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1 Introduction and Background

Generative AI is an AI technology which is capable of generating text, images, or
other media, using generative models. According to Gartner’s Hypercycle, the
generative AI is currently on the peak of the inflated expectations on emerging
technologies [11]. Its market is expected to have an explosive growth in the next
ten years a compound annual growth rate (CAGR) of 40% from $40 billion in
2022 to $1.3 trillion in 2033 [9]. This is mainly driven by the increasing number
of adoptions for Foundation Models (FM) and their associated use cases (e.g.,
OpenAI’s ChatGPT and GitHub’s Copilot). FMs are trained on a huge set
of data and can be adapted (e.g., fine-tuned) to a wide range of downstream
tasks [13]. Currently the most popular type of FM is Large Language Models
(LLMs), which is trained on large corpus of unlabelled text data. Although
these LLMs can perform various tasks from language translation to code gener-
ation, there are a few serious drawbacks which prevent FMs to be used alone as
a general purpose framework in a much wider usage context. Instead of simply
waiting for FMs to resolve these issues and become general purpose, current
industry and academic researchers have come up with various innovative engi-
neering solutions/frameworks to mitigate these issues. Below we describe a few
such examples:

• Grounding: Hallucinations refer to the problem of FMs sometimes gen-
erating texts that is incorrect or purely fictional [18]. To mitigate this
issue, it is recommended to incorporate FMs with some domain specific
knowledge databases, such as a vector database or a knowledge graph, so
that the answers can be semantically searched within these right context.

• External Tool Uses: benchmarking studies have shown that FMs are
not good at logical reasons tasks such as mathematical calculations [6] and
logical inference [12]. On the contrary, traditional software applications
are coded based on rules and excels in reasoning. Hence, various solutions
have enabled LLMs to invoke external tools [20] or third-party plugins [3].

• Prompt Engineering: Interacting LLMs are quite different from tra-
ditional ML models or classic software applications. Users write natural
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language like instructions, called prompts, to the LLMs. However, LLMs
may output incorrect or suboptimal results due to misunderstanding of the
intensions behind these prompts. Hence, a new discipline, called prompt
engineering [5], which focuses on developing tools and techniques to opti-
mize the use of prompts for LLMs to accomplish a variety of tasks.

In addition to the aforementioned engineering techniques, various engineer-
ing frameworks (e.g., Langchain [18], HuggingGPT [21], and AutoGPT [2]) have
been developed to facilitate engineers to better FM-powered applications. These
applications interact with one or multiple FMs and interacts with third party
tools/frameworks. Hence, they are more capable of completing more complex
tasks like price matching and enterprise search.

Researchers and practitioners believe that the above synergy between the
software engineering (SE) and FM is just the beginning and needs to continue
throughout this new era of generative AI. This is mainly due to the following
three reasons: (1) FMs are black-boxes which require researchers and practi-
tioners to explore and experiment in various ways to uncover their emergent
behaviors and drawbacks. On one hand, newly discovered emergent capabilities
(e.g., chain-of-thought reasoning and instruction following [23]) are reported for
FM models. On the other hand, through experimentation and trail-and-error,
new risks and drawbacks associated will gradually be revealed and reported.
(2) New types of FM models (e.g., multimodality FM models [10] and world
models [8]) or domain specific FM models (e.g., FMs in Finance [24] and IT
operations [15]), which equipped with new or enhanced capabilities, are being
proposed at a much faster pace with new capabilities. (3) As these FM-powered
software applications are slowly moving from research labs into production, in
addition to technology novelty, additional concerns (e.g., legal and trustworthy
concerns, costs and efficiency, etc.) need to be properly evaluated and addressed
before the formal product launch. Failure to address these concerns will result
in profit loss or even blockage of product sales. This meeting brought together
leading researchers to discuss current and future trends and challenges related
to FMs in and for SE. It marks the first Shonan seminar focused on the topic of
FM and SE, which has the potential to transform the field of SE. In the remain
part of this report, we will use FMs and LLMs interchangably.
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2 Meeting Overview

Shonan Seminar #176 focuses on the challenges and opportunities of Foun-
dation Models and Software Engineering. It took place between March 25 and
March 28, 2024. The whole seminar is discussion-oriented, which consists of one
keynote and three break out discussion sessions. Dr. Ahmed Hassan opened the
seminar with his talk regarding “AIware in the Foundation Models Era”. Then
professor Lingming Zhang from the University of Illinois Urbana-Champaign in
USA delivered his keynote, titled “Software Quality Assurance in the Era of
Large Language Models”. The participants spent the remaining morning of the
first day briefly introduced themselves and their research interests. The remain-
ing seminar is broken down into three break out sessions, which consists of a
total of nine different discussion topics. Before each break out session, everyone
meets up and decides on two to four topics to discuss during each session based
on the relevance, importance, and interests among the participants. Each de-
cided topic was assigned with one discussion lead and one scriber. After each
break out session, the discussion lead presented a summary of the discussions
for each of the topic. Below are the list of topics which were discussed:

• During the first discussion session, the following two topics were discussed:
Code Generation and Productivity.

• During the second discussion session, the following three topics were dis-
cussed: Data Quality, FM-powered agent-oriented software engineering,
and FM-powered software testing.

• Dring the third discussion session, the following three topics were dis-
cussed: Process, Education, and Synergizing classical SE analysis and FM.
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AIware in the Foundation Models Era

Ahmed E. Hassan, Queen’s University

“Software for all and by all” is the future of humanity. AIware, i.e., AI-
powered software, has the potential to democratize software creation. The def-
inition of software along with many Software Engineering (SE) aspects, pro-
cesses, tools, platforms, and techniques will need to be either reimagined, re-
formulated or redesigned, enabling individuals of all backgrounds to partici-
pate in its creation with higher reliability and quality. Over the past decade,
software has evolved from human-driven Codeware to the first generation of
AIware, known as Neuralware, developed by AI experts. Foundation Models
(FMs, including Large Language Models or LLMs), ushered in software’s next
generation, Promptware, led by domain and prompt experts. However, this
Promptware merely scratches the surface of software’s future. We are already
witnessing the emergence of the next generation of software, Agentware, in
which humans and intelligent agents jointly lead the creation of software. With
the advent of brain-like World Models and brain-computer interfaces, we an-
ticipate the arrival of Mindware, representing the 5th generation of software.
Agentware and Mindware promise greater autonomy and widespread accessibil-
ity, with non-expert individuals, known as Software Makers, offering oversight
to autonomous agents.

In this talk, Dr. Hassan explained why the SE community will need to
develop fundamentally new approaches and evolve existing ones, so they are
suitable for a world in which software creation is within the reach of Software
Makers of all levels of SE expertise, as opposed to solely expert developers.
We must recognize a shift in where expertise lies in software creation and start
making the needed changes in the type of research that is being conducted,
the ways that SE is being taught, and the support that is offered to software
makers. Additionally, Dr. Hassan also discussed several initiatives aimed at
building a collaborative community to work collectively toward this vision. He
reported progress on efforts such as the FM+SE Vision 2030 event [4] and the
First AIWare Conference [1].
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Software Quality Assurance in the Era of Large Language
Models

Lingming Zhang, University of Illinois Urbana-Champaign, USA

Abstract: In recent years, Large Language Models (LLMs), such as GPT-4
and Claude-3, have shown impressive performance in various downstream appli-
cations, including software engineering. In this talk, I will discuss the potential
impact of modern LLMs on the important problem of software quality assurance,
along with our recent research findings. I will first talk about the new opportu-
nities and possibilies LLMs can offer for better quality assurance of real-world
software systems. Next, I will talk about the new quality assurance challenges
or issues raised by code LLMs themselves and deep learning in general, including
strategies for mitigation. Lastly, I will also briefly discuss our recent experiences
in building fully open-source code LLMs (such as StarCoder2 and Magicoder)
for supporting better software quality assurance in the LLM era.
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4 AIWare

5 Meeting Schedule

This seminar took place between March 25 to March 28, 2024. For the detailed
agent, please refer to Table 1.
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Day 0: March 24, 2024 (Sunday)
15:00 - : Check-in
19:00 - 21:00: Welcome banquet
Day 1: March 25, 2024 (Monday)
09:00-09:15 Welcoming address - Zhen Ming (Jack) Jiang, Ahmed E. Hassan, Yasutaka Kamei
09:15-09:45 Ahmed E. Hassan “AIware in the Foundation Models Era”
09:45-12:00 Self introduction from each invitee
12:00-13:40 Lunch + Group Photo
13:40-14:40 Keynote - Lingming Zhang

“Software Quality Assurance in the Era of Large Language Models”
14:40-15:10 Planning for discussion sessions
15:10-15:30 Coffee break
15:30-17:30 Breakout Sessions #1
17:30-18:00 Free-time
18:00-19:30 Dinner
Day 2: March 26, 2024 (Tuesday)
09:00-09:15 Introduction to the 2nd day Agenda
09:15-9:30 Breakout summary Report #1
9:30 - 9:45 Breakout Sessions #2
9:45 - 10:15 Coffee break
10:15-12:00 Breakout Sessions #2
12:00-13:00 Lunch
13:00 - 20:45 Excursion and dinner
Day 3: March 27, 2024 (Wednesday)
09:00-09:15 Introduction to the 3rd day Agenda
09:15-10:15 Breakout summary Report #2
10:15-10:45 Coffee break
10:45-12:00 Breakout Sessions #3
12:00-14:30 Lunch
14:30-15:30 Breakout Sessions #3 (Continued)
15:30-17:30 Breakout summary Report #3
Day 4: March 28, 2024 (Thursday)
09:00-10:30 Discussion Session Wrap-up
10:15-10:45 Coffee Break
10:45-12:00 Workshop conclusion and Looking Forward

Table 1: Meeting Schedule for this Shonan Seminar
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6 Discussion Topics

In this section, we will report a summary of our discussion outcomes for each
of the discussed topics. For each topic, we will first summarize the current
promising research and practice achievements. Then we will present some of
the promising research and practice achievements. Finally, we will present our
list of term research direction that we feel the field to be tackling.

6.1 Code Generation

The discussion on this topic is centered around “Towards trustworthy code
generation in the context of real world software development”.

6.1.1 Current Achievements

Code generation, which involves transforming natural language inputs into code,
has seen significant advancements in research and practice. A variety of bench-
marks and datasets, such as EvalPlus, CoderEval, and ClassEval, have been
developed to evaluate and advance the field. Numerous industry tools and mod-
els, including ChatGPT, Copilot, CodeLlama, Bard/Gemini, CodeWhisperer,
and proprietary Google tools, highlight the practical applications of code gener-
ation. Open-source large language models further contribute to this ecosystem.
Beyond code generation, FMs are being leveraged for tasks such as test genera-
tion, enhancing trustworthiness by ensuring robust code outputs. Formal proof
synthesis, powered by tools like GPT-f, LISA, Baldur, Proofster, DSP, and Le-
anDojo, also underscores the potential of LLMs to improve trustworthiness by
generating formally verified code and proofs. Together, these advancements re-
flect a rapidly evolving landscape in automated code generation and verification.

6.1.2 Overlooked Challenges

Despite advancements in code generation, several challenges remain overlooked.
The boundaries between different tasks categorized as code generation lack clar-
ity, complicating the evaluation and standardization of methodologies. One
challenge is managing varying levels of abstraction, where an LLM generates
both an abstract model and corresponding code. While this allows for cross-
verification, it risks giving users a false sense of confidence in the artifacts.
Integrating reasoning capabilities into the LLM workflow is another challenge,
as it requires designing systems that actively assist users while maintaining ac-
curacy. Additionally, alternative representations of models could improve user
comprehension and aid generation but remain underexplored. Finally, ensuring
that LLMs are aware of their own limitations is crucial to prevent them from
attempting tasks they are incapable of performing or answering questions out-
side their training. Addressing these challenges is essential for building more
reliable and user-friendly code generation systems.

6.1.3 Future Research Directions

Future research directions in code generation emphasize creating a more cohe-
sive ecosystem of tools and improving how users interact with generated models
and specifications. A key focus is clarifying the interplay between multiple tools
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in the tool chain, such as LLMs, static analyzers, and test generation frame-
works. While these tools already exist, their integration and interoperability
are not well-documented or shared. Another direction involves exploring how
test generation and theory exploration tools can help users understand and re-
fine generated models and specifications. From a human-computer interaction
(HCI) perspective, presenting information in ways that align with user needs
and ensuring generated outputs meet user expectations are critical areas for de-
velopment. Moving up the abstraction stack is another priority, with promising
research on FM-powered agent tree searches, etc. This approach could extend
beyond proof generation to other coding tasks, paving the way for innovative
applications. Finally, translating source code across programming languages
offers additional opportunities for enhancing cross-language development and
collaboration.

6.2 Software Productivity

The theme of the discussion on software producivity is around “Productivity
with FMs as CoPilots”.

6.2.1 Current Achievements

Software productivity in the context of LLM-based code generation tools refers
to the efficiency and quality with which developers can achieve their goals, such
as writing, reviewing, and debugging code. These tools have shown potential for
improving task completion speed, aiding in code comprehension, and streamlin-
ing workflows. However, defining and measuring productivity remains complex,
with debates around metrics like time saved, code quality, and developer sat-
isfaction. Current research highlights challenges such as ensuring the quality
of generated code, mitigating over-reliance on tools, and understanding their
impact on team dynamics and skill retention. Despite these challenges, tools
like Copilot and ChatGPT are recognized for enhancing developer tasks, though
their long-term impact on productivity and workplace practices requires further
investigation.

6.2.2 Overlooked Challenges

The challenges of defining and measuring software productivity with LLM-based
tools remain largely overlooked. Productivity is often ambiguously defined, with
metrics such as acceptance rate of suggestions, faster code completion, or im-
proved code quality failing to capture the broader impacts on outcomes like
bug-free or maintainable code. There is a need to shift the focus from “pro-
ductivity” to “helpfulness” by assessing whether tools effectively aid developers
in achieving tasks. Productivity also encompasses dimensions like developer
satisfaction and happiness, balancing quality with efficiency, and understand-
ing adoption impacts, as developers may feel pressured to use tools to keep up
with peers. However, tools face inherent limitations, including generating in-
complete or suboptimal code due to limited context and risks of over-reliance,
which could diminish core coding skills over time. Economic and ethical con-
cerns, such as job security and tool applicability across different organizational
contexts, further complicate adoption. Measurement challenges include the lack
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of tailored benchmarks for specific tasks and difficulty assigning business value
to tool introduction. Additionally, social and collaborative dynamics, such as
interactions with LLM-based tools or shifting documentation practices, influ-
ence how developers work. Longitudinal and domain-specific studies are needed
to understand the long-term impacts on onboarding, team productivity, and
development practices. Addressing these challenges will enable the research
community to develop tools that align with meaningful productivity metrics
while fostering quality and collaboration in software engineering.

6.2.3 Future Research Directions

Future research directions in software productivity with FM-powered software
development focus on understanding how these tools impact developer work-
flows, learning curves, and overall efficiency. Key questions include whether
AI-generated code accelerates the code review process and how exploratory in-
terfaces (e.g., chat-based tools) compare with embedded tools like Copilot in
integrated development environments (IDEs). Research should also investigate
how these tools influence deep work, learning, and tinkering, particularly in
inclusive contexts where diverse developer skills and backgrounds come into
play. Pragmatic concerns include instrumenting platforms like GitHub to iden-
tify generated code, enabling the study of usage patterns, and understanding
the economic trade-offs developers make when choosing tools. There is a grow-
ing need to clarify tool interfaces, ensuring they align with developer workflows
rather than technology constraints, while also exploring how LLM-based tools
lower barriers for beginners, aid with APIs, and streamline work in unfamiliar
domains. Ethical and accountability challenges—such as responsibility for er-
rors in LLM-generated code—remain critical areas for exploration. Additionally,
ensuring equitable access to these tools and fostering inclusivity in research and
development will be vital as the field evolves. In the long term, as these tools be-
come permanent fixtures in development workflows, research must explore how
to maximize their benefits across diverse tasks while mitigating potential risks.
Intellectual property (IP) concerns and equitable access remain significant ob-
stacles, drawing parallels with lessons learned from two decades of open-source
software adoption, which fostered inclusivity and democratization. Ensuring
equitable access to LLM-based tools is vital, especially for under-resourced com-
munities and educational environments, where affordability may limit students’
ability to leverage these tools beyond academia. Moreover, the integration of
LLM tools in education raises critical questions about teaching methodologies,
emphasizing the need to prepare students for a future where these tools are
ubiquitous and ensuring their skills remain adaptable in a changing technologi-
cal landscape.

6.3 Data Quality

The focus of this topic is on how to collect or generate high-quality data to train
and test a FM.
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6.3.1 Current Achievements

Data quality in software engineering encompasses a broad range of attributes
that determine the utility, fairness, and reliability of data for various tasks.
High-quality data is accurate, representative, timely, and diverse, avoiding ex-
cessive repetition while covering critical dimensions of a domain. The impor-
tance of specific data attributes varies depending on the context, the task, and
the stage of model development—ranging from pre-training to fine-tuning and
testing. For example, some quality issues might be acceptable in pre-training
but are critical to address in fine-tuning or testing phases. Synthetic data has
emerged as a controlled and scalable strategy for training, though it can pose
challenges such as missing unseen data or risks of overfitting. Key advances in-
clude fine-tuning models with small, high-quality datasets, using curated reposi-
tories like GitHub for software-related data, and employing frameworks to assess
and ensure data quality. Ongoing challenges involve automating quality checks,
integrating diverse data types (e.g., runtime logs, documentation, diagrams),
and addressing data contamination risks. Promising research efforts continue
to explore these challenges, leveraging insights from curated software datasets
and innovative data-centric approaches.

6.3.2 Overlooked Challenges

Overlooked challenges in data quality for software engineering include issues of
data security, domain specificity, and maintaining dataset integrity. Poisoning
training datasets at web scale, as demonstrated in recent research, highlights the
vulnerability of large-scale data to malicious attacks that can compromise model
outputs. Similarly, stealthy backdoor attacks targeting code models pose signif-
icant risks, emphasizing the need for robust defenses. Domain-specific models,
such as those for repairing quantum programs, require highly tailored datasets,
raising questions about the feasibility of obtaining sufficient, high-quality data
and ensuring it remains current. Another critical area is the identification and
management of software engineering-specific “data smells”, such as inconsis-
tencies, wrong labels, missing values, or incomplete information. Addressing
these challenges demands both a deeper understanding of domain-specific re-
quirements and the development of tools and strategies to safeguard, curate,
and adapt datasets effectively.

6.3.3 Future Research Directions

Future research directions in software engineering (SE) and LLM include adapt-
ing established data quality dimensions—such as completeness, accuracy, time-
liness, consistency, and accessibility—to the unique challenges of SE and LLM
contexts. These efforts involve investigating issues like ensuring sufficient and
reliable data breadth and depth, maintaining compatibility with historical data,
and making information readily retrievable for practical use. Specific challenges
include addressing known problems, such as the limitations of the SZZ algo-
rithm, and exploring data attribution methods to trace and debug errors in
training data, an intersection of SE and machine learning. Synthetic data gen-
eration also presents opportunities, particularly in designing methods to train
models when linking disparate data sources is non-trivial. Emerging AI and
LLM-driven techniques, such as reinforcement learning with human feedback
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(RLHF) for data preprocessing and labeling, and automated tools for testing and
profiling data quality, hold promise for improving data engineering practices.
These approaches aim to make data management more efficient and robust, lay-
ing the groundwork for more reliable and high-performing AI/LLM-based sys-
tems. In the longer term, one should look into the critical issue of the creation
of “training-free zones” on the internet to prevent contamination of training
data, preserving the integrity of datasets. Convincing companies to share high-
quality internal data for public use poses another significant challenge, requir-
ing strategies to balance proprietary concerns with collective progress. Achiev-
ing the optimal trade-off between dataset size and quality remains a persistent
question, as larger datasets often compromise on precision while higher-quality
datasets can be harder to scale. Additionally, a lack of a ”software process
model” perspective, such as the V-model, limits the contextual understanding
of SE datasets. Integrating and fusing SE data from diverse sources—spanning
versions, modalities, and active or passive collection methods—presents another
formidable challenge. Developing advanced reasoning methods, such as chain-of-
thought reasoning, could help make sense of complex, multi-source datasets and
enable better insights for SE and LLM applications. These challenges highlight
the need for long-term innovation in dataset construction, usage, and quality
assurance.

6.4 Agents

The discussion on this topic is centered around “FM-powered Agent-Oriented
Software Engineering”.

6.4.1 Current Achievements

Software engineering (SE) agents are autonomous systems that leverage the
capabilities of foundation models (FMs) to achieve high-level goals in software
development. Unlike traditional tools or APIs that require explicit, step-by-step
instructions, SE agents operate independently by breaking down overarching ob-
jectives into manageable tasks and orchestrating their execution. These agents
are designed to support software engineers by handling complex tasks, rang-
ing from code generation and debugging to effort estimation and collaborative
problem-solving.

Current achievements in this field include the development of intelligent in-
terfaces like GitHub Copilot [7] and advanced agent frameworks such as MetaGPT [16]
and Voyager [22]. These systems demonstrate the ability to assist in tasks
like multi-agent collaboration, responsible AI design, and open-ended problem-
solving. Additionally, efforts like modularized agents and communication op-
timization (e.g., language-based or visual interactions) are paving the way for
more effective integration of agents into SE workflows. However, challenges
such as maintaining trustworthiness, understanding causal relationships, and
addressing the ”black box” nature of agents remain critical for the future devel-
opment of SE agents.
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6.4.2 Overlooked Challenges

Overlooked challenges in the use of agents and LLM in SE highlight several
fundamental gaps in understanding and implementation. One key issue is how
agents should present themselves, other agents, and humans in a way that builds
trustworthiness while ensuring their outputs are comprehensible and reliable.
The complexity of causal relationships in agent systems and the difficulty in
defining thresholds or safeguards to evaluate their effects further complicates
their use. These systems remain prone to being “black boxes”, which hinders
transparency and trust. Additionally, applying autonomous techniques effec-
tively within the SE context requires bridging gaps in skill measurement and
communication methods between agents and human developers. Questions also
arise about whether agent interactions will resemble human communication or
API usage. Finally, the lack of proper scenarios, datasets, and benchmarks tai-
lored for SE tasks, along with the need for industry collaboration to refine and
safeguard multi-agent systems, remains a significant challenge that demands
attention from both academia and industry.

6.4.3 Future Research Directions

Future research directions in the intersection of SE and FM-powered autonomous
agents emphasize several critical areas. One major avenue involves exploring
how agents can autonomously handle complex tasks by breaking down high-level
goals into actionable subtasks and orchestrating their execution. Research could
investigate the roles and communication methods of multi-agent systems, includ-
ing how agents interact with each other and with humans, such as through lan-
guages, images, or other modalities. Trustworthiness and responsibility in agent
systems are key challenges, requiring the development of safeguards, thresholds,
and techniques for measuring agent skills and understanding their black-box
nature. Practical applications, like GitHub bots and modularized agent sys-
tems, present opportunities for improving onboarding, training, and collabora-
tive software development. Long-term challenges include creating benchmark
datasets and scenarios specifically for SE contexts and addressing conflicts, in-
frastructure needs, and the complexities of maintaining versus generating code
in agent-based systems. These directions promise to reshape SE practices and
leverage agents for more efficient, trustworthy, and innovative workflows.

6.5 FM-powered Software Testing

The discussion on this topic span across the design, the execution, and the
analysis of FM-powered software testing.

6.5.1 Current Achievements

Current achievements in FM-powered software testing demonstrate significant
progress in utilizing LLMs to streamline and enhance traditional testing prac-
tices. LLMs have been successfully applied to both black-box testing, such as
fuzz testing, and white-box testing, like unit test generation. They have proven
effective in automating test case generation and repair, minimizing flaky tests,
and reducing test suite duplication, making testing processes more efficient and
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scalable. For example, tools like FuzzGPT [14] leverage LLMs to uncover run-
time errors and explore metamorphic relations, which help generate better test
cases. Moreover, LLMs are being used to map events from game documenta-
tion to generate test cases and to reproduce bugs from bug reports, demon-
strating their versatility. Efforts to integrate LLMs with other techniques, such
as retrieval-based approaches and differential prompting, further enhance their
utility in producing high-quality tests. These advancements highlight the po-
tential of LLMs to revolutionize software testing by automating labor-intensive
tasks, improving coverage, and reducing costs, though challenges in oracle gen-
eration and hallucination remain areas for future exploration.

6.5.2 Overlooked Challenges

Overlooked challenges in FM-powered software testing stem from the complex-
ities of effectively integrating large foundation models into diverse testing pro-
cesses. One significant challenge lies in defining the boundaries of what these
models can reliably achieve, particularly for generating accurate test cases and
oracles. The lack of formal specifications for critical systems exacerbates this, as
most rely on loosely defined requirements, making it difficult to ensure compre-
hensive testing coverage. Additionally, data security and the risk of backdoor
attacks on training datasets threaten the reliability of models used for testing.
FM-powered testing also faces scalability issues, such as optimizing test suite
minimization and addressing flaky test cases, which are expensive and time-
consuming to repair. Another challenge is ensuring the utility of FM-generated
outputs, as hallucinations can mislead testing efforts without proper evaluation
frameworks. Furthermore, the reliance on proprietary or commercial models
raises concerns about accessibility, transparency, and trustworthiness in open
testing environments. These challenges highlight the need for a deeper under-
standing of FM limitations, the development of robust evaluation methods, and
advancements in data and testing frameworks to fully leverage FM capabilities
in software testing.

6.5.3 Future Research Directions

Future research directions in FM-powered software testing focus on addressing
critical challenges to enhance the reliability, efficiency, and adaptability of these
approaches. A key area is leveraging FMs and metaphoric relations to generate
test cases, particularly for complex and domain-specific programs. Generating
accurate test oracles remains a significant challenge, requiring novel strategies
to validate functional errors effectively. Another direction involves using FMs
to identify inconsistencies and bugs within software implementations, such as
comparing outputs derived from books and compilers. Automating the creation,
maintenance, and evolution of testing processes through FMs is also critical, es-
pecially in multi-agent systems where human involvement must be seamlessly
integrated. Additionally, incorporating richer feedback, such as system mem-
ory layouts or environmental states, could guide FMs to produce more effective
and context-aware test cases. Addressing these challenges will require inno-
vative methods to test in complex environments, capturing nuanced states and
system-level inputs while ensuring that FM-based approaches align with broader
software engineering goals.
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6.5.4 IDE

This discussion of IDE was centred around the capabilities of the future IDE
for AIWare.

6.5.5 Current Achievements

Current achievements in integrating LLMs into IDEs have significantly enhanced
the software development process. Modern IDEs now include features like code
completion and chat interfaces, enabling developers to interact dynamically with
AI assistants. These assistants assist in generating code, identifying design pat-
terns, and providing suggestions tailored to the context of ongoing development
tasks. The integration of LLMs into IDEs has also allowed for real-time vi-
sualization of AI processes, making it easier for developers to understand the
underlying mechanics of generated outputs. Additionally, IDEs are becoming
more proactive, capable of adapting to changes in code and maintaining work-
flow continuity without unnecessary interruptions. These advancements have
laid the foundation for prompt-driven development and domain-specific tool-
ing, highlighting the growing role of AI-powered IDEs in streamlining complex
software engineering tasks and improving developer productivity.

6.5.6 Overlooked Challenges

Overlooked challenges in integrating LLMs into modern IDEs stem from the
complexities of adapting development environments to AI-driven workflows while
maintaining developer productivity and ease of use. A major challenge lies
in balancing traditional code-centric approaches with emerging prompt-centric
paradigms, requiring new methods for managing and stabilizing prompts across
model versions. IDEs need to evolve to handle diverse user needs, such as of-
fering workflow-aware suggestions that adapt to the context, like whether the
code will be reviewed by humans. Another critical gap is the lack of traceability
between prompts and generated code, making debugging and maintaining AI-
assisted outputs cumbersome. Additionally, the absence of a unified vocabulary
for actions and elements within future IDEs complicates the automation of in-
teractions and tasks. There is also a growing need to reconcile the rapid pace
of industry adoption with academic research, ensuring that foundational chal-
lenges like consistency, error reduction, and seamless integration of testing and
debugging workflows into AI-assisted environments are not sidelined. Address-
ing these issues will require collaborative efforts between software engineering
and ML communities to create adaptable, proactive, and user-centric IDEs that
fully leverage LLM capabilities.

6.5.7 Future Research Directions

Future research directions for integrating LLMs into IDEs revolve around re-
defining the interaction between developers and tools to enhance efficiency and
innovation. A critical focus is creating IDEs that are context-aware, capable of
adapting to user workflows, and proactive in offering design patterns and debug-
ging assistance without intrusive interruptions. Research must explore transi-
tioning from code-centric to prompt-centric development, addressing challenges

16



such as prompt stability across LLM versions and maintaining traceability be-
tween prompts and generated code. Long-term goals include leveraging LLMs
for broader software lifecycle tasks like testing, debugging, architecture, and
specification management. Collaboration with the machine learning (ML) com-
munity to design LLM architectures tailored for software engineering tasks is
essential. Additionally, understanding how LLMs can autonomously identify
requirements, propose fixes, and act as intelligent assistants or even product
managers presents transformative possibilities. Collecting domain-specific data
and designing traceable relationships between prompts and code are founda-
tional steps for realizing this vision, paving the way for a new generation of
developer tools.

6.6 Process

The theme of this discussion topic was software development processes in the
Age of FM.

6.6.1 Current Achievements

Current achievements in software development processes in the era of FMs
revolve around integrating FM-powered tools to transform traditional work-
flows. These processes now involve selecting models based on cost, privacy,
and domain-specific requirements, with prompting, knowledge engineering, and
context management becoming integral components. The use of dynamic and
static workflows has expanded to accommodate FM capabilities, shifting arti-
fact creation from manual coding to FM-assisted generation. Tools like Copilot
and agentic systems such as Devika and Devin have redefined the nature of soft-
ware artifacts and their generation. The ability to specify detailed requirements
and ensure correctness and reliability in FM-driven environments has become
a central focus, with early research showing promise in adapting FM-powered
tools to streamline tasks like code analysis and defect detection. These ad-
vancements highlight a move toward FM-based building blocks that redefine
traditional development while ensuring reliability and adaptability.

6.6.2 Overlooked Challenges

Overlooked challenges in the integration of FMs in software development pro-
cesses highlight critical gaps in academic and industrial understanding. Key
concerns include how to realign workflows to accommodate FM-driven develop-
ment, particularly when tasks such as code generation scale exponentially, po-
tentially overwhelming traditional practices like code review and analysis. There
is uncertainty about how to adapt defect detection and debugging processes in
FM-centric systems, especially when artifacts like requirements, code, and tests
are inherently intertwined with probabilistic models. The transition from static
to dynamic workflows introduces further complexity in ensuring correctness, re-
liability, and traceability. Questions around sustainability and regulation also
remain underexplored, including the societal and economic implications of FM
adoption, particularly in aligning with global regulations. Lastly, a critical gap
lies in understanding the role of humans within FM-driven workflows and how
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best to leverage human capabilities in tandem with AI tools, ensuring the devel-
opment of robust, trustworthy systems. These challenges necessitate a rethink-
ing of both technical and human-centered approaches to software engineering.

6.6.3 Future Research Directions

Future research directions in this topic focus on redefining processes to leverage
FM-powered tools and autonomous agents effectively. Key areas include inte-
grating FMs as core components in workflows, prompting dynamic and static
workflow designs that adapt to domain-specific requirements. Ensuring correct-
ness and reliability in FM-driven systems is critical, especially when FMs replace
traditional databases or serve as dynamic interfaces to data. Requirements en-
gineering will evolve to emphasize explicit specification and property guarantees
for FM-driven interactions. Research must also address the scalability of tra-
ditional practices like code review and testing, adapting them to the higher
code generation rates enabled by FMs. Additionally, the role of “AIware”, the
interplay between hardware, software, and FM agents—requires exploration to
design cohesive systems. As development processes realign, sustainability and
regulatory considerations will influence how FMs are deployed, ensuring human
involvement in areas best suited to their capabilities. Long-term challenges in-
clude creating robust debugging processes, orchestrating complex dependencies
among FMs, and fostering collaboration between academic and industry stake-
holders for data and infrastructure sharing. These directions pave the way for
a transformative shift in software engineering methodologies.

6.7 Education

6.7.1 Current Achievements

Current achievements in integrating FMs into software engineering education
demonstrate significant promise in enhancing learning and teaching practices.
Tools like GitHub Copilot have showcased practical applications in code gen-
eration, while research highlights their potential in areas such as automated
scoring, creating exercises, and supporting students in problem-solving. Stud-
ies, including “Software Engineering Education Must Adapt and Evolve for
an LLM Environment”[19] and “ChatGPT and Software Testing Education:
Promises & Perils” [17], outline both the opportunities and challenges these
tools present in adapting curricula to new technologies. LLMs have also been
used to generate self-assessment quizzes, programming exercises, and code ex-
planations, contributing to more interactive and accessible educational materi-
als. Moreover, initiatives exploring the personalization of teaching content and
gamification strategies highlight innovative approaches to leverage these tools
for improved engagement. These advancements signal a transformative shift in
software engineering education, driven by the integration of LLMs and their
capabilities.

6.7.2 Overlooked Challenges

Overlooked challenges in the intersection of FM and SE education highlight
the need for systemic adaptation to evolving technologies. A significant chal-
lenge is defining how to effectively teach software development and engineering
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practices while integrating FMs like LLMs. This includes teaching students to
distinguish good practices from anti-patterns and fostering a sense of “good
taste” in software design, which remains difficult to formalize. Personalization
of education through multi-agent systems or anonymization techniques (e.g.,
avatars) introduces complexities, including potential risks to data security and
fairness. Another overlooked area is the shift in teaching methodologies, such as
whether traditional programming and compiler design should still be taught in
an era where FMs handle much of the coding. Additionally, the ethical implica-
tions and long-term impact of relying on FMs for coding education, as well as
the need for a clear path from beginner to intermediate levels in programming
with LLMs, demand further exploration. Addressing these challenges will re-
quire innovative approaches to redesigning courses, evaluating logical reasoning,
and ensuring equitable access to FM-driven educational tools.

6.7.3 Future Research Directions

Future research directions in FM and LLM-powered software engineering educa-
tion highlight the need to redefine teaching methodologies and integrate AI tools
effectively into curricula. Key challenges include teaching foundational software
engineering principles, such as distinguishing between good and bad practices,
while leveraging LLMs to personalize education. Innovative approaches like
gamification, multi-agent systems, and anonymized teaching avatars could help
tailor learning experiences to individual needs. Research must also explore
how to efficiently teach students to use LLMs across different implementations
without becoming overly reliant on specific tools. As LLMs advance, questions
arise about the necessity of teaching traditional programming skills versus em-
phasizing broader logical reasoning and problem-solving abilities. Additionally,
evaluating the process of prompting and identifying logical reasoning in fail-
ures are critical for redesigning courses in this AI-driven era. Collaboration
between academia and industry is essential to develop datasets and infrastruc-
tures to support these evolving educational paradigms. These efforts aim to
prepare students for a future where FM and LLM tools are integral to software
engineering.

6.8 Synergizing classical SE analysis and FM

The goal of this discussion is to find effective approaches/workflows to combine
the strengths of the two worlds: classical software engineering analysis and the
power of FM.

6.8.1 Current Achievements

Recent advancements in synergizing classical SE analysis and FMs have demon-
strated promising capabilities in enhancing both fields. Achievements include
the integration of static and dynamic SE analysis tools to generate context for
feeding into LLMs, boosting their understanding and performance. Approaches
like neuro-symbolic techniques combine information retrieval (IR) and LLMs to
synthesize program snippets from user intents, addressing challenges in search
and ranking. Sequential events from dynamic analysis have been adapted as
context for LLMs, despite challenges with long sequences. Efforts to improve
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FM utility through additional information, such as intra-project dependencies
and retrieval-augmented generation (RAG), have also shown potential. Fur-
thermore, FMs have been applied in classical SE tasks like probability-guided
program analysis, enabling a balance between probabilistic insights and deter-
ministic analysis methods. These advancements highlight the growing synergy
between classical SE techniques and FMs, offering new pathways for innovation
in program analysis, debugging, and feature transplantation.

6.8.2 Overlooked Challenges

Overlooked challenges in synergizing classical SE analysis with FMs include the
need for better integration between traditional SE techniques and FM capabili-
ties. A critical gap lies in leveraging non-LLM techniques, such as static program
analysis (SPA), to provide stronger guarantees alongside FM-based approaches.
Handling sequential events with dynamic analysis presents difficulties due to
the length and complexity of sequences, requiring innovative methods to en-
code and process this information. Pretraining models with additional context,
like project dependencies, and integrating more structured knowledge through
techniques like retrieval-augmented generation (RAG) are underexplored. An-
other challenge involves enabling FMs to address program-specific behaviors by
learning from traces, which could improve the prediction and understanding of
software systems. Furthermore, creating feedback loops between FMs and SE
tools, where analysis results are checked and iteratively refined, remains an am-
bitious yet crucial direction. Finally, automating complex tasks such as feature
transplantation between programs, debugging misuse scenarios, and integrat-
ing tools like WhyLLM into the debugging workflow are pressing challenges
requiring collaboration between academia and industry. These overlooked areas
highlight the need for interdisciplinary approaches to fully realize the potential
of combining classical SE and FM techniques.

6.8.3 Future Research Directions

Future research directions in synergizing classical SE analysis and FMs cen-
ter around enhancing the capabilities of both approaches through deeper in-
tegration. Key areas include leveraging SE analysis tools, such as static and
dynamic analysis, to provide enriched contexts for FM training and usage, ul-
timately boosting their accuracy and utility. Neuro-symbolic techniques, which
combine information retrieval with FMs, aim to solve complex tasks like syn-
thesizing program snippets from user intents, treating these challenges as search
and ranking problems. Long-term goals involve LLM-guided program analysis
and learning from program traces to better predict and understand program
behaviors. Another promising direction is creating feedback loops between FMs
and analysis tools, where outputs are validated and refined dynamically. Re-
search also explores LLM-enabled feature transplantation, allowing automated
adaptation of program features between projects, and the generation of real-
istic debugging and misuse scenarios. These directions highlight the potential
for bidirectional enrichment: classical SE techniques enhancing FM capabilities
and FMs revolutionizing traditional SE practices.
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7 Conclusions

This meeting brought together world class researchers and practitioners to dis-
cuss challenges and opportunities in the intersection area between FMs and
software engineering. Various topics ranging from code generation to software
productivity are discussed. All the participants agree that, as we have entered
into the generative AI era, the synergy between these two areas is just at the
beginning and will continuously improve and evolve over time.
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