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1 Meeting information

1.1 Technical abstract

Computer vision is concerned with inferring properties of the world from obser-
vations in the form of visual images. Such inverse problems typically take shape
as optimization problems, that aim to find the best explanation, for the complex
visual phenomenon that gave rise to a set of noisy and incomplete visual mea-
surements. For computer vision applications to be successful, the underlying
optimization problems must be supported by efficient and dependable solution
methods.

The meeting focuses on a broad subclass of computer vision problems called
geometric vision problems. Roughly, these are problems that exploit fundamen-
tal geometrical constraints arising from the image formation process or physical
properties of the scene (e.g., lighting conditions, characteristics of motions), to
extract information of the scene (e.g., depth, 3D shape, camera trajectory, ob-
ject identities) from the given visual data. Example geometric vision problems
include structure-from-motion (SfM), simultaneous localization and mapping
(SLAM), pose averaging [15], photometric stereo [23], and motion segmenta-
tion [8]. Methods for solving geometric vision problems underpin many use-
ful applications, such as 3D reconstruction, robot navigation, object recogni-
tion/tracking, and computational photography [21].

Geometric vision is replete with hard optimization problems. By “hard”, we
mean that the time needed to solve the optimization problems grows quickly
with the size of the input data. Take, for example, the task of robustly estimat-
ing the planar perspective transformation (a.k.a. homography) from outlier-
contaminated point correspondences between two images. Due to the inherent
intractability of robust homography estimation [7], practitioners often rely on
simple randomized heuristics to find rough approximate solutions, which neither
guarantee optimality nor provide bounds on the approximation error.

The computational difficulty of geometric vision problems is also often com-
pounded by the extremely large size of the input. Take, for example, the task
of bundle adjustment, i.e., calculate 3D points and camera poses that are con-
sistent with a set of images of a scene. In the age of big data, the input image
set is often obtained by “scraping” Internet photo collections, or by conducting
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long-term surveillance of a scene using a robot. Such input sizes easily over-
whelm traditional computing architectures, and distributed or parallel versions
of bundle adjustment must be used [11].

1.2 Technical themes

The overall theme for the proposed meeting is recent theoretical and algorithmic
advances on optimization problems in geometric vision. More specific themes
include:

• Solvability and approximability of geometric vision problems, e.g., [7, 31];

• Duality in geometric vision problems, e.g., [28, 5, 12];

• Global optimization algorithms for geometric vision, e.g., [7, 12];

• Approximate algorithms including randomized methods, e.g., [22, 20];

• Distributed algorithms for geometric vision problems, e.g., [11];

• Incremental algorithms for online geometric optimization, e.g., [31, 20].

Apart from discussing recent progress in geometric optimization through the
above themes, we also aim to chart future research directions and novel appli-
cation areas. For example:

• The role of machine learning in geometric optimization;

• Geometric optimization on constrained computing platforms (e.g., smart-
phones, sensor networks);

• Geometric optimization for novel imaging devices (e.g., RGBD cameras,
light field cameras); and

• Geometric vision problems from new industries (e.g., self-driving cars,
UAVs).

Following the spirit of Shonan Meetings, we will also consider other related top-
ics, based on the interest of the attendees and the trajectory of the discussions.

1.3 List of participants and program

Please see Appendix A (page 11) and Appendix B (page 12). See also the
meeting website [1] for more information.

2 Meeting report

The report is structured around two main themes that were discussed in the
meeting (Section 2.1), and an overview of several talks (Section 2.2). In Sec-
tion 3, a summary of the lessons learned on the organisation of the meeting for
the computer vision community will be presented.

2.1 Main themes of discussion

The main themes received the most attention during the meeting, though bear-
ing in mind that the list of topics presented and discussed is more diverse than
these main discussion points (again, an overview of other topics will be given in
Section 2.2).
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Main theme 1: More meaningful interactions between ma-
chine learning and geometry

In line with the broader trends in computer vision, a persistent theme in the
meeting is the usage of machine learning, particularly deep neural networks
(or “deep learning”), to perform tasks that are typically done using geomet-
ric techniques prior to the resurgence of neural networks. These tasks include
object pose estimation [18, 13], place and scene recognition [4, 9], 3D recon-
struction [24], and simultaneous localisation and mapping (SLAM) [3].

The investigation of deep learning towards the above problems is justified,
due to the significant improvements in performance it has enabled in problems
such as image segmentation and object recognition [19]. However, for the ge-
ometric problems above, it is unclear under what conditions are deep learning
approaches able to provide significantly better accuracy and performance than
techniques that model the intrinsic geometry of the problems. In fact, some of
the attendees remarked that it is “quite difficult” to develop a deep learning
method that can provide highly accurate object pose estimates.

On the other hand, “pure” geometric techniques are brittle, especially when
presented with noisy visual inputs from unseen before environments. To enable
geometric techniques to generalise well to different operating conditions, usually
a manual tuning process is required to reselect the algorithm parameters.

During the meeting, Richard Hartley proposed to combine deep learning
and geometric techniques in a way that leverages the intrinsic strengths of both
approaches: ability to exploit inherent regularity in scenes by training deep
networks with large amounts of data, and the usage of mathematically justified
models for scene understanding by exploiting the scene geometry.

A potentially fruitful framework along the above lines is to backpropagate
geometric errors into the deep network; the general concept is illustrated in the
following diagram.

For example, in the problem of object pose estimation, the deep network can
be used to predict the corners of the 3D bounding box of the target object in
the image, which can then be used to analytically compute the object pose. If
a ground truth pose is available, the pose difference can be used to calculate
a residual which is then backpropagated to adjust the network parameters.
Backpropagating “non-standard” error functions has been done, for e.g., in [14].
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Main theme 2: The role of strong duality in computer vi-
sion

Computer vision concerns itself with understanding the real world through the
analysis of images. The problems that this analysis give rise to often lead to
highly complicated optimization problems with a mixture of challenging ob-
jective functions and constraints, involving high- or even infinite-dimensional
variables in terms of curves and surfaces. Due to the non-convexity of the over-
whelming majority of these problems they are typically exceedingly difficult to
solve globally.

A prominent theme in this meeting was on the role of duality principles
in the field of Computer Vision and related areas. The mathematical concept
of duality lies at the core of a great part of the most efficient optimization
algorithm currently in use. A key reason behind this is the notion of strong
duality, a property in optimization theory establishing the equivalence of a given
minimization problem to that of an associated and convex problem, known as
the dual problem.

There is a well established theory on Lagrangian duality and the existence
of strong duality with respect to convex optimization problems. Unfortunately,
much less is currently understood regarding the role of strong duality in non-
convex optimization, hence significant portions of the existing theory can not
be directly applied to this setting. There are however a few notable exceptions
to this rule, problems that are non-convex but for which strong duality does
indeed hold. These are problems that provably admit a large number of local
minima but can still be solved in a way that guarantees a global optima by
invoking duality principles.

In recent years, empirical observations have been made suggesting that, un-
der specific conditions, a broad class of non-convex problems, fundamental to
Computer Vision, also belong to this group of exceptions. The consequences
of establishing such a proposition would be far-reaching, both in theory and in
practice. Such a result would imply that the global solution to these primal
non-convex problems are equivalent to the solution of the associated dual con-
vex problem. This allows us to solve exceedingly difficult non-convex problems,
with numerous local minima, implicitly through their dual formulations with a
guarantee of global optimality and in many instances also in polynomial time.

The discussion were led primarily by Fredrik Kahl, Frank Dellaert, Luca Car-
lone, Anders Eriksson and Robert Mahony. The topics were mainly centered
around problems involving pose, with a particular focus on two specific appli-
cations, namely rotation Averaging and SLAM, see Figure 1, both fundamental
problems in Computer Vision and Robotics.

Two primary goals of this particular theme and line of research were iden-
tified and discussed at the Shonan meeting. They were, firstly to establish new
mathematical foundations detailing the role of strong duality in Computer Vi-
sion and to further the understanding of the function of strong duality in a broad
class of related optimization problems. Secondly, to develop efficient numerical
algorithms dedicated to solving the resulting dual optimization problems.
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Figure 1: Rotation averaging and SLAM, two fundamental problems related to
3D reconstruction, analysis and navigation.

2.2 Overview of selected talks

Discrete-continuous graphical models for robust perception

Assistant Professor Luca Carlone, MIT

Pose graph optimisation (PGO) lies at the core of a robotic perception mod-
ule. Specifically, PGO is required to enable a robot to navigate in an unknown
environment by iteratively reconciling a sequence of visual motion observations
and keeping track of the trajectory of the robot. Computationally, PGO is in-
herently an intractable problem due to the manifold structure of the variables
of interest (robot positions and orientations). Moreover, in situations where
long-term operations are essential, there is a large number of measurements to
be processed by the PGO algorithm.

This talk surveys a class of PGO algorithms that apply convex relaxation and
solve the problem using convex solvers, specifically Semi Definite Programming
(SDP) [25]. It has been established that, there is a nonzero bound, such that if
the noise the measurements are no greater than the said bound, then the convex
relaxation is tight. Moreover, good empirical performances of convex relaxation
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methods have been demonstrated. Notably, the SDP technique is faster than
standard iterative optimisation algorithms [25].

The above theoretical results are based on non-robust formulations of PGO.
However, in real-life settings, outliers (wrong measurements) are inevitable. If
the convex relaxation methods are directly applied on such measurements, the
solutions will be biased. The talk proposes a discrete continuous (DC) frame-
work for PGO, by introducing binary “label” variables into the problem that
enables the assignment of measurements as inliers or outliers. In more detail, if a
measurement is identified as an outlier, its effect on the estimates are discounted.
An interesting connection between the DC-PGO problem and Markov Random
Fields (MRF) was also pointed out. It is likely that algorithmic developments
for the DC-PGO will become a fruitful research direction.

Parametrised complexity in geometric optimisation

Associate Professor Tat-Jun Chin, The University of Adelaide

A number of important and useful geometric problems in computer vision
(e.g., robust estimation, point set registration) have been proven to be compu-
tationally intractable, not only to solve, but also to approximate [6, 27]. On the
other hand, practical applications in real-world settings require these problems
to be solved with some form of guarantee so as to avoid unexpected breakdowns.
Hence, it is not sufficient to rely on heuristic methods to solve these problems,
since the quality and/or performance of heuristic methods cannot be bounded.

This talk proposed to investigate the structural properties of the hard ge-
ometric problems and develop fixed parameter tractable (FPT) algorithms.
Briefly, FPT algorithms exploit additional insights or structures to a problem,
and constrain the exponential growth in runtime to parameters that depend on
the special structures only. Such an endeavour is encapsulated under the field
of parametrised complexity analysis [10].

The talk illustrates an example based on inlier set maximisation or consensus
maximisation [6], which is a very common problem in computer vision. It is
shown how consensus maximisation has a FPT formulation, if an upper bound
on the number of outliers in a problem instance is known. It will be interesting
to apply the FPT framework on other intractable problems in computer vision
(e.g., point set registration [27]).

Methods for robustified nonlinear least-squares

Professor Christopher Zach, Chalmers University

Given noisy observations of a number of scene points in a number of images,
the goal of bundle adjustment (BA) is to estimate the camera poses and 3D
coordinates of the scene points that are consistent with the observations. This
is typically casted in a least squares objective function, where the sum of squared
reprojection errors is minimised. To estimate the variables of interest, non-linear
optimisation techniques such as Levenberg-Marquardt are applied.

If the measurements contain outliers, however, the least squares solution will
be biased. A more robust norm such as Tukey’s Biweight or Geman-McClure
must thus be used in the objective function. If the robust norm is smooth, the
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resulting robustified BA problem can still be solved directly using standard iter-
ative optimisation algorithms. It has been shown, however, that more effective
techniques exist, namely, iteratively reweighted least squares (IRLS) [16] and
lifted optimisation [2]. Moreover, it can be established that both IRLS and lifted
optimisation minimise the same “half-quadratic” objective function, whereby a
set of weights (one per measurement) is introduced into the original robustified
BA problem [30]. By explicitly introducing weight variables, the half-quadratic
objective function suffers from far fewer bad local minima.

This talk proposed new ways of tackling the half-quadratic objective func-
tion that can potentially deliver better performance than IRLS and lifted op-
timisation. The first is an “iterated lifting” technique, where a graduated or
annealed optimisation approach is introduced in half-quadratic optimisation.
The second is a multi-objective optimisation (MOO) technique, where multiple
versions of the original robustified BA problem, each differing from the other
by the half-quadratic kernel, are jointly optimised using MOO. Initial empirical
results show that iterated lifting and MOO optimisation are able to converge to
better solutions than IRLS and regular lifted optimisation.

Semi-calibrated photometric stereo

Professor Yasuyuki Matsushita, Osaka University

High-fidelity shape estimation is a central topic in computer vision. One of
the promising approaches is photometric stereo that uses photometric informa-
tion to determine the 3D shape. More specifically, photometric stereo estimates
surface normal of a static scene in a pixel-wise manner from a set of observations
obtained under varying light conditions from a fixed camera. It has been under-
stood that, for a Lambertian surface, its surface normal map can be uniquely
determined from three observations.

In practice, the intensity observations may contain non-Lambertian com-
ponents, such as specular reflectance and cast/attached shadows, that can be
regarded as outliers. To deal with the outliers, robust estimation techniques are
employed in the past; for example, `1-norm minimisation and robust principal
component analysis in the context of photometric stereo [29, 17]. The robustness
against outliers has been improved in the past decade; however, calibration of
light sources (both geometric and photometric calibration) remains a practical
issue due to its laborious process.

This talk introduced a semi-calibrated photometric stereo method, with
which the need for photometric calibration of light sources can be eliminated.
It has been believed that for a Lambertian photometric stereo, it is needed
to know the light source directions and light source intensities. However, it is
shown that the knowledge of light source intensities is unnecessary, but even
under the condition, a unique shape can be determined. The talk showed that
there exists a linear solution technique to the problem, and it introduced an
efficient alternating minimisation strategy to the problem.
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Geometric point light source calibration via structure from
motion

Dr. Michael Waechter, Osaka University

Estimating the position or direction of a light source accurately is essential
for many computer vision tasks, such as shape from shading, photometric stereo,
or reflectance and material estimation. In these tasks, inaccurate light positions
immediately cause errors in their estimates. Despite the importance of accurate
light calibration, it remains laborious as researchers have not yet come up with
accurate and easy to use techniques.

Previously, many geometric point light source calibration procedures in-
volved the use of mirror spheres. Unfortunately, the mirror sphere based meth-
ods suffer from the difficulty of determining the sphere boundary and the point
of specular spike location, resulting in unstable accuracy of the calibration.

This talk introduced a new geometric point light source calibration method [26]
that uses a plane and pins that are stuck at unknown locations on the plane. By
observing the cast shadows generated by the pinheads, the problem of geometric
point light source calibration can be solved in a similar manner to Structure-
from-Motion (SfM). Although the pinhead locations are unknown, they can be
simultaneously recovered together with the light source positions/directions. It
showed the new application domain of geometric computer vision.

3 Lessons for potential future meetings

As a conclusion to this report, we would like to report some of the lessons we
have learned as organisers of this Shonan Meeting.

First, it is worth highlighting that this was likely to be the first Shonan Meet-
ing that was organised and attended exclusively by members of the computer
vision community1. Therefore, there was not a significant body of experience
to draw from in the organisation and planning of the meeting.

There are a few aspects of the program (Appendix B) that could be im-
proved. Chiefly, the adopted program was inspired by typical computer vision
meetings, where attendees are encouraged give a presentation (oral or poster)
to describe his/her own current favourite research topic. While the carefully
selected list of invitees ensured strong commonalities in the presentations and
discussions (e.g., Lagrangian duality and global optimality in geometric optimi-
sation, interaction between geometry and deep learning), there was not a strong
coalescence around a few clear-cut research questions/themes on which unified
discussions and progress could be made.

In future instances of Shonan Meetings (or other meeting series in the style
of Dagstuhl) by and for the computer vision community, we suggest to

• Identify a handful of “Area Chairs” for key topics, perhaps even during the
meeting proposal stage. The role of an Area Chair could include the selection
of presenters and the contents of the presentations, and leading the discussions
during the breakout sessions.

1These are the researchers who regard conferences such as Computer Vision and Pattern
Recognition (CVPR) and journals such as IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI) to be their flagship publication venues.
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• Deemphasise the CVPR tradition to give each participant a speaking slot.
Rather, encourage the participants to contribute productively and passion-
ately to the identified research themes via discussions and breakout sessions.

Another aspect for improvement is gender diversity in the list of participants.
While the invitation list included female researchers, the gender of the actual
participants in the meeting was heavily biased towards males.

Despite the areas of improvements above, there are also very encouraging
signs from the meeting. Chiefly, almost all of the attendees agree that the
Shonan Meeting series represents an excellent alternative to the traditional con-
ferences and workshops targeted by the computer vision community. With the
explositive growth of commercial interest and investment in AI, the research
directions in computer vision are often driven by immediate industry demands.
In this context, events in the format of Shonan Meetings offer a welcomed op-
portunity to put longer-term scientific agendas back in the focus of researchers.

On the other hand, we believe that Shonan Meetings could benefit from
greater participation from the computer vision community, which has been suc-
cessful in recent years to attract the next generation of computing researchers,
as well as in identifying commercially impactful problems and applications.
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Appendix B — Meeting program

Sunday 27 January 2019

1500-1900 Check-in

1900-2100 Welcome banquet

Monday 28 January

0730-0900 Breakfast

0900-0915 Welcoming address - Tat-Jun Chin, Anders Eriksson, Yasuyuki Mat-
sushita

0915-1000 Keynote 1 - Fredrik Kahl

1000-1015 Michael Brown

1015-1030 Christopher Zach

1030-1100 Coffee break

1100-1115 Robert Mahony

1115-1130 Yongduek Seo

1130-1200 Breakout session 1

1200-1330 Lunch

1330-1345 Sudipta Sinha

1345-1400 Yinqiang Zheng

1400-1415 Michael Waechter

1415-1430 Viorela Ila

1430-1500 Breakout session 2

1500-1530 Coffee break

1530-1545 Hongdong Li

1545-1600 David Suter

1600-1630 Breakout session 3

1630-1800 Free time

1800-1930 Dinner

Tuesday 29 January

0730-0900 Breakfast

0900-0915 Program briefing

0915-1000 Keynote 2 - Frank Dellaert

1000-1015 Ping Tan

1015-1030 Jamie Sherrah

1030-1100 Cofee break

1100-1115 Ali Bab-Hadiashar

1115-1130 Gim Hee Lee

1130-1200 Breakout session 4

1200-1315 Lunch

1315-1330 Group photo
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1330-1345 Kenichi Kanatani

1345-1400 Jesus Briales

1400-1415 Carl Olsson

1415-1445 Breakout session 5

1445-1515 Coffee break

1515-1530 Florian Bernard

1530-1545 Alessio Del Bue

1545-1600 Danda Pani Paudel

1600-1630 Breakout session 6

1630-1800 Free time

1800-1930 Dinner

Wednesday 30 January

0730-0900 Breakfast

0900-0915 Program briefing

0915-1000 Keynote 3 - Richard Hartley

1000-1015 Tarek Hamel

1015-1030 Laurent Kneip

1030-1100 Coffee break

1100-1115 Simon Lucey

1115-1130 Luca Carlone

1130-1200 Breakout session 7

1200-1330 Lunch

1300-2045 Excursion and dinner

Thursday 31 January

0730-0930 Breakfast and check-out

0930-0945 Yasuyuki Matsushita

0945-1000 Anders Eriksson

1000-1015 Tat-Jun Chin

1015-1100 Coffee break

1100-1130 Breakout session 8

1130-1200 Conclusion and wrap-up

1200-1330 Lunch and end of meeting
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