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1 Introduction
Formal methods (FM) have a long and successful history in contributing to
the reliability and risk minimization of safety-critical software systems [5]. Like
other human engineering disciplines, they are based on rigorous mathematical
modeling and analysis of system properties. Due to tremendous advances in
artificial intelligence (AI), the situation is changing as several of the system
functions are increasingly implemented and enabled by machine learning (ML)
components; that is, they are not explicitly programmed by humans, but instead
automatically generated from large sets of data. Such ML-enabled components
are instrumental for the automation of functions in smart, autonomous cyber-
physical systems, which already affect our society in many application domains,
including self-driving cars, smart grids, smart healthcare, and smart manufac-
turing. For instance, deep neural networks (DNN) have become an essential
tool for tasks such as image perception and object classification in autonomous
vehicles. However, data-driven learning capabilities are inherently hard to char-
acterize and their combination with other, more traditional AI (e.g. rule-based)
and system engineering tools is not well understood and can introduce addi-
tional risks. For example, DNNs are not robust to adversarial perturbations
(APs), meaning that even minimal changes applied to the input, often imper-
ceptible to the human senses, can cause the network to completely misclassify
the input [4, 20, 12, 9].

In safety-critical systems, such misclassification can lead to dramatic con-
sequences, such as a fatal self-driving accident where the sensor system in the
car failed to identify a large truck with a trailer crossing the highway [14]. As
the operational behavior of learning-enabled components is a function of the
data they are trained on, it can also be distorted by bias or crippled by gaps
in the data set. For example, an AI-based recruiting tool at Amazon had to
be scrapped because it systematically favored men for technical jobs, just as
reflected in the actual data [13].

A fundamental problem here is that it is not possible to learn ethical and le-
gal principles like “all human beings are equal” from existing data only, but such
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guidelines need to be represented and ensured by other techniques, including log-
ical formalisms. As data-driven learning capabilities may cause unpredictable
emergent behavior and can lead to harmful events or violations of social norms
and conventions, recent initiatives such as the EU-HLEG Ethics Guidelines for
Trustworthy AI [8] call for regulation of AI-based systems, asking to design and
operate them in a way that they are trustworthy and comply with safety, secu-
rity, privacy, robustness, legal, ethical, and explainability requirements up to a
level adequate for the application. Similar considerations are also beginning to
find their way into pre-normative standards for system design, such as the DIN
SPEC 92001-1:2019-04 on AI Life Cycle Processes and Quality Requirements [6].

2 State of the Art and Challenges
The current state-of-the-art on safety and security assurance is based on model-
driven system design that consists in rigorously specifying the structure and the
behavior using formal models. These models enable static and dynamic analysis
and verification techniques that can provide comprehensive guarantees about
the correctness of systems [3]. While static techniques such as model checking
can perform sophisticated analysis of software without actually executing it,
their exhaustive nature makes it difficult to scale them without losing precision.
Runtime verification (RV) [18] is a more lightweight verification technique that
complements design-time analysis by observing the system at runtime, checking
intended properties online and possibly mitigating violations through specified
recovery actions. Though model-driven and formal approaches are increasingly
adopted in industry, they are generally still applicable only to non-learning
systems operating in well-characterized environments, as data-driven learning
components and environmental aspects that are not fully known or foreseen at
design-time introduce uncertainty in the design process in the form of "black
boxes" in the system model.

As the state-of-art of formal verification techniques for ML components is
still quite limited, the great difficulty to provide formal guarantees about their
behavior is a major obstacle to using ML and AI methods in safety-critical
autonomous systems engineering [16]. A recent approach is Reluplex [17], an
SMT solver for verifying DNNs that has been successfully evaluated on a DNN
implementation of a next-generation airborne collision avoidance system for un-
manned aircraft. There also has been a significant effort in recent years to de-
velop tools such as DeepFool [19] and cleverhans [11] that generate perturbations
to add to the original training set to further test the ML classifiers. Other recent
and more sophisticated testing approaches [7] follow a semantic-based approach,
using simulation environments to generate more plausible adversarial examples
rather than just small perturbations over the input image. However, because
attackers can use inputs never considered before in the testing process, testing
is not enough to provide guarantees, and providing formal guarantees about the
space of inputs that will be correctly processed remains a major challenge that
plays a fundamental role in improving trustworthiness of autonomous systems.
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We thus need novel formal techniques that offer high levels of guarantees
for large-scale autonomous systems with learning-enabled components. For ex-
ample, a promising direction is new mechanisms to enforce dynamic assurance
of safety and dependability at runtime. A related architectural approach [21]
in control theory uses a decision module to safeguard a high-performance con-
troller (e.g., DNN) by switching to a pre-certified baseline controller if certain
safe operating conditions are close to being violated. Potential approaches to
this challenge may have a tremendous societal and economical impact on our
society by reducing the warranty, liability, certification and design costs of au-
tonomous systems and subsystems with learning components.

3 Objectives and Topics of the Workshop
The workshop will be a joint and multi-disciplinary effort to develop novel formal
methods for the rigorous design of autonomous systems with learning compo-
nents. While AI and data-driven learning is essential for achieving autonomy, we
believe that it needs to be properly combined and complemented with formal,
knowledge/model-based techniques to make the system design and operation as
trustworthy as needed. Because in principle, we cannot guarantee that complex
engineered systems will be completely free of risks and design flaws, we seek to
define different classes of trustworthiness and trade-offs to decide if a system is
trustworthy enough for its intended use in terms of functionality, safety, security,
privacy, lawfulness and comprehensibility for humans. The workshop aims at
fostering novel approaches, capable of capturing and effectively balancing these
concerns in autonomous systems, by bringing together key people from the FM
and the AI communities.

Technically, we aim for a multi-stage approach where trustworthiness will
be established as far as possible at design-time, while ensuring that possible
variations during the autonomous system’s operation—due to changes in the
environmental context, or the self-adaptive behavior of learning capabilities —
can be assessed and dealt with at runtime. The envisaged approach will de-
termine which requirements can be guaranteed at the design-time and which
ones are left to be monitored and possibly enforced at runtime. This requires
tight collaboration between different research communities on FM (prominently
from the rigorous system design and the runtime verification area), control the-
ory and robotics, ML and AI, and semantic technologies. A purpose of this
Shonan meeting is to establish and consolidate a group of experts, with differ-
ent perspectives and both from academic and industrial research, to coordinate
currently fragmented research activities and address the discussed challenge in
diverse application areas such as autonomous driving, robotics, industrial IoT
and smart manufacturing, smart medical devices and healthcare, and smart
energy grids.

Research topics and questions that were addressed and dealt with during
the meeting include:

• Formal modeling languages capable of expressing key properties related
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to trustworthiness of AI-based autonomous systems with learning compo-
nents;

• Design-time analysis approaches for static verification of system proper-
ties expressed in formal languages, including e.g. techniques for model
checking properties of DNNs;

• Runtime verification techniques for AI-based systems including online gen-
eration of monitors, detection and diagnosis of critical events, and enforce-
ment of requirements;

• Novel methods to enforce correctness requirements both during design and
at runtime to achieve overall autonomic correctness, including properly
balancing between them;

• Methods for testing and formal verification of learning and self-adapting
capabilities of autonomous systems to provide high-level dependability and
robustness guarantees;

• Approaches to couple knowledge generated by runtime analysis with high-
level autonomic decision processes (e.g. triggering selective re-learning of
components).

These topics were addressed in the form of mini-tutorials given by leading
researchers in FM and machine learning/AI to familiarize everyone with the
proper terminology, research methodologies and current approaches, a selection
of shorter and deeper technical presentations that reported on problems and the
state of the art (including tool demonstrations for diverse application domains),
and by focused group discussions moderated by the organizers.

4 Meeting Schedule
• 15 October 2023, Sunday evening

– Arrival

• 16 October 2023, Monday morning

– Opening by the local Shonan team
– Opening by the organizers
– Short self-introduction by the participants

• 16 October 2023, Monday afternoon

– Short self-introduction by the participants (cont.)
– Sanjit A. Seshia: Towards Verified AI: Formal Specification and En-

vironment Modeling (tutorial)

• 17 October 2023, Tuesday morning
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– Etienne André: Configuring Timing Parameters to Ensure Opacity
(tutorial)

– Ichiro Hasuo: Goal-Aware RSS for Complex Scenarios via Program
Logic (talk)

– Plenary session: identifying themes for breakout sessions

• 17 October 2023, Tuesday afternoon

– Erika Ábrahám: SMT Solving (tutorial)

– Breakout sessions B1, B2

• 18 October 2023, Wednesday morning

– Masaki Waga: Dynamic Shielding for Reinforcement Learning in
Black-Box Environments (talk)

– Marija Slavkovik: Quick(?) and Dirty Intro to AI Ethics (tutorial)

– Breakout sessions B3, B4

• 18 October 2023, Wednesday afternoon

– Excursion

• 19 October 2023, Thursday morning

– Mahsa Varshosaz: Formal Specification and Testing for Reinforce-
ment Learning (talk)

– Krzysztof Czarnecki: Automated Driving (tutorial)

– Plenary session

• 19 October 2023, Thursday afternoon

– Departure

5 Overview of Talks and Discussions

5.1 Towards Verified AI: Formal Specification and Envi-
ronment Modeling

Speaker: Sanjit A. Seshia, UC Berkeley, USA

Abstract: We propose a new probabilistic programming language for the design
and analysis of perception systems, especially those based on machine learning.
Specifically, we consider the problems of training a perception system to handle
rare events, testing its performance under different conditions, and debugging
failures. We show how a probabilistic programming language can help address
these problems by specifying distributions encoding interesting types of inputs
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and sampling these to generate specialized training and test sets. More gen-
erally, such languages can be used for cyber-physical systems and robotics to
write environment models, an essential prerequisite to any formal analysis. In
this paper, we focus on systems like autonomous cars and robots, whose envi-
ronment is a "scene", a configuration of physical objects and agents. We design
a domain-specific language, Scenic, for describing "scenarios" that are distri-
butions over scenes. As a probabilistic programming language, Scenic allows
assigning distributions to features of the scene, as well as declaratively impos-
ing hard and soft constraints over the scene. We develop specialized techniques
for sampling from the resulting distribution, taking advantage of the structure
provided by Scenic’s domain-specific syntax. Finally, we apply Scenic in a case
study on a convolutional neural network designed to detect cars in road images,
improving its performance beyond that achieved by state-of-the-art synthetic
data generation methods.

Paper: [10]

5.2 SMT Solving
Speaker: Erika Ábrahám, RWTH Aachen, Germany

Abstract: SMT (Satisfiability Modulo Theories) solving is a technology for the
fully automated solution of logical formulas. Due to their impressive efficiency,
SMT solvers are nowadays frequently used in a wide variety of applications.
These tools are general purpose and as off-the-shelf solvers, their usage is truly
integrated. A typical application (i) encodes real-world problems as logical
formulas, (ii) check these formulas for satisfiability with the help of SMT solvers,
and — in case of satisfiability — (iii) decodes their solutions back to solutions
of the original real-world problem.

Paper: [1]

5.3 Goal-Aware RSS for Complex Scenarios via Program
Logic

Speaker: Ichiro Hasuo, NII, Japan

Abstract: We introduce a goal-aware extension of responsibility-sensitive safety
(RSS), a recent methodology for rule-based safety guarantee for automated driv-
ing systems (ADS). Making RSS rules guarantee goal achievement – in addition
to collision avoidance as in the original RSS – requires complex planning over
long sequences of maneuvers. To deal with the complexity, we introduce a
compositional reasoning framework based on program logic, in which one can
systematically develop RSS rules for smaller subscenarios and combine them
to obtain RSS rules for bigger scenarios. As the basis of the framework, we
introduce a program logic dFHL that accommodates continuous dynamics and
safety conditions. Our framework presents a dFHL-based workflow for deriving

6



goal-aware RSS rules; we discuss its software support, too. We conducted ex-
perimental evaluation using RSS rules in a safety architecture. Its results show
that goal-aware RSS is indeed effective in realizing both collision avoidance and
goal achievement.

Paper: [15]

5.4 Configuring Timing Parameters to Ensure Opacity
Speaker: Etienne André, Université Sorbonne Paris Nord, France

Abstract: Information leakage can have dramatic consequences on systems se-
curity. Among harmful information leaks, the timing information leakage occurs
whenever an attacker successfully deduces confidential internal information. In
this work, we consider that the attacker has access (only) to the system execution
time. We address the following timed opacity problem: given a timed system,
a private location and a final location, synthesize the execution times from the
initial location to the final location for which one cannot deduce whether the
system went through the private location. We also consider the full timed opac-
ity problem, asking whether the system is opaque for all execution times. We
show that these problems are decidable for timed automata (TAs) but become
undecidable when one adds parameters, yielding parametric timed automata
(PTAs). We identify a subclass with some decidability results. We then devise
an algorithm for synthesizing PTAs parameter valuations guaranteeing that the
resulting TA is opaque. We finally show that our method can also apply to
program analysis.

Paper: [2]

5.5 Tutorial: Quick(?) and Dirty Intro to AI Ethics
Speaker: Marija Slavkovik, University of Bergen, Norway

Abstract: To have ethical AI two questions need to be answered: i) what is
the ethical impact that an AI system can have, and, ii) what does it mean
for an AI system to behave ethically. The lack of answers to both of these
questions hinder the identification of what are the values or principles that we
want upheld by AI and for AI. Identifying these principles is not enough, we
also want to define them so that they can be operational, or at least understand
what operational means here. There is a gap between moral philosophy and
ethically behaving AI. The tutorial contributes towards closing this gap, by
motivating researchers to interpret an abstract principle from moral philosophy
into an algorithmic property that can be formally specified and measured or
computationally implemented. The tutorial uses recent articles in AI ethics that
attempt to define and identify pertinent ethical principles, as well as ethically
motivated desirable algorithmic properties.

Paper: [22]
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5.6 Dynamic Shielding for Reinforcement Learning in Black-
Box Environments

Speaker: Masaki Waga, Kyoto University, Japan

Abstract: It is challenging to use reinforcement learning (RL) in cyber-physical
systems due to the lack of safety guarantees during learning. Although there
have been various proposals to reduce undesired behaviors during learning, most
of these techniques require prior system knowledge, and their applicability is
limited. This paper aims to reduce undesired behaviors during learning with-
out requiring any prior system knowledge. We propose dynamic shielding: an
extension of a model-based safe RL technique called shielding using automata
learning. The dynamic shielding technique constructs an approximate system
model in parallel with RL using a variant of the RPNI algorithm and suppresses
undesired explorations due to the shield constructed from the learned model.
Through this combination, potentially unsafe actions can be foreseen before the
agent experiences them. Experiments show that our dynamic shield significantly
decreases the number of undesired events during training.

Paper: [24]

5.7 Formal Specification and Testing for Reinforcement
Learning

Speaker: Mahsa Varshosaz, IT-University of Copenhagen, Denmark

Abstract: The development process for reinforcement learning applications is
still exploratory rather than systematic. This exploratory nature reduces reuse
of specifications between applications and increases the chances of introducing
programming errors. This paper takes a step towards systematizing the devel-
opment of reinforcement learning applications. We introduce a formal specifica-
tion of reinforcement learning problems and algorithms, with a particular focus
on temporal difference methods and their definitions in backup diagrams. We
further develop a test harness for a large class of reinforcement learning applica-
tions based on temporal difference learning, including SARSA and Q-learning.
The entire development is rooted in functional programming methods; starting
with pure specifications and denotational semantics, ending with property-based
testing and using compositional interpreters for a domain-specific term language
as a test oracle for concrete implementations. We demonstrate the usefulness
of this testing method on a number of examples, and evaluate with mutation
testing. We show that our test suite is effective in killing mutants (90% mutants
killed for 75% of subject agents). More importantly, almost half of all mutants
are killed by generic write-once-use-everywhere tests that apply to any rein-
forcement learning problem modeled using our library, without any additional
effort from the programmer.

Paper: [23]
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5.8 Automated Driving
Speaker: Krzysztof Czarnecki

Abstract: This tutorial gave a state-of-the-art overview of automated driving,
surveying the problems and solutions available today to build automated drivers,
as well as the key safety standards involved in automated driving. The talk
discussed different levels of automation, and surveyed the levels achieved by
different automated pilots, including Mercedes Drive Pilot, Waymo One, Tesla
Autopilot, and autonomous emergency braking and autonomous trucking. The
talk further discussed the challenges in building a self-driving car and the key
safety standards involved.

B1: Specifications & Ethics
The session explored methods to formalize ethical behavior for machines, fo-
cusing on deriving formal specifications from examples of ethical and unethical
actions. Discussions questioned whether the focus was truly on ethics or re-
lated concepts. Three approaches to defining right and wrong for machines
were identified: moral theory, authority or social choice, and observation and
learning through interaction, such as inverse reinforcement learning (IRL). IRL,
which infers values from informal interactions, was highlighted as a method for
value alignment, with applications like autonomous driving and extensions to
derive formal specifications.

Fairness in machine learning was discussed as a critical ethical considera-
tion. Group fairness metrics, such as demographic parity (equal acceptance
rates) and equalized odds (conditioning on attributes), were contrasted with
individual fairness, which demands treating similar individuals equally. Trade-
offs between these approaches, particularly in biased real-world settings, were
acknowledged. Trustworthiness and explainable AI were also key topics, empha-
sizing the importance of understanding both the internal states of AI systems
and external conditions influencing outputs. Explainability was described as
a tunable concept, requiring techniques to balance transparency and system
complexity.

Challenges in formalizing ethical specifications were explored, including rec-
onciling vague informal values with precise formal reasoning, designing specifi-
cation languages that handle heterogeneous and vaguely defined requirements,
and addressing aspects that defy formalization through constructs like “oracle”
functions. Traffic rules and multi-agent systems were identified as suitable do-
mains for formal ethical specifications due to their well-defined requirements.
Some ethical concepts, like fairness, are testable, while others, such as human
rights, may remain non-testable.

In conclusion, formalizing ethics in AI requires domain-specific approaches
to bridge informal principles with formal reasoning. The session emphasized
focusing on areas where ethical requirements are clear, testable, and well-suited
for formalization.
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B2: Modular AI-Based Systems
The breakout session on Modular AI Systems discussed the design, advantages,
challenges, and potential solutions for integrating classical and AI components
in modular architectures. These architectures aim to balance the benefits of end-
to-end learning with the structure and interpretability of modular designs. Mod-
ular systems were contrasted with end-to-end approaches, which often involve
monolithic neural networks. Several modular architectures were discussed, such
as multi-tasking with shared latent representations and sequential pipelines. In
multi-tasking, a feature encoder generates a shared latent representation used
by a primary task and auxiliary tasks, enabling efficient multi-task learning. In
sequential pipelines, modules—comprising deep neural networks (DNNs) and
optionally differentiable classical algorithms—exchange latent representations
explicitly. This enables task-specific processing while leveraging the benefits of
modular design.

Modular AI systems offer several advantages, including system decomposi-
tion and work division, which allow for specialization and distributed develop-
ment. They also enable reusability, where individual modules can be reused
across different systems. Moreover, modular systems offer graceful degradation,
meaning that failures in one module may not cascade through the system, im-
proving robustness. Additionally, modular designs can potentially minimize the
need for extensive training and testing data, and they allow for easier identifi-
cation of gaps in the training and testing data.

Despite their benefits, modular AI systems present significant challenges.
For example, classical components benefit from well-understood assume and
guarantee (A/G) reasoning, but similar methods are not yet established for
AI components. In multi-task architectures, compositional A/G rules between
modules are difficult to define because modules may operate independently at
certain times. In sequential-task architectures, latent space data exchange be-
tween modules complicates specifying A/G rules, raising issues like lack of trans-
parency, potential unwanted information leaks, and the correctness of decisions
based on latent space representations. Additionally, the incrementality and
non-monotonicity of DNN components complicate system-wide guarantees.

The group identified several research directions and strategies to address
these challenges. These include causal models and interventions to ensure de-
cisions align with the correct reasons and enhance explainability, as well as
specification mining to extract specifications from system behavior and relate
global system requirements to individual components. Relating specifications
with explanations and developing modular specifications for data-driven end-
to-end simulation were also discussed. Furthermore, automated reasoning and
reactive synthesis techniques can be applied to ensure system-level correctness,
especially in numerical problems.

An example application of modular AI systems discussed during the session
was automated driving, where modular architectures can decompose complex
tasks like perception, planning, and control into manageable components.
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B3: Runtime Assurance
The breakout group on Runtime Assurance discussed the role of runtime mech-
anisms in ensuring the safety, security, performance, and reliability of systems.
These mechanisms aim to compensate for the inability to guarantee safety fully
at design time and to improve system learning processes. The group identi-
fied three primary objectives: imposing safety properties to ensure adherence
to defined safety, security, and performance criteria during operation; enhanc-
ing reliability to increase dependability in dynamic and uncertain environments;
and improving learning processes by accelerating and refining machine learning
through runtime assurances.

Several challenges were highlighted, particularly in modeling and interact-
ing with environments. Simplified assumptions often underlie safety guarantees,
leading to discrepancies with real-world scenarios, especially in reinforcement
learning (RL) involving deep neural networks (DNNs), where the environment
behaves like a black box. It is challenging to adapt when the real environment
deviates from expected models. Realistic modeling for architectures such as
shields and Simplex was also discussed. Another challenge involves anticipatory
semantics, specifically addressing the breaking of assumptions dynamically and
deploying end-to-end monitoring in machine learning architectures. Enforcing
runtime security policies without disrupting system operations is another sig-
nificant issue.

The group explored several potential solutions and research questions. Run-
time verification (RV) was acknowledged as a partial solution to runtime as-
surance. Tools and frameworks such as ULGEN and SOTER were noted for
enabling formal verification and safe learning. Shields and runtime enforcement
mechanisms were proposed to maintain safety properties during operation. Safe
reinforcement learning (Safe RL) was discussed as a method to integrate safety
into learning processes by using runtime monitors to influence behavior through
rewards and penalties. Maintaining consistency between logical system speci-
fications and neural network representations through specification mining was
another key area of interest. Simplex architecture, which employs runtime mon-
itoring to detect assumption violations and take mitigation actions such as dy-
namically adapting shield parameters, was highlighted as a promising approach.

The group proposed fostering collaboration between formal methods (FM)
experts and machine learning (ML) researchers, potentially through a COST
action or a shared platform. This collaboration would aim to unify efforts to
address safety and runtime assurance challenges in AI-driven systems.

B4: Neuro-Symbolic X
The breakout session on Neuro-Symbolic-X explored the integration of sub-
symbolic approaches, such as neural networks (NNs) and statistical methods,
with symbolic methods from formal methods (FM) and knowledge represen-
tation (KR). This hybrid approach seeks to unify data-driven inference and
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deductive reasoning to address diverse challenges in AI.
Sub-symbolic methods, like neural networks, prove beneficial for data-driven

tasks that address hard-to-formalize aspects of problems and provide approxima-
tions through learning. Symbolic methods, in contrast, bring the advantage of
formalizable prior knowledge, explicit reasoning capabilities, and interpretable
interfaces, which are critical for domains like medical diagnostics. The session
highlighted the complementary strengths of these paradigms, with sub-symbolic
methods offering flexible modeling and symbolic methods enabling logical infer-
ence and human interpretability.

Several integration strategies were discussed, including:

• Neural networks calling symbolic reasoners and vice versa.

• Differentiable logic representations to bridge neural and symbolic reason-
ing.

• Neural networks generating reasoning-related code.

• Injecting symbolic knowledge into neural networks using loss functions.

• Employing vector databases for knowledge grounding.

Applications for neuro-symbolic systems include shielding AI models to en-
hance safety, developing governance and constitutional frameworks for conver-
sational AI and decision-making systems, and advancing robotics and medical
technologies.

Key challenges include improving the interpretability of neural and latent
representations, which remains a critical obstacle to integrating sub-symbolic
and symbolic approaches effectively. Addressing these challenges would enable
the combined approach to unlock powerful capabilities across a wide range of
applications.
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