024. IEEE Computer Society.

19



[11]

[12]

[13]

[15]

Wei Guan, Jian Cao, Shiyou Qian, and Jiangi Gao. Logllm: Log-based
anomaly detection using large language models, 2024.

Chungiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and
Lingming Zhang. Fuzz4all: Universal fuzzing with large language models.
In Proceedings of the IEEE/ACM 46th International Conference on Soft-
ware Engineering, ICSE 24, New York, NY, USA, 2024. Association for
Computing Machinery.

Yinlin Deng, Chungiu Steven Xia, Haoran Peng, Chenyuan Yang, and
Lingming Zhang. Large language models are zero-shot fuzzers: Fuzzing
deep-learning libraries via large language models. In Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2023, page 423-435, New York, NY, USA, 2023. Associa-
tion for Computing Machinery.

Sila Lertbanjongngam, Bodin Chinthanet, Takashi Ishio, Raula Gaikovina
Kula, Pattara Leelaprute, Bundit Manaskasemsak, Arnon Rungsawang,
and Kenichi Matsumoto. An Empirical Evaluation of Competitive Pro-
gramming Al: A Case Study of AlphaCode . In 2022 IEEE 16th Interna-
tional Workshop on Software Clones (IWSC), pages 1015, Los Alamitos,
CA, USA, October 2022. IEEE Computer Society.

Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. De-
vGPT: Studying developer-chatgpt conversations. In 202/ IEEE/ACM 21st
International Conference on Mining Software Repositories (MSR), pages
227-230. IEEE, 2024.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh.
Beyond accuracy: Behavioral testing of NLP models with CheckList. In
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors,
Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4902-4912, Online, July 2020. Association for
Computational Linguistics.

20



