
ISSN 2186-7437

NII Shonan Meeting Report

No. 205

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Formal Method Extensions to Support Domain
Theories

Marc Frappier
Fuyuki Ishikawa

Régine Laleau

November 13–16, 2023



Formal Method Extensions to Support Domain Theories

Organizers:
Marc Frappier (University of Sherbrooke, Canada)

Fuyuki Ishikawa (National Institute of Informatics, Tokyo, Japan)
Régine Laleau (University of Paris-Est Créteil, France)

November 13–16, 2023

BACKGROUND AND INTRODUCTION

The development of complex systems usually requires multi-view modelling when the systems in-
volve different scientific disciplines and skills [1]. For instance, in the case of autonomous systems,
modelling behaviours and interactions of different systems may require control theory concepts, com-
munication protocols, resource allocation, access control rules, time constraints, etc.

However, handling critical complex models related to different engineering domain areas involves
modelling concepts that are not explicitly available nor supported by a single formal method. Exam-
ples of such domain-specific concepts are reals and continuous functions, classes, and more generally
new types with associated operators and properties. Their formal definitions require to start from
the core concepts of formal methods i.e. from discrete maths, set theory, category theory, logic and
basic arithmetic. This modelling chain could be possible with most of the existing formal methods
but it is cumbersome and makes the proof difficult to carry, because of all the details of the encod-
ing of domain-specific concepts in their underlying theory. Moreover, the explicit semantics of these
domain-specific concepts are lost by this modelling [2], which makes their reuse not directly possible.

A solution for specifying domain theories consists in using extension mechanisms available in
most of existing formal methods. We can cite for instance contexts or theories or species like in Event-
B [3], COQ[4], Isabel/HOL[5], Dedukti[6], Nuprl[7], ASM[8], etc. Thus defining a domain theory
may consist in specifying data types and their properties, operators to manipulate them with well-
definedness conditions that ensure their correct use, axioms and proved theorems. Consequently, in a
system to be developed, the domain theory is used to type specific concepts that can be manipulated
only by its operators, provided that the well-definedness conditions are satisfied. Theorems defined
in the domain theory can be reused in proofs related to the system to be developed. Domain theories
offer a more faithful and encapsulated representation of domain concepts, streamlining the reuse
of these concepts when building system models, and facilitating their specification, validation and
understanding.

OBJECTIVES

The objective of the meeting was to discuss the state of the art advances in the definition of domain
theories in formal methods. It builds on the results obtained since the 2016 Shonan Meeting 90 on
“Implicit and explicit semantics integration in proof based developments of discrete systems” 1. We
wanted to evaluate the main achievements and identify outstanding challenges. Indeed, although
the approaches discussed in Meeting 90 made notable impacts, some limitations are identified. The

1https://shonan.nii.ac.jp/docs/No-090.pdf

1

https://shonan.nii.ac.jp/docs/No-090.pdf


previous approaches supported modeling by the means of ontology or annotations, thus focusing on
understanding and description. They did not support domain-specific verification such as proof reuse
and recurring proof patterns. This is critical since there is an increasing demand for dependability of
cyber-physical systems, which requires complex verification over continuous systems. Then a better
understanding of how to formalise domain knowledge in order to efficiently exploit it in comprehen-
sive verification mechanisms is needed.

The following topics were addressed during the presentations and discussions.

• Experiments on using extension mechanisms of formal methods to define domain theories.
• Experiments on using domain theories, defined using extension mechanisms, in the formal de-

velopment of complex models. Note that formal development not only includes system specifi-
cation but also verification of system properties. Among others, case studies showing the reuse
of domain theories in the development of various complex systems, the feasibility of multi-view
modelling in a single formal framework, etc.

• How to handle the semantic heterogeneity that can occur if different domain theories have to
be integrated to develop a complex system? In particular, domain knowledge can be twofold:
domain knowledge related to scientific data types, like differential equations and time repre-
sentation, and domain knowledge related to application domains of systems under design, for
example imperial or metric units, railway protocols or International Civil Aviation Organization
regulations. It may happen that theories related to scientific domain knowledge are formalised
in a logic different from the one used in theories related to application domain knowledge. How
can these different semantics be aligned?

• How to ensure that the extension mechanism used to import specific domain theories is sound?
• How to handle domain theory validation?
• How to address proof certification issues as heterogeneous proofs may appear due to the use of

different proof systems adapted to specific theories?

OVERVIEW OF THE MEETING

The meeting had three types of sessions. The first type of sessions had short presentations where each
participant introduced their research work, and listed some ideas/challenges/research directions that
they would like to discuss during the meeting. Such presentations have been scheduled during the
first session of the first day of the meeting.

The second type of sessions consisted of invited talks on some of the above described topics, each
of them has given rise to stimulated, often animated, discussions between the participants. This type
of sessions has been scheduled during the following sessions of the first day and the first session of
the second day.

The last type of sessions consisted in intensive discussions among sub-groups of participants. The
topics of the discussions have been decided at the meeting among those proposed by participants.
A debriefing plenary session was set up after the end of each sub-group discussion session. These
debriefing sessions consisted in two steps 1) first, a summary of the discussions of each sub-group
and 2) free discussions among all the participants of the seminar.

Finally, we sorted out a research agenda for formal method extensions to support domain theories,
including a planning of a book.

2/14



OVERVIEW OF TALKS

APP DESIGN WITH ALLOY

Alcino Cunha, INESC TEC and Universidade do Minho Braga Portugal

In his book “The Essence of Software”, Daniel Jackson introduced a new theory of software design,
where applications are viewed as a collection of interacting so-called concepts, self-contained units of
functionality with a clear purpose. This talk showed how Alloy can be used both in the formal design
of individual concepts and of applications. For the former, the Alloy module system and a simple
state machine idiom can be used to formalize, validate. and verify reusable concepts. For the latter,
the desired interaction between concepts can be formalized with action synchronization assumptions
specified using Alloy’s temporal logic. The talk concluded with a brief discussion about the current
limitations of Alloy for formal design in this particular domain.

GENERIC CONTEXT INSTANTIATION FOR MODELING PURE MATHS

Laurent Voisin, Systerel, France
Main work performed by Jean-Raymond Abrial and Dominique Cansell

A new plugin has been developed within the Event-B-Rodin Plus project (grant ANR-19-CE25-
0010 from Agence Nationale de Recherche) which allows proving mathematical theorems within the
Rodin platform. It is named the Generic context instantiation plugin. The idea of this plugin is to
allow users to enter definitions of new concepts, to prove theorems about these definitions (e.g., in-
teresting properties of the introduced concept) in an Event-B context. Then, both the definitions and
their associated properties can be reused in another Event-B context by instantiating the defining
context. This permits users to create more and more elaborate concepts and to prove important theo-
rems in pure mathematics. Therefore, this plugin is a good means to formalize pure mathematics and
reason about them.

For instance, the plugin has been successfully used to prove the following theorems:

• Zermelo’s theorem (every set can be well-ordered)

• Goodstein’s theorem (every Goodstein sequence eventually terminates at 0)

• Construction of the real numbers from integers (Eudoxus reals)

Other case studies have been attempted with this plugin, but it did not work as well as for maths.
The main reason is that in computer science, in their models, one often uses inductive datatypes,
which are awkward to model with the generic context instantiation plugin. The Theory plugin is then
more appropriate for these other domains.

USING DEEP ONTOLOGIES IN FORMAL SOFTWARE ENGINEERING

Burkhart Wolff, Université Paris-Saclay, LMF, France

Isabelle/DOF is an ontology framework on top of Isabelle. It allows for the formal development of
ontologies as well as continuous conformity-checking of integrated documents annotated by ontolog-
ical data. An integrated document may contain text, code, definitions, proofs, and user-programmed
constructs supporting a wide range of formal methods. Isabelle/DOF is designed to leverage trace-
ability in integrated documents by supporting navigation in Isabelle’s IDE as well as the document

3/14



generation process. In this talk, we extend Isabelle/DOF with annotations of λ-terms, a pervasive
data-structure underlying Isabelle used to syntactically represent expressions and formulas. Rather
than introducing an own programming language for meta-data, we use Higher-Order Logic (HOL)
for expressions, data-constraints, ontological invariants, and queries via code-generation and reflec-
tion. This allows both for powerful query languages and logical reasoning over ontologies in, for
example, ontological mappings. Our application examples cover documents targeting formal certifi-
cations such as CENELEC 50128, or Common Criteria.

FORMAL SEMANTICS FOR STATECHARTS (A CASE FOR DOMAIN THEORY)

Son Hoang, University of Southampton, UK

The increased complexity of high-consequence digital system designs with intricate interactions
between numerous components has placed a greater need on ensuring that the design satisfies its
intended requirements. This digital assurance can only come about through rigorous mathematical
analysis of the design. In this presentation, we provide an approach to formalise statecharts semantics
using Event-B, with a discussion about the potential application of using the Theory plugin to develop
a domain-theory for statecharts.

TIME: IT IS ONLY LOGICAL!

Frédéric MALLET, Université Côte d’Azur, CNRS, Inria, I3S, France

Logical Clocks play an important role for the design and modelling of concurrent systems. The
Clock Constraint Specification Language (CCSL) was built in 2009, as part of an annex of the UML
Profile for MARTE, to give a proper syntax to handle logical clocks as first class citizens. The syntax
gave rise to a series of different semantic interpretations along with various verification tools. Use-
cases are diverse and include languages to express timing requirements, temporal or spatio-temporal
logics to capture expected safety properties, meta- languages to give an operational semantics to
domain-specific languages. The application domains include avionics, safety-critical transportation
systems, self-driving vehicles, systems engineering models, cyber-physical systems. This paper re-
views the effort conducted since 2009 on CCSL. Researchers there found inspiration in the heritage
left by the different schools working around the world on concurrency theory, including the school of
synchronous languages from which CCSL has emerged.

TOWARDS A SEMANTIC FRAMEWORK FOR DOMAIN THEORY

Elvinia Riccobene Università degli Studi di Milano, Italy
Patrizia Scandurra Università degli Studi di Bergamo Italy

This talk targets a better understanding of how to support domain-specific theory in Formal Meth-
ods (FMs) taking inspiration from ontology engineering. Ontologies are semantic data models for
knowledge representation; a formal ontology consists of a set of axioms in some logical language.
Automatic reasoning over ontologies allows inferring new knowledge about the underling domain.
Ontological engineering has been developed with the goal of reusability (ontology patterns), integra-
tion (merging ontologies from different domains), and interoperability (translating among multiple
ontologies from the same domain). A FM consists of a modeling notation (with semantics) and a com-
putational model to capture system behavior. Making similarities with ontology engineering, formal

4/14



models are data and behavior models for system representation. Reasoning problems with FMs (such
as proofs of properties) incorporate domain theories as well as proof strategies/procedures. However,
FM extensions engineering for domain theories to achieve reusability (formal analysis patterns), inte-
gration (merging system models from different semantic domains), and interoperability (translating
among multiple formal models from the same semantic domain) are needed. Towards the achieve-
ment of such ambitious goals, we present two (correlated) results we achieved in the past that could
be possible starting points for realizing extension mechanisms of FMs in support of domain theory.

First, we recall the definition of a semantic framework for the definition of the semantics of metamodel-
based languages based on the ASMETA toolset for Abstract State Machines (ASMs). Using metamod-
elling principles, we propose several techniques, some based on the translational approach while
others based on the weaving approach, all showing how the ASM formal method can be integrated
with current metamodel engineering environments to endow language metamodels with precise and
executable semantics. In the past, we have applied this semantic framework and the supported tech-
niques to languages of different application domains. Second, we recall an existing classification
of forms of model composition: white- (or model composition), black- (or result composition), and
grey- box (analysis composition) composition. The white-box approach is the model composition
by language integration (i.e., the definition of a new language from a set of individual languages,
for example, by metamodel unification or weaving. Black-box composition is the composition of the
analysis results; models internals remain encapsulated, only explicitly defined interoperability inter-
faces are used to access the target analysis and translate back the results. Grey-box composition is the
composition of the analysis techniques by orchestrating the steps of two or more analysis algorithms
(e.g., composition by co-simulation); internal knowledge of models may be partially exposed through
interfaces to guide the coordination. Based on such preliminary considerations, as future lines of re-
search we envisage the need to explore more the concept of extension mechanism of FMs for explicit
domain theories definition and composition, and to understand more how to handle semantic hetero-
geneity and reuse of domain-specific V&V strategies.

USE OF DOMAINS IN CORRECT-BY-CONSTRUCTION PROCESS

Dominique Méry, Université de Lorraine, LORIA, France

The design of correct software based systems requires mathematical verification techniques. These
techniques are based on general proof principles, such as induction, and are supported by tools of
varying effectiveness, as model-checkers or proof assistants, or by semantical analysis techniques,
such as abstract interpretation. Formal techniques or formal methods are generally applied in a
posthoc way on the contrary of Correct-by-construction techniques. Correction-by-construction is
a method that aims to design both the system in question and its correctness. This method has been
assessed and tested in the Cleanroom technique, and we are pursuing this idea by using the incre-
mental design process by refinement.

We present a proposed implementation of this method, illustrating the use of induction to reduce
proof effort and to guide the refinement of Event-B models to derive a correct recursive sequential
algorithm based on the call-as-event paradigm. This example shows that induction is an important
element of a (problem) domain. Other examples show that the problem domain is an element to
be taken into account to facilitate proofs of conditions associated with refinement. A second aspect
of this notion of domain is linked to the validation of models integrating domains to model hybrid
systems. The role of domain theory as promoted by Dines Bjorner is to provide a communication of

5/14



domain knowledge while developing system models and each step of so called refinement should be
both verified and validated.

WELL-DEFINEDNESS CONDITIONS ARE USEFUL FOR INVARIANTS PRESERVATION

Yamine Aït-Ameur, ENSEEIHT - IRIT, Toulouse, France

The objective of the presented work is to show how formal methods can be extended in order to
handle externally defined data types formalised as algebraic theories. We rely on the Event-B state-
based formal method which proved powerful to formalise complex systems and on its extension
feature offered by the capability to define new data-types.

The proposed approach is based on the definition of new data types and the associated operators.
Each operator introduces well-definedness conditions which generate specific proof obligations each
time this operator is used. In addition, these data-types are enriched by once and for all proved
theorems, proof and rewrite rules useful to prove the correctness of the models (state-based transition
models) that use these data-types.

This approach has been applied to model hybrid systems, knowledge-based systems and ontolo-
gies, interactive systems, railway systems etc.

During this seminar, we focus on the reuse of the proposed approach and give methodological
rules that help the designer to make use of externally defined data-types in order to extend the formal
modelling language with so called “invited semantics”.

COMPOSING SOFTWARE BEHAVIORS

Marc Frappier, Université de Sherbrooke, Canada

Algebraic State-Transition Diagram (ASTD) is a graphical notation that allows for the combination
of extended hierarchical state machines with process algebra operators. Its process algebra opera-
tors, inspired from CSP, allows for easy composition of software behavior using traditional operators
like sequence, choice, iteration, synchronization (weak, à la AND-state of statecharts, and strong, à
la CSP’s parallel), and timing operators as in timed CSP. Its Statecharts-like state machines allow for
a graphical representation of software behavior, making explicit the control flow of a software. State
variables can be locally declared, allowing for shared-variables communication between ASTD com-
ponents. Actions can be specified on transitions to modify state variables that are locally declared.
Actions can be declared at any level in an ASTD, allowing for behavior factorisation. Refinement
relations were proposed for ASTD, in the traditional style of refining states or transitions in a state
machine. Large case studies (eg, ABZ’s Landing Gear, Mercedes ELS and SCS, Mechanical Lung Ven-
tilator) have shown that interleaving composition in ASTD often corresponds to Event-B refinement
when new behavior based on introducing new state variables are introduced. A more comprehen-
sive theory for ASTD is needed to handle property proofs (invariant, temporal, time, refinement).
Invariant proofs have been recently defined for a subset of operators (choice, sequence, iteration).
Global properties should be derivable from local properties, in order to simplify proof construction
and re-use.

6/14



FORMAL MODELLING OF SAFETY ARCHITECTURE FOR RESPONSIBILITY-AWARE AUTONOMOUS VE-
HICLE VIA EVENT-B REFINEMENT

Tsutomu Kobayashi, Japan Aerospace Exploration Agency (JAXA), Japan
Fuyuki Ishikawa, National Institute of Informatics, Japan

For autonomous vehicles (AVs) to be accepted by society, the explainable and robust guaran-
tee of their safety is crucial. However, constructing rigorous models of AV controllers is complex,
particularly because they are expected to be safe, goal-achieving, and highperformance. In this
talk, we describe our work [9] on modelling, deriving, and proving the conditions for AVs’ safety
and goal achievement using the refinement mechanism of Event-B. Our method employs (1) RSS
(Responsibility-Sensitive Safety) [10], which defines the responsibilities of vehicles in basic traffic
situations, (2) GA-RSS (Goal-Aware RSS) framework [11], which extends RSS to derive conditions
necessary for safety and goal achievement, and (3) Simplex architecture [12], which can be used for
ensuring safety of controller including AI-based components. Our experience demonstrates that the
refinement mechanism can be effectively used for the gradual construction of the complex systems
for various traffic scenarios.

CHALLENGES IN ASSURANCE OF AUTOMOTIVE SYSTEMS

Mark Lawford, McMaster Center for Software Certification, McMaster University, Canada
Joint work with Nicholas Annable, Thomas Chiang, Richard Paige and Alan Wassyng

Automotive systems represent a previously unprecedented challenge in the development of safety
critical software. To be competitive in the marketplace automotive companies need to develop a sig-
nificantly large amount of safety critical, real-time software in a much shorter time frame than any
other industry. On a yearly basis automotive companies are delivering advanced autonomy and
electrification features that often incorporate Machine Learning (ML) components. Development is
further complicated by the numerous product lines and vehicle variants to have to be supported for
extended periods of time. In this talk I make the case that while ML based object detection has helped
to enabled autonomous driving features, the failure of these components is problematic and the cause
of the majority of autonomous vehicle accidents. Therefore we should be developing safety architec-
tures for object detection systems that incorporate a basic deterministic object detection algorithm
that is formally verified and then employed as safety monitor for the sensors used in object detection.
Another important aspect of assurance of automotive systems is the complex interaction of electrical,
mechanical and software to deliver vehicle level functions across a large product line that has to be
maintained over years of service. We illustrate the inherent complexity by examining a recall related
to vehicle ignition switches. We then propose our recently developed WorkFlow+ model based tech-
nique for managing incremental assurance as a method to help manage the complexity of assurance
of automotive systems.

7/14



LIST OF PARTICIPANTS

• Yamine AIT AMEUR, ENSEEIHT - IRIT, France

• Étienne ANDRÉ, Université Sorbonne Paris Nord, FRANCE, France

• Toshiaki AOKI, JAIST, Japan

• Alcino Cunha, INESC TEC and University of Minho, Portugal

• Clovis EBERHART, National Institute of Informatics, Japan

• Marc FRAPPIER, Université de Sherbrooke, Canada

• Frédéric GERVAIS, Université Paris Est Créteil, France

• Thai Son HOANG, University of Southampton, UK

• Fuyuki ISHIKAWA, National Institute of Informatics, Japan

• Tsutomu KOBAYASHI, Japan Aerospace Exploration Agency (JAXA), Japan

• Olga KOUCHNARENKO, Université de Franche-Comté, France

• Régine LALEAU, Université Paris Est Créteil, France

• Mark LAWFORD, McMaster University, Canada

• Frédéric MALLET, Université Côte d’Azur, France

• Dominique MERY, University of Lorraine, LORIA, France

• Elvinia RICCOBENE, University of Milan, Italia

• Patrizia SCANDURRA, University of Bergamo, Italia

• Jean-Pierre TALPIN, INRIA Rennes, France

• Laurent VOISIN, Systerel, France

• Burkhart WOLFF, Université Paris-Saclay, France

8/14



MEETING SCHEDULE

Check-in Day: November 12 (Sun)

• Welcome Banquet

Day1: November 13 (Mon)

• Presentation of the participants: one introduction slide per participant

• Talks and discussions on topics by participants

Day2: November 14 (Tue)

• Talks and discussions on topics by participants

• Group Photo Shooting

• Define priorities on topics discussion for the rest of the seminar

• Discussion on topics in sub-groups

• Plenary session: Summary of sub-group discussions

Day3: November 15 (Wed)

• Discussion on topics in sub-groups

• Plenary session: Summary of sub-group discussions

• Excursion and Main Banquet

Day4: November 16 (Thu)

• Discussion on topics in sub-groups

• Plenary session: Summary of sub-group discussions

• Findings and definition of priorities and collaborations

• Wrap up

9/14



SUMMARY OF DISCUSSIONS

A first discussion was proposed on the subject: "What is a domain theory?". Then four discussions
have been chosen and the participants have been divided into four sub-groups, each of them dealing
with one discussion.

WHAT IS A DOMAIN THEORY?

Participants: all

A domain theory may be seen as a Domain Specific Language (DSL) equipped with a reasoning
support, such as a set of theorems and proof strategies, and a methodological support to capture the
know-how and reuse it. It may also be seen as a new abstraction made of two parts, a static one and
a dynamic one. It also depends on a generic logic type to be replaced with a specific logic type such
as FOL, HOL, Fuzzy, ... The static part is composed of datatypes, operators on the datatypes, axioms
and theorems and possibly proof strategies. The dynamic part should allow domain theory evolution
and could consist of reasoning tools such as deduction (inference rules) or refinement mechanisms.

Two important questions related to their creation must be considered:

• When do we need to create a new domain theory as opposed to reusing an existing one?

• Who can define domain theory: domain experts and/or engineers?

How can we produce domain theory? by instanciation, composition, projection, extension, ...
Why do we need domain theories? It depends on the viewpoint:

• from a system engineering viewpoint

– to be more efficient to model systems

– for reuse (of libraries and proofs),

– improve maintainability and readability

– to be less error prone

• from (knowledge, reasoning) representation viewpoint

– for communication with domain experts and to ease validation

– a common way to explicit and reason on knowledge

– improve maintainability and readability

– to undo abstraction of pure logical systems and to relate to domain knowledge. Here, ab-
straction means that using logical systems allows to specify any kinds of systems whereas
domain theories restrict or guide the way specifications are written. We trade expressivity
of a formalism against better usability/computability/provability/automation.

DOMAIN THEORIES DEDICATED TO CYBER-PHYSICAL SYSTEMS

Participants: Clovis EBERHART, Étienne ANDRÉ, Mark LAWFORD, Olga KOUCHNARENKO

Some (more or less) recent attempts were made to build domain theories dedicated to cyber-
physical systems (CPS) (works by Dupont et al., RSS works by Tsutomu et al., extensions of Ptole-
mee, etc.). These domain theories have specificities, such as the discrete/continuous interactions
(with tools being often good at either of them, but not both), or the fact that they run in “even more

10/14



unknown” environments than other systems. Challenges include the heterogeneous nature of dis-
crete/continuous models, the intrinsic infinite nature of CPS (notably due to their continuous nature),
but also the reusability of theories (many existing “theories” in model checking for CPSs are rebuilt
from scratch). Another challenge is the gap (to narrow as much as necessary) between the proofs (in
idealized abstractions of the real system, including perfect knowledge), and the actual limited knowl-
edge of the system subject to sensor uncertainties and computation failures or communication delays
in distributed implementations, etc. This may require dedicated abstractions or approximations, in-
cluding concretization in the actual system of counterexamples given in the abstract formalism.

Engineers developing CPS are typically interested in verifying safety properties such as colli-
sion freedom in the example of the RSS specification of adaptive cruise control. Safety properties
might also express user experience properties such as passenger comfort in an autonomous vehicle
(e.g. bounded acceleration and jerk values). Progress properties are also of interest, such as dead-
lock/timelock freedom and actual progress (reaching the passenger’s desired destination) as well as
more advanced properties such as optimization goals (minimizing energy consumption of the vehi-
cle). While such properties are also typical of purely discrete systems, the interaction of the continu-
ous and discrete components of CPS can make verification of these properties much more difficult.

CONNECTIONS BETWEEN PATTERNS AND THEORIES

Participants: Régine LALEAU, Dominique MÉRY, Laurent VOISIN

First we identified different kinds of patterns:

• Modelling patterns that can be used to write specifications by instantiation:

– Architectural patterns such as controller-environment patterns for designing cyber-physical
systems or attack models for security purposes.

– Properties patterns such as access control patterns or Dwyer patterns.

– Refinement patterns such as refinement for executable code.

– Style patterns for writing formulas such as using characteristic function versus set.

• Design patterns that can be used for building systems or software. They provide technical so-
lutions compared to modelling patterns. We can cite Gamma design patterns, fail-safe by con-
struction patterns or anti-patterns.

• Methodological patterns that provide specific ways or approaches to develop systems, such as
top down/bottom up or refinement/abstraction or action/reaction patterns.

• Proof patterns. Note that modelling patterns can also define proof patterns. To some extent,
reasoning patterns, such as safety cases for certification, can be considered as proof patterns.

Then we tried to establish links between patterns and domain theories. The first thought that
immediately came to mind, is that theories can be used to justify or formalize patterns, mainly for
properties, refinement or design patterns.

Two other kinds of links can be considered: using patterns for building theories or using theories
for defining patterns. In the first kind, the way theories are built can follow methodological patterns.
For instance a theory can be gradually built from basic theories or from scratch. A theory can also
come from repetition of the same patterns in different models, which can be then captured in a new
theory.

11/14



In the second kind, using theories can influence the modelling methodology and then give pat-
terns. For instance, control theory will guide the design of the system and its modelling. Theories
can also define style patterns. For instance, properties can be written according to the used theories.
Theories can bring vocabulary (with proof techniques, reasoning modes, . . . ) that make model spec-
ification possible. For instance holomorphic functions are mandatory to compute drag and lift for
airplane wings.

FORMAL METHODS EXTENSIONS FOR DOMAIN THEORY

Participants: Yamine AIT AMEUR, Toshiaki AOKI, Alcino CUNHA, Thai Son HOANG, Frédéric
MALLET, Elvinia RICCOBENE, Patrizia SCANDURRA, Jean-Pierre TALPIN

The group discussed available extension mechanisms of formal methods for domain theory. The
discussion brought to the definition of a classification framework for the extension mechanisms sup-
ported by different state-based formal methods (e.g., Abstract State Machine/ASMETA, Alloy, B,
Event-B), regardless of a specific domain theory. The elements that characterize an FM extension
include: type of extension (of the language and/or of the analysis), the purpose of the extension,
domain of the extension (e.g., application-specific, mathematical, etc.), mechanism for implementing
the extension (e.g., translations, API-based integrations, encoding, orchestration, etc.), and how the
extension is activated and (possibly) reused. Concretely, the purposes of such a classification include:
To provide a viable base to help FM users and engineers to better understand, design and commu-
nicate about FM extensions, using a uniform vocabulary and at a high-abstraction level To provide
an up-to-day map of the state of practice in defining state-based FM extensions. To provide a use-
ful framework for evaluating and comparing FM extensions, specific or not for a domain theory. To
provide an evidence-based discussion of the emerging trends and gaps and their implication for fu-
ture research on engineering FM extensions. To provide a foundation for future methodologies, tools
and technologies for developing FM extensions. The proposed classification extracts and generalizes
concepts from existing FM extensions and from related literature and our previous work. Many ques-
tions remain on the precise definition of this classification framework; here, we just started to define
this classification generally, based on cross-FM observations.

PROVING SYSTEM PROPERTIES FOR SPECIFICATIONS THAT USE DOMAIN THEORIES

Participants: Yamine AIT AMEUR, Étienne ANDRÉ, Clovis EBERHART, Frédéric GERVAIS, Marc
FRAPPIER, Fuyuki ISHIKAWA, Tsutomu KOBAYASHI, Mark LAWFORD, Burkhart WOLFF

In the construction of formal models for software systems, there are two primary artefacts: the
formal system model and the domain-specific theory library used in the system model. Since they
are constructed separately in general, the group discussion focused on the responsibility of each side:
what is the engineer who constructs the system model responsible for, and what about the one who
constructs the theory library?

One of the promising ways to the separation of responsibilities is proposed by Aït-Ameur et al.
In their approach, the domain-specific theory library should guarantee certain theorems under the
assumption of the well-definedness of expressions and predicates. In the system model, usages of
expressions and predicates provided by the library should be well-defined.

For instance, a library of autonomous vehicle systems may include the following operator for an
update of the road state:

Expression roadStateUpdate(r : Road, ego : Car)

12/14



definition {r′|isPhysicallyPossibleFutureRoad(r, r′) ∧ time(r′)− time(r) = dt ∧ ...}
well-definedness isRoadStateUpdateWD(r : Road, ego : Car)

= ∀ c. c ∈ cars(r) ⇒ (0 ≤ position(c) ∧ 0 ≤ speed(c))
∧∀ l1, l2 . ({l1, l2} ⊆ lanes(r) ∧ l1 ̸= l2) ⇒ ∅ = carsOnLane(r, l1)

⋂
carsOnLane(r, l2)

∧ ∀ l . ∈ lanes(r) ⇒ (∀ c. d ({c, d} ⊆ carsOnLane(r, l) ∧ c ̸= d ∧ isBehind(c, d)
⇒ sa f eDistance(c, d))

...
The library also has the following theorem about the safety of the update of the road’s state, which

is guaranteed as long as the well-definedness holds:

Theorem roadStateUpdateIsSafe(r : Road, ego : Car)
isRoadStateUpdateWD(r, ego) ⇒ isRoadSafe(roadStateUpdate(r, ego))

The engineer who constructs the library is responsible for proving this theorem. Then the system
model can be specified using operators from the library as follows:

Event cruise
Then road, ego_car :| road’ = update(road, ego_car)

∧ ego_car’ = runAtConstantSpeed(road, ego_car)

The engineer who constructs the system model is responsible for proving the well-definedness
condition for each usage of operators from the library (e.g., isRoadStateUpdateWD).

The RSS Verification Study [9] is based on HOL-CSP, a combination of Hoare’s and Roscoe’s Con-
current Sequential Process (CSP) theory with higher-order logic (HOL). HOL-CSP provides the type
′α process. This implies that any mathematical object that can be defined in an HOL type can be
used inside events of HOL-CSP, This includes real-time, functions, derivatives of functions, multi-
dimensional spaces, etc. Algebraic reasoning over CSP-processes can thus be combined with power-
ful reasoning over differential equations developed in the HOL-Analysis library.

In HOL-CSP, it is possible to define a “demon”-process that asks non-deterministically the physical
state of “actors” (cars, pedestrians, traffic-lights, etc) modeled as timed processes [13]; their local states
were combined to a global ‘scene’. Actors are modeled as processes that receive knowledge over (a
fragment) of the global scene. A ‘driving strategy’, i.e. a function that chooses a particular acceleration
from the set of accelerations specific to the actor depending on the scene, is applied and translated
via the ‘kinematics’ function into the next local state of the actor at the time interval defined by the
demon.

13/14



IDENTIFIED ISSUES AND FUTURE DIRECTIONS

Considering the objectives of the seminar and the topics addressed during the presentations and dis-
cussions we can state that several of them are still challenging and need in-depth work. In particular,
we all agreed on (i) the handling of semantic heterogeneity between different domain theories; (ii)
the soundness of the extension mechanisms used to import domain theories; (iii) the issue of proof
certification if different proof systems are used.

Moreover we need to develop more experiments on using extension mechanisms of formal meth-
ods to define domain theories and using domain theories, defined using extension mechanisms, in
the formal development of complex systems. In particular designing cyber-physical systems requires
to take into account not only safety properties but also non-functional properties such as optimization
or user-friendly goals, which are more difficult to verify because of the interaction of the continuous
and discrete components of such systems.

REFERENCES

[1] D. Bjørner. Manifest domains: analysis and description. Formal Asp. Comput., 29(2):175–225, 2017.
[2] Y. Ait-Ameur and D. Méry. Making explicit domain knowledge in formal system development.

Sci. Comput. Program., 121:100–127, 2016.
[3] M. J. Butler and I. Maamria. Practical theory extension in Event-B. In Theories of Programming and

Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, pp. 67–81, 2013.
[4] Y. Bertot and P. Castéran. Interactive theorem proving and program development: Coq’Art: the calculus

of inductive constructions. Springer Science & Business Media, 2013.
[5] T. Nipkow et al. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS.

Springer, 2002. http://isabelle.in.tum.de/.
[6] A. Assaf et al. Expressing theories in the ΛΠ-calculus modulo theory and in the Dedukti system.

In TYPES: Types for Proofs and Programs, Novi SAd, Serbia, May 2016.
[7] R. L. Constable et al. Implementing mathematics with the Nuprl proof development system. Prentice

Hall, 1986.
[8] E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level System Design and

Analysis. Springer, 2003.
[9] T. Kobayashi et al. Formal modelling of safety architecture for responsibility-aware autonomous

vehicle via event-b refinement. In M. Chechik et al., editors, Formal Methods - 25th International
Symposium, FM 2023, Lübeck, Germany, March 6-10, 2023, Proceedings, volume 14000 of Lecture
Notes in Computer Science, pp. 533–549. Springer, 2023.

[10] S. Shalev-Shwartz et al. On a formal model of safe and scalable self-driving cars. CoRR,
abs/1708.06374, 2017.

[11] I. Hasuo et al. Goal-aware RSS for complex scenarios via program logic. IEEE Trans. Intell. Veh.,
8(4):3040–3072, 2023.

[12] D. T. Phan et al. A component-based simplex architecture for high-assurance cyber-physical
systems. In 17th International Conference on Application of Concurrency to System Design, ACSD
2017, Zaragoza, Spain, June 25-30, 2017, pp. 49–58. IEEE Computer Society, 2017.

[13] P. Crisafulli et al. Modeling and analysing cyber-physical systems in HOL-CSP. Robotics Auton.
Syst., 170:104549, 2023.

14/14

http://isabelle.in.tum.de/

