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Background and Introduction

History and summary goal

Optimal placement and movement of data between storage, memory and pro-
cessing components has been the main driver for higher performance and lower
energy consumption of all software. Attaining (or even approaching) optimality
requires an accurate model. A flat homogeneous address space abstraction (the
von Neumann model), presented by hardware and by the hardware abstraction
layers of the OS/runtime, is becoming harder and harder to maintain and is less
and less accurate as a model.

What new abstractions should compiler writers and programmers use in-
stead? In the emerging landscape of new memory devices, with radically dif-
ferent processing elements in systems spanning from super-computers to IoT
devices, how can we save users from being overwhelmed with the diversity and
complexity of memory architectures? Conversely, how can we give programmers
and compiler writers some idea of the memory architecture and some degree of
control over data placement and movement?

Industry trends and state of the art

A revolution in the electronics and computer industry has started to deliver hy-
brid, widely diverse kinds of memory, such as off-package persistent (e.g. Intel’s
Optane Memory [6]) and many forms of volatile RAM, on-package RAM (e.g.
High Bandwidth Memory [1]), and logic-integrated on-chip persistent RAM [9].
The kinds of memory becoming available show orders of magnitude of diversity
in capacity, latency and throughput. Some kinds are already used as a cache
generally controlled by hardware, others as part of the address spaces for tra-
ditional processors, while other memory is seen as a long term storage device.
The ways to access memory are also diverse, from load/store instructions to
bus programming to co-processors (as Google’s Tensor Processing Units [2] and
GPUs).

Limited support using hardware instructions, operating systems and low
level libraries has been introduced, for example for cache coherency control,
selective cache flush mechanisms [7] and NUMA addressability. The high-
performance computing (HPC) community is familiar with analysing perfor-
mance, and creating generally non-portable ad-hoc optimizations using fragile
pragmas and qualifiers with poor diagnostics.

Compilers for mainstream high-level languages like Java, Swift, Golang,
Scala, Python, Ruby, Javascript, OCaml and Haskell provide the user with
the illusion of a flat address space, which fits well with the calculi and abstract
machines that underlie programming language research. In practice, such lan-
guages rarely deliver good performance out of the box; they have widely varying
features to optimize instruction scheduling, but much less developed memory
management, and inspire many duplicated efforts between different compilers
[8]. A key disconnect between the programming languages, computer architec-
ture, and high-performance computing communities may be a root cause.

Domain Specific Languages (DSLs) have delivered promising results, and in
some cases (e.g. Halide and Tensorflow) include automatic and guided analysis
and interfaces for data placement and movement. But the high-level specifica-
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tions of such DSL’s (including memory specifications) are too model-specific,
and so are hard to extend to different domains and to generalize.

Approaching key problems

The major opportunities offered by the new technologies are difficult to exploit
with present-day programming languages:

• persistent-memory transactions (as introduced by Intel) have non-compo-
sitional lock management properties;

• large core counts make cache coherency electronically challenging;

• tier management of memory; placement and movement policies are in their
infancy;

• portable support for persistent and non-persistent memory semantics in
libraries appears elusive, even for structures as simple as a doubly-linked
list. Leveraging persistent memory for programs that resume after inter-
ruptions is currently beyond reach.

To approach these problems, first we need control, or discipline: defining
types to describe computer architectures, and providing methods to relate these
with program data structures. Beyond control, we need a systematic approach
to automatic optimization, possibly addressed as an optimization problem for
an automated solver or machine learning, as done in some DSL’s and in physical
micro-electronics layout design systems. The control should be at a high level,
with diagnostics e.g. for wrongly situated data.

Opportunities are also many, mostly unexplored. For example, one could
demonstrate that unmodified NumPy code gains performance when Python
observes data access patterns in its garbage collector and leverages them for
data placement in memory tiers. New compiler developments like MLIR [5]
may allow some control of memory placement and layout in high level languages.
The fully understood performance model of the HPCG benchmark [4] may also
provide many hints.
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The Difficult Road to the Seminar

The seminar was originally scheduled to take place in the Fall of 2020. How-
ever, the COVID19 pandemic made that impossible. After several attempts to
reschedule, the seminar finally took place in May 2024.

One of the many things that happened in the intervening period is that
the Intel Optane memory [6], which was one of the main motivations for the
seminar, has not attained the hoped-for commercial success and was withdrawn
from the market. That is not to say that the problems the seminar was meant
to address have become moot. First of all, as several participants of the seminar
have emphasized, the present commercial failure of Optane memory is due to
business issues (misguided marketing, fear of vendor lock-in, dearth of initial
applications, failure to achieve the planned price, etc.). The technology itself is
sound and may well make a come-back.

Mainly, memory diversity did not go away. The continued evolution and
speciation of GPU, TPU, Neural Processing Unit (NPU) and non-conventional
architectures such as Groq has made data layout and data access problems even
more varied and difficult, and the need to reflect them in some way in programs
even more pressing.

As a preparation for the Shonan seminar, we have conducted, in December
2022, a small-scale meeting hosted by Green Computing Center at Waseda Uni-
versity (supported by MEXT TGU Program “Waseda University ICT Robot
Project” and Advanced Multicore Processor Research Insititute), organized by
Professor Hironori Kasahara. Most participants of that meeting later attended
the Shonan seminar.

Planning

We invited participants representing three groups of people: specialists in mem-
ory technologies, leaders in specific domains in which sophisticated memory
management is being used, and computer scientists with a solid foundation in
the structure of languages and compilers.

In organizing the seminar, we followed some of Shriram Krishnamurthi’s
helpful advice [3]. In particular, we invested as much effort as we could in
advance on choosing topics, soliciting talk proposals and requests, and collating
into coherent structure. We sent out a preliminary survey to determine general
focus topics, from which we distilled the following list:

• formal models of emerging non-uniform memory architectures

• language features for separating memory layout from algorithmic content

• physical properties of emerging memory, with implication for cost models

• scheduling, autotuning, mathematical cost models

• metaprogramming, program generation, partial evaluation

• programming with persistent memory, transactions

• novel compute architectures (GPUs, TPUs. . . )

We then distributed a second survey based on those results, asking for more
specific talk proposals and requests. We also asked everyone to give a short (2
to 5 minute) introduction to their interests and expectations.
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We intended that the meeting should primarily consist of discussion and
cross-fertilisation rather than standard conference-style presentations. We iden-
tified a few themes, and clustered presentations and discussions around them.
Presentations of old work, or of other people’s work, were very definitely fine if
topically in scope.

Discussion Framework

Satnam Singh has suggested, and participants agreed on the following frame-
work for presentation and discussion:

• When discussing a programming language system, who is the target: ap-
plication programmer, compiler developer, run-time system, OS, firmware?

• Are we discussing something that an application may use, or is it some-
thing that an application must know about? (The answer may vary for
different classes of applications).

• Which exact level memory we are talking about: “just memory” (flat
address space) or a particular memory within a particular hierarchy?
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Overview of Talks

A Case for Programmer Aware Accelerated Memory
Access

Gary Grider, Los Alamos National Laboratory (online)

There are many applications, like sparse embeddings in recommender systems
and sparse database joins, that have very irregular memory access character-
istics. These applications are horribly underserved by the current application
trends that are concentrating on dense memory access. Los Alamos has multi-
physics simulations that exhibit irregular/sparse memory access characteristics
making it hard to buy suitable hardware and difficult to gain high throughput
on these important applications. Recently, much effort has been expended in
attempting to address this irregular memory access through deep co-design be-
tween applications and prototype hardware with promising results. These efforts
show that how you consume the acceleration is as important as the accelerations
themselves which implies that software, programming models/systems, and pro-
gramming languages will need to play a role in exploiting irregular memory ac-
cess acceleration, beyond simple scatter/gather. This talk will cover the work
that has been done and point towards potential programming techniques for
helping these important and underserved applications via exposing parallelism
in the memory access to the programmer.

Deep Codesign of Memory Systems in the Post-Exascale
Computing Era

Jeff Vetter, Oak Ridge National Laboratory

The US Department of Energy has just deployed its first Exascale system at Oak
Ridge National Laboratory. Now is an appropriate time to revisit our Exascale
predictions from over a decade ago and think about post-Exascale. We are
now seeing a Cambrian explosion of new technologies during this “golden age of
architectures”, making codesign of architectures with software and applications
more critical than ever. In this talk, I will revisit the Exascale trajectory, survey
post-Exascale technologies, and discuss their implications for system design and
software. I will discuss the evolution of memory systems over time and the
introduction of various non-volatile memories for HPC. In our NVL-C work, we
developed a transactional-based compiler to allow users to access multiple NVM
heap segments consistently with transactions, logging, and several optimizations
to improve performance.

Pallas: A Multi-Platform High-Productivity Language for
Accelerator Kernels

Adam Paszke, Google DeepMind

Compute accelerators are the workhorses of modern scientific computing and
machine learning workloads. But, their ever increasing performance also comes
at a cost of increasing micro-architectural complexity. Worse, it happens at
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a speed that makes it hard for both compilers and low-level kernel authors to
keep up. At the same time, the increased complexity makes it even harder
for a wider audience to author high-performance software, leaving them almost
entirely reliant on high-level libraries and compilers.

In this talk I plan to introduce Pallas: a domain specific language embedded
in Python and built on top of JAX. Pallas is highly inspired by the recent devel-
opment and success of the Triton language and compiler, and aims to present
users with a high-productivity programming environment that is a minimal ex-
tension over native JAX. For example, kernels can be implemented using the
familiar JAX-NumPy language, while a single line of code can be sufficient to
interface the kernel with a larger JAX program. Uniquely, Pallas kernels sup-
port a subset of JAX program transformations, making it possible to derive a
number of interesting operators from a single implementation. Finally, based on
our experiments, Pallas can be leveraged for high-performance code generation
not only for GPUs, but also for other accelerator architectures such as Google’s
TPUs.

Memory System Trends and Opportunities

Mattan Erez, University of Texas at Austin

Memory capacity and performance are critical for attaining high performance
and system utilization. Memory technology, however, offers challenging trade-
offs between capacity, bandwidth, and cost, leading to complex and heteroge-
neous memory systems. The trends are toward more distributed and tiered
memory systems arising from advances in the technology of packaging (e.g.,
HBM in-package memory), memory cells (e.g., non-volatile memories), signal-
ing (e.g., high-speed and optical links), and architectures (e.g., the Compute
eXpress Link). I will explain the basics of modern memory design, focusing on
recent trends relating to DRAM, but also memory in general. I will then dis-
cuss other technological trends and constraints that are driving memory system
architecture and leading toward tiered memories. Finally, I will discuss implica-
tions to software, including applications and system software that must manage
the increasing heterogeneity.

Compiler Optimization Challenges for Matrix/Tensor
Computations

Ponnuswamy Sadayappan, University of Utah

Production compilers today are extremely effective in lowering high-level pro-
grams to very compact machine code, i.e., they are very effective in minimizing
the number of executed instructions in the compiled code. However, the domi-
nant cost (both in terms of energy and execution time) on all computer systems
today is not that of executing arithmetic/logic operations but of the movement
of data, between processors of a parallel system and through the memory hi-
erarchy at each processor. Despite significant research advances in compiler
optimization for affine computations, such as the powerful polyhedral model for
dependence analysis and loop transformation, it remains extremely challenging
for any compiler today to generate optimized code (for either multicore CPUs
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or GPUs) that achieves performance comparable to manually developed vendor
libraries or autotuning optimizers. At the heart of the problem is the massive
space of possible combinations of loop transforms like tiling and fusion, and
the challenge of devising accurate cost models and efficient search/optimization
strategies driven by the cost models. While the challenges are already stiff even
for dense matrix/tensor computations, sparsity makes the performance opti-
mization problem much harder. Finally, compiler optimization of programs for
distributed-memory platforms, such as the spate of recently developed spatial
accelerators for machine learning, is much more challenging than for shared-
memory architectures like multicore CPUs and GPUs. Co-design of architec-
tural mechanisms and data access abstractions driven by key computational
patterns/paradigms could alleviate compiler optimization challenges.

Optimizing an Array Language in the Presence of Nested
Parallelism

Cosmin Oancea, University of Copenhagen

This presentation highlights a compilation technique for nested-parallel appli-
cations that builds on the classical flattening transformation, but can adapt to
hardware and dataset characteristics. Our solution uses the degree of utilized
parallelism as the driver for generating a multitude of code versions, which sys-
tematically cover all mappings of the application’s regular nested parallelism to
the levels of parallelism exposed by the hardware. These code versions are then
combined into one program by guarding them with predicates, whose threshold
values are automatically tuned to hardware and dataset characteristics. The
autotuning procedure is customized to the proposed code transformation, and
is demonstrated to provide reliable and efficient results if a certain monotonicity
property holds.

Rank Polymorphism and Memory Layouts

Sven-Bodo Scholz, Radboud University

Rank polymorphism enables algorithms to be specified in a way that allows
arrays to be of statically unknown rank (dimensionality) and shape. As this
presentation demonstrates, this capability does not only widen the applicabil-
ity of operations, but it also enables a control of traversal schemata through
array shapes rather than through a fixed choice in code. At several examples,
we demonstrate how a fixed layout of higher dimensional arrays in memory
facilitates shapes to guide various forms of program optimisations.

Democratizing Data Science by Leveraging Structure

Amir Shaikhha, University of Edinburgh

Modern data science pipelines employ a variety of workloads, including tensor
algebra, graph processing algorithms, and relational query processing. This re-
sults in using a set of loosely coupled data processing frameworks that move
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the data across the analytics pipeline, leading to unnecessary resource and en-
ergy consumption. This talk shows a compilation-based approach to move the
computation closer to the data. This is achieved by designing (domain-specific)
languages that leverage the structure of data with algebraic optimizations. We
show that our proposed approach significantly outperforms the state-of-the-art
frameworks for a wide range of applications, including database query processing
and tensor processing.

Ribbit: Data Layout of Algebraic Data Types

Gabriel Radanne, INRIA Lyon

Initially present only in functional languages such as OCaml and Haskell, Alge-
braic Data Types (ADTs) have now become pervasive in mainstream languages,
providing nice data abstractions and an elegant way to express functions through
pattern matching. Unfortunately, ADTs remain seldom used in low-level pro-
gramming. One reason is that their increased convenience comes at the cost of
abstracting away the exact memory layout of values. Even Rust, which tries to
optimize data layout, severely limits control over memory representation.

Ribbit presents a new approach to specify the data layout of rich data types
based on a dual view: a source type, providing a high-level description available
in the rest of the code, along with a memory type, providing full control over
the memory layout. This dual view allows for better reasoning about memory
layout, both for correctness, with dedicated validity criteria linking the two
views, and for optimizations that manipulate the memory view. Ribbit provides
optimized compilation of any code over ADTs for arbitrary mangled memory
representation to a Destination-Passing-Style intermediate representation with
explicit memory allocations and full support for recursive types. In this talk, we
showcase some interesting usage examples, and part of the compilation process
of Ribbit.

EverParse: Verified Secure Binary Data Parsing for All

Tahina Ramananandro, Microsoft Research

Software security exploits often begin with an attacker providing an unexpected
input to a program, causing it to misbehave in a way that allows the attacker
to gain access to a critical system. Such attacks are mostly due to binary data
parsers and validators generally being written by hand in unverified languages.

To prevent such attacks, we have been designing EverParse, a framework to
produce data validators formally verified for memory safety and functional cor-
rectness with respect to the data format, along with a choice of security prop-
erties such as unique binary representation for signature-based cryptographic
authentication, constant-time memory accesses to avoid time-based side chan-
nels during parsing, and absence of double-fetches for concurrent settings, where
users want high-performance parsing from a potentially attacker-controlled in-
put memory region without fully copying its contents into a temporary buffer
beforehand. We have leveraged such security guarantees by using EverParse in
verified F* applications for various network protocols, including TLS, QUIC,
ASN.1 X.509, etc.
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To make verified parsing accessible to a wider range of users, we presented
EverParse3D, a fully automatic generator producing efficient, verified data val-
idators from data-dependent format descriptions via partial evaluation with
zero user proof effort. EverParse3D has been in use in the Windows kernel
since 2021, as part of the Microsoft Hyper-V network virtualization stack to
filter malformed packets away from hosts and guests alike.

We also discussed avenues for automatic generation of data format speci-
fications, with our ongoing approach, 3DGen, leveraging AI to produce data
format specifications from IETF RFC standard documents, with a feedback
loop including both AI-based and symbolic test case generation.

Further discussions investigated the use of verified parsing and serializa-
tion techniques to ensure safety, functional correctness, and security of high-
performance memory layout.

EverParse is open-source and available on GitHub: https://github.com/

project-everest/everparse

Persistent Lock-Free Data Structures for Non-Volatile
Memory

Erez Petrank, Technion CS

In this talk I will discuss the design of lock-free (concurrent) data structures
adequate for non-volatile RAM. I will shortly review the challenges in building
software for non-volatile memory, and definitions for correctness of algorithms in
this domain. I will then review constructions of persistent queues and sets, men-
tion general transformation for building persistent concurrent data structures
and discuss the basic techniques behind all.

Pulse, and Verification for GPUs

Guido Martinez, Microsoft

I will present Pulse, a language designed for verified and efficient imperative
programming, based on dependent types and separation logic. I will show some
previous work about verifying task-parallel programs in Pulse, including par-
allel versions of sorting algorithms, and how we reason about parallelism and
asynchrony conveniently within the language. Finally, I will show some rough
work in progress for verifying GPU kernels in Pulse.

Under: A Squiggol for Lenses and Conjugations

Juuso Haavisto, University of Oxford

“Under” is a dyadic operator in array programming languages that utilizes rank
polymorphic function inverses. The BQN array language implements structural
and computational cases of Under. In this work we showcase how the the lens
properties of structural Under can be used to model parallel programming on
GPUs.
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The “Forward” Iteration or How to Iterate on Space with
Operators on Time

Marc Pouzet, École normale supérieure

The Lustre and Scade languages allow to write equations on infinite sequences.
A sequence defines a time evolving value. We speak here of iteration over time
because the functions apply to successive elements of a sequence. Moreover,
Lustre and Scade are called ”data-flow” languages because a variable is defined
by a single definition (equation), the order of computations being defined only
by data dependencies.

The SISAL language (Stream and Iteration in a Single Assigment Language),
born at the same time as Lustre and independently, also adopted the ”data-
flow” point of view but targeting array-based applications. In SISAL, an array
can also be interpreted as a sequence that is finite. The ‘for’ loop of SISAL
corresponds to an iteration in space which follows the order of the successive
elements of an array.

What is the link between Luster and SISAL? In this presentation, I I will
show recent work bringing together these two approaches and which leads to
the introduction of a new iteration construct for a language such as Lustre
and Scade. This construction, called ”forward”, allows to iterate a sequen-
tial function over sequences by applying it to an array. It can be used to
write classical examples of linear algebra (e.g., sum arrays, tensor product,
matrix/matrix product, Choleski). More broadly, it can be use to abstract a
sequence of computations as a combinational one by grouping them into a sin-
gle reaction. I will show a functional semantics of a Lustre kernel extended
with this construct and give examples using the ZRun interpreter: https:

//github.com/marcpouzet/zrun/tree/work.
This work is close to the old idea of ”temporal refinement” studied by Caspi

and Mikac, for Lustre (thesis by Mikac, article FMICS’05); and the reactive
and clock domains, by Mandel, Pasteur and Pouzet, for ReactiveML (Pasteur’s
thesis, article SCP’15).

This is a joint work with Jean-Louis Colano and Baptiste Pauget (Scade
Core team, ANSYS Toulouse).

Data-Parallel Flattening by Expansion and
Size-Dependent Types

Martin Elsman, University of Copenhagen

In this talk, we address two problems related to programming massively data-
parallel algorithms. The first problem concerns the difficulty of expressing irreg-
ular nested parallel algorithms in a way that materialises into practical efficient
code on GPUs. The second problem concerns the difficulty that programmers
often have with respect to expressing size constraints on array data and ensuring
that such constraints are satisfied.

For addressing the first problem, we suggest a method that applies to certain
classes of irregular nested parallelism and that captures a solution to the problem
using programmer-level design patterns (i.e., higher-order functions) for hiding
flattening details (e.g., flag vectors).
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For addressing the second problem, we suggest a mechanism for so-called
size-dependent types, which allows programmers to express constraints on array
sizes and which supports a high degree of implicit static checking of array sizes.

Both techniques are developed in the context of the Futhark compiler, a
strict data-parallel pure functional programming language and compiler aimed
at executing programs efficiently on massively-parallel hardware (e.g., GPUs).

Rank polymorphic Parallel Array Computations in
Accelerate

Gabrielle Keller, Utrecht University

Accelerate is a Haskell EDSL for parallel array computations. Parallel com-
putations are expressed via higher order parallel operations, such as maps and
reductions, which can be parametrised with sequential computations. The par-
allel operations are rank polymorphic, in the sense that they can be applied to
arrays of any dimensionality. In addition to arrays of primitive and tuple types,
the language also supports arrays of (non-recursive) user defined data types.
Through the use of type families, GADTs and generics, these are mapped au-
tomatically to efficient, machine-friendly representations.

Memory on Groq’s AI Chips

Satnam Singh, Groq

This presentation gave an overview of the special purpose hardware made by
Groq for accelerating machine learning inference. The Groq architecture makes
essential use of a highly distributed SRAM-based memory architecture to help
implement low latency high throughput large language models (LLMs) like
Llama3 70B and the various Mixtral models. High performance is achieved
by keeping a central data structure in these LLMs, the KV-cache (a key-value
cache) entirely resident in SRAM, distributed across many chips in nodes and
multiple racks. A fundamental aspect of the Groq architecture is its deter-
ministic behaviour, and distributed SRAM is a key enabling component. This
allows for predictable performance and makes it easier to compose large systems
spanning multiple racks with high performance.
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Summary of Discussions

Mostly as a conclusion of the extensive and extremely detailed talk by Mattan
Erez, here is what a programming language could/should provide to efficiently
use modern memory:

• specifying memory allocation and placement;

• expressing (temporal) locality;

• exposing concurrency and parallelism.

The programmer must also be aware that modern hardware does a lot behind the
scenes (scheduling memory accesses, balancing memory channels, prefetching)
which the programmer should not attempt to micro-manage. Cache oblivious
algorithms are a poster example of dealing with memory “at the right level”.

Identified Issues and Future Directions

A discussion is productive when there are more questions than answers, some
say. Here are some of the questions left for future seminars.

• “I would like to hear about the verification aspect of the problems (e.g.,
writing fully verified code for tensor/array programming systems).”

• “I’d be particularly interested to hear more about the PL techniques useful
for modeling asynchrony.”

• “I would be particularly interested to hear about work on expressing and
controlling data layout and perhaps location. This seems to be linked to
the problem of how to optimise networks of tensor contractions. I guess
the optimisation has to be with respect to a system description, including
the arrangement of memory.”

• Language integration and metaprogramming for data layout abstraction

• Similarities/differences in optimizing array/tensor computations in func-
tional versus imperative languages

• Ways to analyse/express access patterns in a scalable yet still useful way

• Future memories and interconnect

• Fine-grained asynchrony for tolerating memory latencies

• Behavior/micro-architecture of TPUS and compute-in-memory architec-
tures (what do they do, and how fast)

• Experiences with different intermediate representations for describing com-
putations on large data
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