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The aim of this meeting was to bring together researchers from various areas
related to compression of structured data. Thirty-five participants attended the
4-day meeting; we list them at the next page. From the 35 participants, 13 came
from Asia (37%), 13 from Europe (37%), 8 from the Americas (23%) and 1 from
Australia (3%). In another classification, 33 were from Academia (94%) and 2
from Industry (6%). Finally, 10 of them (29%) were students or had obtained
their PhD in the last 5 years.

One of our goals as organizers was to ensure that the meeting was more
than a series of talks that filled up all the available time. We then organized
talks only in the mornings, leaving all the afternoons for discussion and work in
groups without imposing any structure.

We solicited talks aiming at current topics of research that could stimulate
collaboration during the meeting. As a result, 14 long and short talks were
selected; these are listed later in the report.

In the last day, we collected the collaborations that had arised during the
meeting and asked the involved researchers to write a short description of their
findings. An impressive number of 18 collaborations were identified; their de-
scriptions are also added to this report.

We believe that the meeting was a success and that it will have a significant
impact in various collaborations in the near future. The survey on the opinion
of the participants is similarly very positive: in a scale 1–5, 13 participants
valued the seminar with a 5, 4 with a 4, and 1 with a 3. All said they learned
something for their work or research. All but one would come again to Shonan.
We are particularly happy from off-the-record comments of some researchers
from Asia that said that this was their only opportunity to meet in person so
many prestigious researchers from all over the world.

The answers of the survey also include a couple of suggestions for future
improvement that are interesting. The first is that leaving the whole afternoon
without structure may let people get distracted in long-term activities of other
kinds, whereas distributing the talks into more blocks (not only in the morning)
with shorter breaks for work could keep the participants more focused. A second
one is that the use of space could be organized better to favor people gathering.
For example, people would welcome more spaces where work and socialization
can happen at the same time, like the small room of the coffee breaks.

We thank the NII Shonan Meeting organization for their help in making our
work so easy, to the participants for their involvement and enthusiasm, and to
Sankar Deep Chakraborty for helping us collect the material for this report.
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Overview of the Talks

Wheeler Graphs: A Framework for BWT-Based Data Struc-
tures
Giovanni Manzini, University of Piemonte Orientale, Italy

Abstract: The famous Burrows-Wheeler Transform was originally defined
for single strings but variations have been developed for sets of strings, labelled
trees, de Bruijn graphs, alignments, etc. In this talk we propose a unifying
view that includes many of these variations and that we hope will simplify the
search for more. Somewhat surprisingly we get our unifying view by consider-
ing the Nondeterministic Finite Automata related to different pattern-matching
problems. We show that the state graphs associated with these automata have
common properties that we summarize with the concept of a Wheeler graph.
Using the notion of a Wheeler graph, we show that it is possible to process
strings efficiently even if the automaton is nondeterministic. In addition, we
show that Wheeler graphs can be compactly represented and traversed using
up to three arrays with additional data structures supporting efficient rank and
select operations. It turns out that these arrays coincide with, or are substan-
tially equivalent to, the output of many Burrows-Wheeler Transform variants
described in the literature.

This is joint work with Travis Gagie and Jouni Siren.

Compressed graph processing
Kunihiko Sadakane, The University of Tokyo, Japan

Abstract: We consider network and related problems based on graph decom-
position. Our algorithms first construct indices (data structures) from a given
graph, then use them for solving the problems. A basic problem is the all pairs
maximum flow problem. To solve the problems efficiently, we decompose the
input graph into small subgraphs such as triconnected components. We want
to develop efficient algorithms based on such decompositions.
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Isomorphism of Unordered Compressed Trees
Sebastian Maneth, University of Bremen, UK

Abstract: The talk is based on an ICALP 2015 paper by Lohrey, Maneth, and
Peternek. Isomorphism of unordered unrooted trees can be solved in linear time,
as described in the 1974 book on algorithms by Aho, Hopcroft, and Ullman. An
unordered tree can be compressed by applying known compression methods
(for ordered trees) to an ordered version of the tree. Our choice of compression
method are linear straight-line context-free tree grammars (TSLPs), which gen-
eralize the sharing of common subtrees (of DAGs) to the sharing of connected
subgraphs of a tree. We show that isomorphism of two unordered trees given
by TSLPs can be solved in polynomial time. The idea is to construct TSLPs
for the canonical ordered trees. Canonical ordered trees are obtained by sort-
ing subtrees of a node according to the length-lexicographical ordering of their
traversal strings. This sorting can be directly carried out on the given TSLPs
by exploiting a normal form and reducing sorting to binary search plus equality
checks of (string) SLPs for traversal strings.

Querying regular languages over sliding-windows
Markus Lohrey, University of Siegen, Germany

Abstract: Sliding-window streaming algorithms get as input a stream of in-
put data and have to answer queries about the last n symbols for a certain
window size n. In the talk we consider queries that are given by regular lan-
guages. More precisely, we consider the so-called sliding window word problem
for a regular language L: Given a data stream of symbols a1a2a3 · · ·, answer at
every time instant t, whether at−n+1 · · · at belongs to L. We are mainly inter-
ested in the space complexity of this problem measured in the window length n.
For regular languages, we prove that this space complexity is either constant,
logarithmic, or linear. Moreover, for the constant and logarithmic space classes
we provide very natural characterizations: For every regular language L the
sliding window word problem can be solved in

• constant space if and only if L is a boolean combination of regular length
languages and suffix-testable languages;

• logarithmic space if and only if L is a boolean combination of regular
length languages and regular left ideals.

For context-free languages the above space trichotomy does not hold: For every
natural number c there is a context-free language for which the optimal space
bound for the sliding window word problem is n1/c.

This is joint work with Moses Ganardi, Danny Hucke and Konstantinos
Mamouras.

Fast and compact planar embeddings
José Fuentes-Sepúlveda, University of Chile, Chile

Abstract: There are many representations of planar graphs, but few are as
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elegant as Turan’s (1984): it is simple and practical, uses only 4 bits per edge,
can handle self-loops and multi-edges, and can store any specified embedding.
Its main disadvantage has been that “it does not allow efficient searching” (Ja-
cobson, 1989). In this talk we show how to add a sublinear number of bits
to Turan’s representation such that it supports fast navigation while retaining
simplicity. As a consequence of the inherited simplicity, we offer the first effi-
cient parallel construction of a compact encoding of a planar graph embedding.
Our experimental results show that the resulting representation uses about 6
bits per edge in practice, supports basic navigation operations within a few
microseconds, and can be built sequentially at a rate below 1 microsecond per
edge, featuring a linear speedup with a parallel efficiency around 50 percent for
large datasets.

Towards Constant-Delay Traversal of Grammar-Compressed
Graphs
Fabian Peternek, University of Edinburgh, UK

Abstract: We present a data structure based on pointers to traverse certain
hyperedge replacement graph grammars such that a single traversal step requires
constant time. The general idea revolves about precomputing the possible paths
in the derivation tree that can be induced by a single step. This precomputation
is done in such a way that the generated structures can be efficiently combined
to derive representations of successor nodes. We further give some intuition why
previous methods used to traverse strings and trees are unlikely to generalize
to graph grammars. The result assumes that the rank of the grammar (i.e., the
amount of nodes any nonterminal hyperedge is attached to) is bounded by a
constant.

Locally-Adaptive Compressed Dictionaries and Bitmaps
Diego Arroyuelo, Diego Arroyuelo, Universidad Técnica Federico Santa María,
Chile

Abstract: Gap and run-length are usual ways to compress dictionaries and
bitmaps. However, choosing an encoding that minimizes the space usage can
be difficult in scenarios where the data has different local regularities. This
talk proposes locally-adaptive data-aware measures for compressing static dic-
tionaries and bitmaps. Unlike gap and run-length encoding, the idea is to take
advantage of the local regularities that arise in the data. A locally-adaptive
data-aware measure will be proposed, and shown to be smaller or equal than
both gap and run-length encoding measures. The talk will also discuss how to
support rank, select, and membership queries in dictionaries, while using space
close to the proposed locally-adaptive measure.

Fast Locating with the RLFM-Index
Travis Gagie, Diego Portales University, Chile, and Gonzalo Navarro, University
of Chile

Abstract: The run-length encoded FM-index is an adaptation of the FM-

5



index for repetitive datasets. It achieves excellent compression on such datasets
and supports fast counting queries but locating queries have been a major weak-
ness: we cannot sample many entries of the suffix array without ruining the
compression, so current implementations often use thousands of rank queries
to locate each occurrence. In this talk we will see how we can sample suffix
array entries only at the endpoints of runs and still locate each occurrence in
doubly-logarithmic time.

This is a joint work with Nicola Prezza.

Tree Compression and Top Trees
Philip Bille, Technical University of Denmark, Denmark

Abstract: Top tree are a simple tree compression scheme that offers strong
theoretical compression guarantees, support efficient navigation, and is prac-
tical. We discuss the basic concepts, compare the scheme with other related
compression schemes, and present a few new results.

Range LCP with k-Mismatches
Sharma Thankachan, University of Central Florida, USA

Abstract: A range LCP query (a, b) over a text T [1..n] asks to report “largest
element in {|LCP (T [x, n], Y [y, n])|a =< x < y =< b}”, where LCP is the
longest common prefix function. Amir et al. [ISAAC 2011] introduced this
problem and presented an O(n log n) space solution with O(poly log(n)) query
time. We present an O(n logk+1 n) space and O(poly log(n)) query time solution
for the k-mismatch case.

Compressed Data Structure for Approximate Color Count-
ing
Yakov Nekrich, University of Waterloo, Canada

Abstract: In this talk we describe a data structure that supports approxi-
mate color counting queries in O(1) time on array A[1..n]. For any query range
[i..j], 1 ≤ i ≤ j ≤ n, we can estimate the number of distinct elements in sub-
array A[i..j]. Our data structure uses O(n) bits of space and we do not need to
store the array A.

This is a joint work with Ian Munro and Hicham El-Zein.

String attractors
Nicola Prezza, Technical University of Denmark, Denmark

Abstract: A well-known fact in the field of lossless text compression is that
high-order entropy is a weak model when the input contains long repetitions.
Motivated by this fact, decades of research have generated myriads of so-called
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dictionary compressors: algorithms able to reduce the textâĂŹs size by exploit-
ing its repetitiveness. Lempel-Ziv 77 is probably one of the most successful
and known tools of this kind, followed by straight-line programs, run-length
Burrows-Wheeler transform, macro schemes, collage systems, and the compact
directed acyclic word graph. In this work, we show that these techniques are
only different solutions to the same, elegant, combinatorial problem: to find a
small set of positions capturing all distinct textâĂŹs substrings. We call string
attractor such a set. We first show reductions between dictionary compressors
and string attractors. This gives us the approximation ratios of dictionary com-
pressors with respect to the smallest string attractor and allows us to solve
several open problems related to the asymptotic relations between the output
sizes of different dictionary compressors. We then show that k-attractor prob-
lem âĂŤ that is, deciding whether a text has a size-t set of positions capturing
all substrings of length at most k– is NP-complete for k ≥ 3. This, in particular,
implies the NP-completeness of the full string attractor problem. We provide
several approximation techniques for the smallest k-attractor, show that the
problem belongs to the APX class for constant k, and give strong inapproxima-
bility results. To conclude, we use string attractors to design a universal data
structure for random access on dictionary-compressed text supporting queries
in near-optimal time.

This is a joint work with Dominik Kempa.

Succinct Data Structures ... the Expected Case
J. Ian Munro, University of Waterloo, Canada

Abstract: Work on succinct data structures generally focuses on finding a
representation requiring a number of bits within a lower order term of lg of the
number of objects of the given size. We turn our attention to minimizing the
expected space requirement when given a probability distribution of the objects
of the given size. In particular we look at binary trees from the distribution one
gets by inserting n elements, by the naive algorithm, in random order. This is
equivalent to the distribution of Cartesian trees on n random points in a rect-
angle. We show that about 1.736... n bits are necessary and sufficient for this
to support basic navigation operations in constant time.

This is joint work with Patrick Nicholson.

Compact Order Preserving Pattern Matching
Rahul Shah, Luisiana State University, USA

Abstract: Developments in Compressed Text Indexing in last two decades
have made it possible to compress the all text data structures to the information
theoretically minimum space required for the original (or compressed) text data.
Based on Burrows-Wheeler Transform (BWT) and LF-mapping (or alternatively
Phi-function), this lead to the development of what is known as Compressed
Suffix Tree (CST) which admits theoretically optimal space.
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Many text indexing and sequence matching problems, use Suffix Trees with
some augmenting information. One line of work in the area has been to replace
Suffix Tree with a CST as a black box and then separately encode the augment-
ing data to squeeze it into optimal compressed space. However, less chartered
territory here is to develop compressed index structures for the problems which
use variants of Suffix Trees. These variants have different structural proper-
ties than regular Suffix Trees, making use of the usual notion of BWT or CST
ineffective in achieving the space optimality.

Building over our previous work on Parameterized Pattern Matching, we
design a compact index for order-preserving pattern matching where alphabet
set is totally ordered and two strings R,S match if they represent the same
permutation. That is for all i, j we have R[i] < R[j] implies S[i] < S[j] and
R[i] = R[j] implies S[i] = S[j]. To compute LF-mapping, we develop a new
method called LF-successor.

List of Collaborative Projects

LZ77-like Parsing in Small Space using RLZ
Gonzalo Navarro, Department of Computer Science, University of Chile
Simon Puglisi, Department of Computer Science, University of Helsinki
Daniel Valenzuela, Department of Computer Science, University of Helsinki

Lempel-Ziv 77 (LZ77) is one of the most successful techniques to compress
repetitive collections. Even though it can be computed in linear time, when the
collections are too large to fit in main memory the only choice is to resort to
external memory, resulting in prohibitive computation times. Relative Lempel-
Ziv (RLZ) [46] is a variant that uses a smaller reference to factorize the data
that needs to be compressed. In the original setup the data is a collection of
similar genomes and one of them is used as reference to compress the whole
collection. When there is no clear choice for a “good reference” a reference is
built by sampling the input [47]. While RLZ works very well in practice, there
is still a gap between its compression levels and what LZ77 can achieve. Some
of the efforts to improve RLZ consist in look-ahead heuristics trying to avoid
harmful phrase breaks [24]. In the less-structured setup of web-collections, this
challenge materializes as how to build the reference in the most favourable way.

We want to use RLZ as a device to find an LZ77-like parsing using sublinear
memory, even if we do not obtain the optimal LZ77 parse. The key idea is to
use the RLZ parse as a small intermediate representation on top of which we
can find a reasonably good LZ77-like parse. Consider for instance a collection of
genomes where there are two clusters of highly similar genomes. As we choose
one of the genomes as a reference, all the genomes belonging to the same cluster
will get satisfactory compression, however, all the genomes from the other cluster
will be compressed in a less satisfactory way. Our idea is to exploit that after
computing the RLZ parsing, those genomes that did not compress well with
respect to the reference will produce similar phrases. We would like to capture
this by computing the LZ77 parsing of the output of RLZ. For instance, if two
genomes that did not compress well are identical, their RLZ parsing will be the
same, and easily captured by LZ77. Unfortunately, if those genomes have a
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slight difference at the beginning, their RLZ parsing may be entirely different
as the greedy strategy may always choose different sources to get the longest
phrases. In such case, LZ77 would not capture their similarity at all. To avoid
that those small differences produce widely different RLZ parsings, we plan to
restrict the positions where phrases can end, to a multiple of some parameter.

In summary, our proposed algorithm is as follows: First we compute the
(restricted) RLZ parsing. Then we compute the LZ77 parsing over the (pos, len)
sequence output by the first step. Finally, we transform this last parsing back
to pairs (pos, len) in the original text, so that our output is again a LZ77-like
parsing.

Online LZ77 Factorization in Compressed Space
Hideo Bannai, Department of Informatics, Kyushu University, Japan
Travis Gagie, EIT, Diego Portales University, Chile
Tomohiro I, Frontier Research Academy, Kyushu Institute of Technology, Japan

Policriti and Prezza [64, 65, 63] recently showed how a run-length compressed
FM-index for a text T , with suffix array (SA) samples at the boundaries of the
runs in the Burrows-Wheeler Transform (BWT), can be used to build the LZ77
parse of T in O(n log r) time using O(r) words of workspace, where n is the
length of T and r is the number of runs in the BWT. Their key result was
a lemma showing that this SA sample can be used during a backward search
to find the position of at least one occurrence of the pattern. Gagie, Navarro
and Prezza [32] have now shown how we can use Policriti and Prezza’s lemma
and an auxiliary O(r)-space data structure to find all the occurrences’ positions
efficiently.

Also recently, Ohno, Takabatake, I and Sakamoto [62] described a new algo-
rithm for updating a run-length compressed BWT as characters are appended
to the underlying string, which uses O(n log r) time and O(r) workspace to build
online the run-length compressed BWT of T . Notably, they have implemented
their algorithm and shown that it is practical. Extending his work with Navarro
and Prezza, Gagie developed an unpublished algorithm for updating Policriti
and Prezza’s SA sample as characters are appended to the underlying string,
with the same time- and space-bounds as Ohno et al.’s algorithm for updating
the BWT.

During the Shonan seminar and subsequent discussions, we realized that
combining Ohno et al.’s and Gagie’s algorithms lets us maintain online a run-
length compressed FM-index. Combining that with Policriti and Prezza’s tech-
nique, we obtain the first online algorithm for building the LZ77 parse of T in
O(n log r) time and O(r) workspace. We also found an alternative version of
Policriti and Prezza’s lemma, which is conceptually slightly simpler and could
be more practical. I has now implemented this combined algorithm and found it
to be practical. We plan to incorportate Gagie’s algorithm and our new results
in the journal version of Ohno et al.’s paper.

Top-trees for Suffix Trees of Repetitive Collections
Phil Bille, DTU Compute, Technical University of Denmark
Inge Li Gørtz, DTU Compute, Technical University of Denmark
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Gonzalo Navarro, Department of Computer Science, University of Chile

Compressed Suffix Trees (CSTs) typically have three main components [68]:
(1) a Compressed Suffix Array (CSA), (2) a Longest Common Prefix (LCP)
array, and (3) a compressed topology representation. On repetitive text collec-
tions, the size of the CSA component can be drastically reduced by exploiting
runs [51], especially with the latest developments that do not require a regu-
lar text sampling in order to locate pattern occurrences [28]. The other two
components can also be reduced significantly on repetitive texts [1, 59] but, so
far, not as much as the CSA. Besides, while it is possible to avoid representing
the tree topology directly, this has resulted in an orders-of-magnitude-slower
representation [1, 59].

One way to compress the tree topology is to detect isomorphic subtrees
and factor them out. This is essentially what the CDAWG-based suffix trees
do [9, 10, 8], and it is also close to what is obtained with a grammar-based
compression of the parentheses representation of the topology [16, 59]. As said,
this compresses the suffix trees of repetitive sequences significantly, but not as
much as the way runs compress the CSA. Since we are in both cases representing
the same combinatorial object, it seems the compression of the topology is
missing some key aspect that is being captured in the compression of the CSA.

We plan to experiment with a technique that captures more than identical
subtrees. Top-tree compression [15, 14] is able to capture repeated internal
parts of the trees as well. While not as powerful as tree grammars [49], top-
tree compression retains better operation times, usually logarithmic. This is
comparable with the time obtained with CDAWGs and grammar-compressed
sequences, so compression with top-trees seems promising in principle.

It must be noted that, unlike for whole subtrees, it is not obvious which reg-
ularities should be revealed as repeated internal subtrees, and thus the nature of
this research is completely exploratory. If we turn out to capture repeated sub-
structures that were not exploited before, we will study which new regularities
they owe to.

Top-tree compression compresses labeled trees, which would be very conve-
nient for storing the letter of the incoming edge of each node. This speeds up the
operation of descending to a child, which is usually very slow in CSTs. Instead,
we could discard this information in order to further improve compression.

Faster Sequence Alignment using Relative Lempel-Ziv
Gonzalo Navarro, Department of Computer Science, University of Chile
Daniel Valenzuela, Department of Computer Science, University of Helsinki

Consider a large set of genomes from a single or closely related species.
Relative Lempel-Ziv (RLZ) [46] is a compressed representation technique that
chooses a representative sequence (e.g., one of the genomes, in this case) and
then describes the others as a sequence of blocks copied from the representative,
plus a few explicit symbols. It works particularly well in this case and allows
fast extraction of any substring from any sequence.

Our idea is to use RLZ to perform rapid sequence alignment in the genomes.
This includes computation of longest common subsequences, edit distances, local
alignments, etc. in pairs of sequences or even within the same sequence. In all
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those cases, one fills a dynamic programming matrix M [1..n][1..n′] to align two
sequences S[1..n] and S′[1..n′], typically at cost O(n · n′).

In our case, since both sequences are aligned to the representative, we can
speed up the computation of large areas of M by first aligning the reference
R[1..r] to itself, in a matrix MR[1..r][1..r]. Consider the case of local sequence
alignment. If, at some point of the computation, we have to fillM [a..b][a′..b′] and
it turns out that S[a..b] = R[x..y] is a block and S′[a′..b′] = R[x′..y′] is another
block, then most of the area M [a..b][a′..b′] will be equal to MR[x..y][x′..y′],
except for possibly a short band below the row MR[x][x′..y′] and to the right
of the column MR[x..y][x′]. The same is likely to happen for global similarity
measures if we represent MR in some differential form. We can then proceed
block-wise in both S and S′ and work only around the perimeters of the areas.

This idea has been considered before [23] to obtain subquadratic sequence
alignment algorithms, by using LZ78 compression [73] on S and on S′ separately.
If they obtained z and z′ phrases on S and S′, respectively, then their total time
was O(nz′ + n′z). While with RLZ we might not obtain worst-case bounds, we
also expect the alignment cost to be close to that, where z and z′ are now the
number of RLZ blocks into which S and S′ are decomposed, respectively.

A Linear-Space Poly-Logarithmic Query-Time
Data Structure for Range LCP Queries
Wing-Kai Hon, National Tsing Hua University, Taiwan
Yakov Nekrich, University of Waterloo, Canada
Kunihiko Sadakane, The University of Tokyo, Japan
Rahul Shah, Louisiana State University, USA
Sharma V. Thankachan, University of Central Florida, USA

Let T be a text of length n and Ti be its ith longest suffix. A range LCP
query (α, β) on T asks to report max{|LCP(Ti, Tj)| | α ≤ i < j ≤ β}, where
LCP(Ti, Tj) is the longest common prefix Ti and Tj . Amir et al. [ISAAC 2011]
proposed an O(n log1+ε n) space structure with O(log log n) query time for this
problem. Additionally, they presented a linear space structure with query time
O(d log log n), where d = β−α+1. Later Patil et al. [SPIRE 2013] improved its
query time to O(

√
d logε d). We revisit this problem and present a linear space

data structure with query time O(log1+ε n).

Parameterized Text Indexing with One Wildcard
Wing-Kai Hon, National Tsing Hua University, Taiwan
Rahul Shah, Louisiana State University, USA
Sharma V. Thankachan, University of Central Florida, USA

Let X and Y are two equal-length strings over an alphabet set Σ of size σ.
We say X and Y is a parameterized match iif X can be transformed to Y by
renaming the character X[i] to the character Y [i] for 1 ≤ i ≤ |X| by using a
one-to-one function from the set of symbols in X to the set of symbols in Y .
The parameterized text indexing problems is defined as follows: Index a text T
of n characters over an alphabet set Σ of size σ, such that whenever a pattern
P [1, p] comes as a query, we can report all occ parameterized occurrences of
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P in T . A position i ∈ [1, n] is a parameterized occurrence of P in T , iff P
and T [i..(i + p − 1)] is a parameterized match. Such queries can be answered
in optimal O(p + occ) time using a linear space data structure, knows as the
parameterized suffix tree [Baker, STOC 1993]. Recently, Ganguly et al. [SODA
17] proposed a space efficient data structure of n log σ + O(n) bits and O((p +
occ · log n) log σ) query time.

We study an interesting generalization of this problem, where the pattern
contains a single wild-card character φ /∈ Σ. The wild-card character can match
with any other character in Σ. We show that such queries can be answered in
optimal O(p+ occ) time using an O(n log n) space index. We then show how to
compress our index into O(n log σ) words, but with a higher query cost.

Recognizing Wheeler Graphs
Jarno Niklas Alanko, University of Helsinki, Finland
Travis Gagie, Diego Portales University, Chile
Giovanni Manzini, University of Piemonte Orientale, Italy
Tuukka Norri, University of Helsinki, Finland

Gagie, Manzini and Sirén [30] recently introducedWheeler graphs as a frame-
work for designing data structures based on the Burrows-Wheeler Transform.
A Wheeler graph is a directed edge-labelled graph with the property that there
is an ordering of the nodes such that the edges’ order by destination is the same
as their order by label with ties broken by origin. Gagie et al. showed how to
index the path labels in a Wheeler graph using little memory such that we can
answer pattern-matching queries on them quickly, and showed that the graphs
arising in several applications are Wheeler graphs. However, they left as an
open problem designing a polynomial-time algorithm that, given an arbitrary
graph, decides whether or not it is a Wheeler graph (and ideally, if it is, returns
an ordering of the nodes as a witness).

We have been discussing generalizing the Karp-Miller-Rozenberg “doubling
algorithm” for building a suffix array (which is the node-ordering for a cyclic
Wheeler graph), to compute an order for a Wheeler graph. Our idea is that
we can order nodes based on the co-lexicographically least and greatest path
labels leading to them: if αu, βu, αv and βv are the co-lexicographically least
and greatest path labels leading to nodes u and v, then we think

• if αu = αv and βu = βv then u and v can be assigned any order with
respect to each other

• otherwise, if αu � βu � αv � βv but αu 6= αv, then u must precede v in
the ordering

• otherwise, the graph is not a Wheeler graph.

Computing the co-lexicographically least and greatest path labels leading to
each node is complicated by the fact that in general graphs, unlike cycles, nodes
can have many predecessors and we must keep track of all the nodes before a
node v at the distance we are currently considering, from which we can reach v
along the co-lexicographically least and greatest paths. This seems to require us
to compute distance matrices by repeated squaring, slowing the algorithm down
from O(n log n) to O(n3 log n) (using naïve Boolean-matrix multiplication).
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We have also been considering expressing this problem as a constraint-
satisfaction problem using Horn clauses — enforcing a total order on the nodes
satisfying the requirements stated above — which can then be solved in time
linear in the total formula size, O(|V |3 + |E|2), where V and E are the vertex
and edge sets of the input graph. Among other things, this suggests that we
can reduce suffix sorting to a tractable logic problem; although it may not be
practical, this seems interesting.

Approximate Document Counting on
Compressed Repetitive Collections
Travis Gagie, Diego Portales University, Chile
Gonzalo Navarro, Department of Computer Science, University of Chile
Yakov Nekrich, University of Waterloo, Canada
Nicola Prezza, Technical University of Denmark, Denmark

Munro, Nekrich and El-Zein [57] recently showed how, given an array A[1..n]
and a positive constant ε, we can store npolylog(n) words such that later, given
i and j, in constant time we can return a number between |{x : x ∈ A[i..j]}|
and (1 + ε) |{x : x ∈ A[i..j]}|. It follows that, given a collection of documents
of total length n over an alphabet of size σ ∈ npolylog(n) and a positive constant
ε, we can store npolylog(n) words such that later, given a pattern P [1..m], in
O(m log log σ) time we can return a number between the number of documents
containing P and 1+ε times that number. To do this, we store an FM-index for
counting (i.e., without a suffix-array sample) for the collection and an instance
of their data structure for the document array; given P , we use the former to
find P ’s interval in the suffix array and the latter to estimate the number of
distinct elements in the corresponding interval of the document array.

Combining their data structure with Kempa and Prezza’s [44] generalization
of block trees to string attractors, we obtain the following result: given A, a
string attractor of size s for A and a positive constant ε, we can store spolylog(n)
words such that later, given i and j, in polylog(n) time we can return a number
between |{x : x ∈ A[i..j]}| and (1 + ε) |{x : x ∈ A[i..j]}|. That is, we can
reduce the space bound by a factor of n/s at the cost of increasing the time
bound on queries to polylog(n). To do this, we use the generalized block tree
to find an occurrence of A[i..j] that includes an element in the string attractor,
then estimate the number of distinct elements in that occurrence. It follows
that we can tighten the our space bound for approximate document counting
to (r + s) polylog(n), where r is the number of runs in the Burrows-Wheeler
Transform (BWT) of the collection and s is the size of a given string attractor
for the document array. To do this, we store a run-length compressed FM-index
for counting for the collection, a generalized block tree for the string attractor of
the document, and an instance of Munro, Nekrich and El-Zein’s data structure
for the string attractor.

If we take the union of set of positions of characters at the ends of runs in
the BWT and the set of positions of the first characters in each document, then
we obtain a string attractor of size at most d + r, where d is the number of
documents in the collection. To see why, consider that if an interval D[i..j] of
the document array does not contain an element of the resulting set, then none
of the characters in BWT[i..j] are the first character in a run in BWT or the
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first character in a document, so D[LF[i]..LF[j]] is equal to D[i..j]. By repeated
application of the LF function, eventually we reach an occurrence that includes
an element of the set, so the set is a string attractor. With this string attractor,
we obtain a (d + r) polylog(n)-space data structure for approximate document
counting with polylog(n) query time.

Locally-Adaptive Compressed Dictionaries
Diego Arroyuelo, Department of Informatics, Universidad Técnica Federico Santa
María, Chile
Juha Kärkkäinen, Department of Computer Science, University of Helsinki
Srinivasa Rao Satti, Department of Computer Science and Engineering, Seoul
National University

Dictionaries are one of the most fundamental data-structure problems: Let
U = {1, . . . , u} ⊂ N be a universe and S = {x1, . . . , xn} ⊆ U a set of n elements,
for 1 ≤ x1 < · · · < xn ≤ u, we want to support membership queries on S: given
x ∈ U , does x ∈ S? A fully-indexable dictionary (FID) also supports the
fundamental operations:

• rank(S, x): given an element x ∈ U , yields |{xj ∈ S, xj ≤ x}|, and

• select(S, j): given j ∈ N, yields xj .

Given the amount of data managed by many applications nowadays, it is also
important to support these operations using as less space as possible. Hence, the
succinct and compressed representation of FIDs has been an important research
topic in the last decades [58].

Typically, compression proceeds by first choosing a compression model, and
then encoding the data using that model. Different models try to take advantage
of different regularities that arise in the data. Typical examples are entropy-
compressed [67], gap-compressed [69, 50, 39], and run-length-compressed [58]
FIDs. However, in practice, data has local regularities, meaning that different
compression models would be more adequate for different parts of the data.
Hence, there has been a proliferation of hybrid approaches in the literature,
where basically the data is divided into blocks, and then each block is compressed
using the most suitable model for it. The main research communities where this
has been done are:

• Information Retrieval: indexing of versioned document collections [19],
and reordered document collections [3],

• Databases: hybrid compression schemes for bitmap indexes, like WAH [72]
and relatives, and

• Succinct Data Structures: hybrid bit vectors, mostly used to encode the
Burrows-Wheeler transform of repetitive text collections [43, 41].

This collaboration aims at exploring alternative hybrid encodings for locally-
adaptive dictionaries. In his talk, D. Arroyuelo proposed a model where gap and
run-length encodings are combined to take the best from both worlds. However,
it is not clear if there are more efficient combinations. We propose to pursue
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this line. In particular, a scheme that seems promising is the compression based
on variable-to-fixed encoding [42]. Another interesting line of research is that of
streaming compression of dictionaries: we must compress a set without knowing
the universe size nor the set size, using a limited amount of main memory and
with a single pass on the data. Since the dictionary is not known in advance, a
compression model that is able to automatically adapt to the data regularities
is desirable. There has been some progress on streaming data compression, as
for instance the computation of the LZ78 parsing of a text [2]. However, more
work needs to be done in this line.

Run-length FM indexes made practical
Travis Gagie, EIT, Diego Portales University, Chile
Simon Gog, Karslruhe Insitute of Technology
Nicola Prezza, DTU Compute, Technical University of Denmark

The FM-index [27] is, to date, the gold standard for full-text searches on
entropy-compressible datasets in many domains. Lately, the rise of repetitive
datasets has however generated a lot of interest in compressed self-indexes able
to beat the entropy lower-bound by exploiting the dataset’s repetitiveness. A
typical example is represented by the advances in next-generation DNA sequenc-
ing: more and more genomes are being sequenced, and the ability to store and
index them in compressed format is of crucial importance in bioinformatics.
Run-length FM indexes have been one of the first solutions able to efficiently
solve this problem: repetitions in the dataset translate to long equal-letter runs
in its Burrows-Wheeler transform, therefore run-length compression of this text
transformation can reduce the size of the index by orders of magnitude. The
state-of-the art index belonging to this family — the RLCSA [55] — reports
competitive speeds w.r.t. entropy-compressed FM-indexes while at the same
time taking orders of magnitude less space. However, one particular weakness
of the RLCSA prevents it to be fully practical on extremely repetitive datasets:
in order to being able to locate each pattern occurrence in time proportional to
s, the RLCSA needs a suffix array sampling of size n/s, n being the dataset’s
size. On extremely repetitive datasets, s needs to be large in order to keep space
usage under control, with the result that locate queries are very slow.

Very recently, Gagie, Navarro, and Prezza [33] solved this long-standing
problem by showing how to sample 2r suffix array entries (r being the number
of runs in the BWT of the dataset) while supporting locate queries in log-
logarithmic time each. Preliminary results showed that their index is up to three
orders of magnitude faster than the RLCSA, while using comparable space. This
solution is even faster — both asymptotically and in practice — than classical
FM-indexes, where the locate time is usually poly-logarithmic (the price to pay
being space in the case the text is not compressible at all). Given the practical
relevance of this new index, we expect that an optimized implementation will be
of great importance in any area currently making use of (classic) FM-indexes.
The sdsl C++ library [36] is, to date, the gold-standard for implementing space-
efficient data structures for string processing. The library already collects the
most efficient implementations of (entropy/run-length) FM-indexes; in order to
make an efficient implementation of the run-length FM index [33] available to
the community, a natural step to take now is therefore to integrate it in the sdsl
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library, which is precisely the goal of this collaboration started at the Shonan
meeting.

Implementing linear-time BWT construction in O(n lg σ)
bits
José Fuentes-Sepúlveda, Department of Computer Science, University of Chile
Gonzalo Navarro, Department of Computer Science, University of Chile
Yakov Nekrich, Cheriton School of Computer Science, University of Waterloo

The Burrows-Wheeler transform (BWT) is a central tool for several com-
pression algorithms and compact data structures. The transform exploits the
high-order entropy of sequences, generating a suitable input for compression
techniques. In the last years, sequential and parallel algorithms have been pro-
posed to construct the BWT. Sequentially, the transform can be constructed in
O(n) time and O(n lg σ) bits of space [25, 56], where n is the length of the se-
quence and σ is the alphabet size. In parallel, the transform can be constructed
in O(n + σ2 lg∗ n) sequential time, O(lg2 n) parallel time and O(n2 + σ2 lg∗ n)
bits of space [26], or O(n lg2 n) sequential time, O(lg σ lg5 n) parallel time and
O(n lg lg n+ p lg n) bits of space [40], where p is the number of available cores.
Recently, in the context of bioinformatics, Liu et al. [48] presented a new
algorithm to compute the Burrows-Wheeler Transform, called deBWT. The in-
troduced algorithm represents and organizes the suffixes of the input text using
Bruijn graphs, facilitating the comparison between suffixes with a long common
prefix. Alternatively, parallel algorithms to construct suffix arrays can be used
to obtain the BWT using O(n lg n) bits of space.

We plan to provide the first practical implementation and experimental study
of the linear-time and linear-space algorithm of Munro et al. [56]. The algorithm
computes the BWT by dividing the input sequence into segments of size ∆ =
lgσ n and then incrementally constructing the BWT in ∆ steps. Additionally,
we will discuss the parallelization of the algorithm of Munro et al. retaining the
linear space consumption. Finally, we will provide an implementation of our
parallel algorithm for multicore architectures.

The main challenge is to find practical alternatives to some theoretical so-
lutions that are used in the original paper to find the desired bound. We will
focus on the most interesting case, σ = O(polylog n), and will proceed by
physically inserting the n/∆ new symbols in the current BWT array in each
step. By using bit-parallel operations and multiary wavelet trees, we expect to
retain the O(n) construction time within O(n log σ) bits of space. We also plan
to exploit multi-core concurrency to speed up the insertions of all the symbols
across the BWT array.

Succinct Run-length Encoded Rank/Select Data Structure
José Fuentes-Sepúlveda, Department of Computer Science, University of Chile
Juha Kärkkäinen, Department of Computer Science, University of Helsinki
Dmitry Kosolobov, Department of Computer Science, University of Helsinki
Simon J. Puglisi, Department of Computer Science, University of Helsinki

Succinct representations of sequences with rank and select support have been
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a fundamental component of practical and theoretical results on compressed
full-text indexes. Several rank/select representations of general sequences have
been proposed, representing a sequence in optimal space and supporting efficient
queries [38, 37, 6, 22, 54]. However, in some applications, such as the FM-index,
the sequences that we need to represent may contain large subsequences of one
symbol. Such subsequences are called runs. In a more general application, the
Burrows-Wheeler Transform (BWT) of a repetitive sequence is more likely to
contain large runs. In such cases, it is possible of design rank/select structures
with better complexities than for general sequences. For example, see [32, 53,
12, 52].

In this collaborative work we propose a new succinct representation of se-
quences with runs and rank/select support. Given a sequence of length n, r
runs and an alphabet of size σ, our representation uses r log nσ

r + o(r log nσ
r )

bits, where 2 ≤ σ ≤ r ≤ n/ logω(1) n, and supports rank in O(log log(nσ/r)
log logn ) time

and select in O(log log(n/r)
log logn ) time. Additionally, our structure supports access

query with the same bounds than select. The rank, select and access queries
are time optimal whenever r ≥ 2log

δ n, for an arbitrary positive constant δ.
We also provide an implementation of the proposed structure. In prelimi-

naries experiments we compare our structure with the state of the art, showing
that the closest competitors consume on 31%-46% more space at the cost of
increasing the query time.

Universal Compression with Access and Indexing
Gonzalo Navarro, Department of Computer Science, University of Chile
Nicola Prezza, Technical University of Denmark, Denmark

The rise of repetitive datasets has lately generated a lot of interest in com-
pressed self-indexes based on dictionary compression. For each such compres-
sion scheme, several different indexing solutions have been proposed. To date,
the fastest indexes for repetitive texts are based on the run-length compressed
Burrows-Wheeler transform [31] and on the Compact Directed Acyclic Word
Graph [11]. The most space-efficient indexes, on the other hand, are based
on the Lempel-Ziv parsing [29, 7] and on grammar compression [20, 21]. Re-
cently, a fast and practical index based on Block Trees [13] has been proposed
by Navarro [60]. The space of this index can be bounded in terms of the size of
the Lempel-Ziv parsing of the text. Indexes for more universal schemes such as
collage systems and macro schemes have not yet been proposed.

Very recently, Prezza showed in [66] that all dictionary compressors fall
under a very general and universal scheme: they can all be seen as approxima-
tions of the smallest string attractor, i.e. a set of text positions capturing all
distinct substrings. Despite the simplicity of this definition, it can be shown
that the property underlying string attractors is sufficient to design a universal
data structure for random access supporting queries in near-optimal time [66]
(that is, close to a known lower bound). This goal is achieved by generalizing
the idea underlying Block Trees [13] so that it works on any string attractor.
Importantly, this data structure is universal: we can build it on top of any
dictionary-compressed text representation.

The goal of this work is to explore if the generality of string attractors can
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be exploited also to design a universal compressed index, i.e. an index that can
be built on top of any dictionary- compressed text representation. Given that
Block Trees can be enhanced to support indexing queries [60], we expect this to
be possible. Moreover, we will explore if the simple property underlying string
attractors is sufficient also to compress components such as the suffix array,
inverse suffix array, and LCP array. To this end, we will develop ideas first
explored in [31], namely: text repetitions generate corresponding repetitions in
the differential SA, ISA, LCP arrays. These repetitions can be captured around
attractor positions with the extended Block Tree presented in [66] for random
access on text. As an ultimate goal, this will yield a universally-compressed
fully-functional suffix tree.

Indexing the Bijective BWT
Hideo Bannai, Kyushu University, Fukuoka, Japan
Juha Kärkkäinen, University of Helsinki, Finland
Dominik Köppl, Department of Computer Science, TU Dortmund, Germany
Marcin Pia̧tkowski, Nicolaus Copernicus University, Toruń, Poland

The Burrows-Wheeler transform (BWT) [17] is a reversible transformation
permuting all symbols of a given string s. The output is formed by the charac-
ters preceding each suffix in the lexicographical order of all suffixes of s. Such
an operation tends to group identical characters together, which has many ap-
plications in data compression and text indexing.

Notice that all conjugates (cyclic rotations) of a given string share the
same BWT. Moreover, some strings cannot be considered as valid BWTs (e.g.
bccaab cannot be reversed). However, one can consider a bijective version of
BWT [35, 45] based on the Lyndon factorization [18] of the input string. In
this case the output consists of the last symbols of the lexicographically sorted
cyclic rotations of all Lyndon factors of the input. Since each string has a unique
factorization into lexicographically nonincreasing Lyndon words such a trans-
formation induces a bijection between strings of a given length n and multisets
of Lyndon words of total length n.

It is well known that the traditional BWT can be used as a text index
by implementing LF-mapping computations [61]; Given a pattern p and the
traditional BWT of T , the occurrences of p in a text T can be computed with
O(|p|) LF-mapping computations. In this light, one may ask whether it is
possible to build similar index data structures by exchanging the traditional
BWT with the bijective variant.

We previously answered the question affirmatively [5], showing that the
search on the bijective BWT can be conducted with O(|p|m) LF-mapping com-
putations, where m is the size of the Lyndon factorization of p, which can be
O(|p|) in the worst case, i.e., the algorithm requires O(|p|2) LF-mapping com-
putations in the worst case. Based on discussions during and after the Shonan
seminar, we now believe that the search on the bijective BWT can be conducted
with O(|p|m′) LF-mapping computations, where m′ is the number of distinct
factors in the Lyndon factorization of the longest pre-Lyndon suffix of p and is
actually in O(log |p|), thus reducing the number of LF-mapping computations
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to O(|p| log |p|). The algorithm and analysis are based on combinatoric prop-
erties of Lyndon words and the bijective BWT, and we plan to write a paper
describing these results.

Compressing the LCP array of parameterized suffix trees
Kunihiko Sadakane, The University of Tokyo, Japan
Sharma V. Thankachan, University of Central Florida, USA

The suffix trees [71] are data structures for indexing strings. For a string of
length n, its suffix tree uses O(n log n) bits of memory. The compressed suffix
trees [70] are compressed version of the suffix trees and use O(n log σ) bits where
σ is the alphabet size of the string. The parameterized suffix trees [4] are variants
of the suffix trees which are used for parameterized pattern matching. The size
of the parameterized suffix tree is O(n log n) bits. Though there exist a linear
size (O(n log σ) bits) data structure for parameterized pattern matching [34], it
does not represent the parameterized suffix tree. To represent it in linear space,
we need to compress the LCP (longest common prefix) array into O(n) bits,
and this is an open problem.

Algorithms for Tree Pattern Matching
Phil Bille, DTU Compute, Technical University of Denmark
Inge Li Gørtz, DTU Compute, Technical University of Denmark
Sebastian Maneth, Universität Bremen

Trees are among the most common and well-studied combinatorial struc-
tures in computer science. The problem of comparing trees occurs in areas as
diverse as structured text data bases (XML), computational biology, compiler
optimization, natural language processing, and image analysis. A labeled tree
T is a rooted, ordered tree, where each node has a label from an alphabet. In
the tree pattern matching problem the problem is to find all occurrences of a
given tree pattern P in a tree T . We have been working on improving the best
known tree pattern matching algorithms using ideas from data structures and
string matching.

Grammar-Compressed Query Reporting
Phil Bille, DTU Compute, Technical University of Denmark
Johannes Fischer, Universität Dortmund
Inge Li Gørtz, DTU Compute, Technical University of Denmark
Markus Lohrey, Universität Siegen
Sebastian Maneth, Universität Bremen

Grammar-based compression offers a mathematically clean abstraction of
important compression schemes. There are several known methods of selecting
positions of a string (or nodes of a tree), that can be performed efficiently
directly over the grammar, e.g., finding matches of a given pattern, or finding the
positions where a given finite automaton reaches a certain state. The matching
positions can be compactly represented using a grammar again. In this project
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we are interested in indexing such a “grammar of match positions” to speed-up
certain operations. For instance, we would like to be able to enumerate match
position with only constant-delay between each reported position.

Top Tree Compression
Phil Bille, DTU Compute, Technical University of Denmark
Inge Li Gørtz, DTU Compute, Technical University of Denmark
Roberto Grossi, Department of Computer Science, University of Pisa

A labeled tree T is a rooted, ordered tree, where each node has a label.
Labelled trees are one of the most frequently used nonlinear data structures in
computer science, appearing in the form of e.g. suffix trees, XML files, tries,
and dictionaries. These trees are frequently very large, prompting a need for
compression for on-disk storage. Top-tree compression [15, 14] is a compression
method for trees that is able to capture repeated subtrees and tree structure
repeats and that can compress exponentially better than DAG compression.
We have been discussing new potential uses of top tree compression by applying
them to parse trees and sequences. The discussion is still preliminary as we are
planning some experiments to see if using top trees improves the compression
in this scenario.
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