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This meeting aims to provide a forum to

• Discuss recent development in data dependent dissimilarity measures,

• Plan for future research directions in the next 2-5 years, and

• Establish research collaboration towards the research directions.

While the conventional data independent distance metric has been the pri-
mary means to measure dissimilarity of any two points in a given space, research
in different fields has provided evidence that data dependent dissimilarity, where
data distribution has the primary influence on the dissimilarity, is a better mea-
sure to find the closest match neighbourhood of a query—a core computation
demanded in automated tasks such as classification, clustering, anomaly detec-
tion and information retrieval.

Advocates of data dependent dissimilarity include psychologists and com-
puter scientists. Researchers in machine learning have advocated distance met-
ric learning—a method which learns a mapping such that the mapped points
are in the Euclidean space. In the supervised learning context, the mapping
amounts to reducing the distance between points of the same class and increas-
ing the distance between points of different classes in the mapped Euclidean
space. It is also viewed as a way to learn a generalised (or parameterised)
Mahalanobis distance, subject to some optimality constraint, from a dataset.
Some data dependent dissimilarity measures, which require no learning, have
been proposed, for instance, Mahalanobis distance, the term-weighted Cosine
distance, cdf and rank transformations, and information theoretic definitions of
similarity.

The need for data dependent dissimilarities came up in various different
forms, implicitly or explicitly, in different subfields of machine learning and
data mining. For instance, kernel methods, new definitions of similarity or
dissimilarity for structured types of data, and the use of side information or
‘privileged information’ i.e., additional data available only at training time to
inform the choice of metric to be used.

It is interesting to note that many existing data dependent dissimilarity
measures are either metric or pseudo-metric. This is due to the following as-
sumption: a necessary condition for the above mentioned automated tasks is
that the dissimilarity measures must be a metric.
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The psychological tests conducted in the 70s have shown that the dissimi-
larity between two instances, as judged by humans, is influenced by the context
of measurements and other instances in proximity. It is suggested that a dis-
similarity measure which is akin to one aspect of human’s judged dissimilarity
is: two instances in a dense region to be less similar than two instances of
equal interpoint distance but located in a sparse region. In addition, the judged
dissimilarity does not satisfy the metric constraints.

Recent research has provided more concrete evidence that nonmetric data
dependent dissimilarity measures can be an effective alternative to distance
metric to overcome the weaknesses of existing distance-based neighbourhood
algorithms.

In the literature, the term ‘data-dependent’ has been used to mean different
things:

(i) In the context of multiple kernel learning (e.g., [1]), the term means using a
dataset to learn a weight for each user-defined data-independent kernel, in
a (linear or non-linear) combination of multiple kernels in order to reduce
the risk of choosing a bad kernel for the task at hand.

(ii) In the context of distance metric learning [2], the term means the use
of class information and the training set to transform data f (usually ac-
companies a dimension reduction) to achieve the desired metric: d(x,y) =
||f(x)− f(y)||2.

(iii) In the context of conformal transformation [3], the term means modifying
a data independent kernel to the class distribution of the data. Like
distance metric learning, class information in the data plays a key role
here. Similarly, RF kernel [4] produces a classifier from class-labelled
data.

(iv) A kernel or similarity which depends on data distribution only, not know-
ing the class information [5]. That is, the similarity’s adaptation to local
data distribution is the main contributor in producing a data dependent
kernel/similarity. In addition, this kernel does not need explicit learning,
unlike the other three categories mentioned above.

This meeting facilitates an exchange of recent works and discussion around
some of the fundamental questions/issues on this topic.

This document summarizes potential future research discussed in this Shonan
meeting. It is organized into four sections:

(1) Potential future research

(2) Presentations provided in the meeting

(3) List of participants

(4) Meeting schedule
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1 Potential future research

A number of interesting potential future research in relation to data dependent
dissimilarity has been suggested during and after the Shonan meeting. This
section summarises these potentials.

1.1 Using LID to estimate density ratio

Michael Houle

As part of the final-day discussions I presented an example of how an es-
timator of density could be derived using the Local Intrinsic Dimensionality
(LID) model. Here, I give a slightly-improved overview of the derivation — for
more background, please refer to the presentation slides titled “Local Intrinsic
Dimensionality: An Extreme-Value-Theoretic Foundation for Similarity Appli-
cations” accompanying this report, or to the publications listed in the references
at the end of the slides.

Often, estimation of density employs some measure of the volume of small
balls with respect to the data domain — usually with respect to either the rep-
resentational dimension, or the global intrinsic dimensionality. However, doing
so presupposes that the data lies on a single manifold of some fixed dimension.
In contexts (such as mixture models of local distributions of differing dimen-
sionalities), measuring volume in this way can favor some of these distributions
over others.

Particularly in contexts in which data dependent similarity metrics are to be
employed, as an alternative to the estimation of density ratios with respect to
the global distribution, one could instead estimate the ratios of densities with
respect to the collection of distance distributions induced by the points of the
data set.

Given two points a and b separated by a sufficiently small distance d(a,b) =
r, let A(r) and B(r) be the probability measure associated with the ball of radius
r centered at a and b, respectively. Without a notion of global distribution, the
density ratios in the vicinities of a and b can be defined as

ρa,b(r) :=
A′(r)

B′(r)
=
A(r)IDA(r)

B(r)IDB(r)
.

Here, we assume that the cumulative distribution functions A and B are both
continuously differentiable over the range r ∈ (0, c), thereby allowing us to use
the relationship

IDF (r) =
rF ′(r)

F (r)

for F ≡ A or F ≡ B.
This formulation of density ratio measures the ratio of the rates of expansion

of probability measure, one rate viewed from a and the other from b, if the
distance r between a and b were to be allowed to vary. It can be regarded as
a measure of the asymmetry of the distance measure d when adjusted for local
probability measure and for local intrinsic dimensionality, or equivalently, the
local discriminability of the original distance measure.
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It should be noted that this ratio can break down in a theoretical sense if
r is allowed to tend to zero. To see this, it suffices to consider the case where
A(r) ∝ rma and B(r) ∝ rmb :

lim
r→0+

ρa,b(r) =

 0 if ma > mb

1 if ma = mb

∞ if ma < mb

.

In a practical sense, for fixed d(a,b) = r > 0, we can approximate the
density ratio by approximating the indiscriminabilities IDA(r) and IDB(r) by
the local intrinsic dimensionalities ID∗A and ID∗B , respectively, where

ID∗F := lim
r→0+

IDF (r)

for F ≡ A or F ≡ B. ID∗A and ID∗B can then be estimated using existing
techniques. This gives us the approximation

ρa,b(r) ≈ ID∗A
ID∗B

· A(r)

B(r)
,

where the ratio A(r)/B(r) can be estimated by the ratio of the number of points
within the balls of radius r centered at a and at b. For those situations where
these numbers of points are not available, or when the numbers are too low, the
ID representation formula can help, as follows.

The ID representation states that as r and w tend to zero ‘nicely’ (that is,
with r/w and w/r both bounded), we have that

F (r)

F (w)
→
( r
w

)ID∗
F

.

By applying this twice, with w chosen as the distances within which A and B
achieve probability p > 0 — that is, where A(δa(p)) = p and B(δb(p)) = p, we
obtain

A(r)

B(r)
≈ A(δa(p))

B(δb(p))

(
r

δa(p)

)ID∗
A
(

r

δb(p)

)−ID∗
B

= rID
∗
A−ID

∗
B · (δb(p))

ID∗
B

(δa(p))
ID∗

A

.

The distances δa(p) and δb(p) can then chosen as the respective k-NN distances
of a and b, so as to approximate the choice p = k/n, where n is the number of
points in the data set.

Putting it all together, we get the following approximation for the density
ratio:

ρa,b(r) ≈ rID
∗
A−ID

∗
B · ID∗A · (δb(k/n))

ID∗
B

ID∗B · (δa(k/n))
ID∗

A

.

As a final observation, when designing this estimator, we could have used
choices of w at any convenient distance from a or b. For this reason, the above
estimator should be regarded only as an illustrative example. Many estimators
are possible — in particular, formulations can be derived that use all distances
within the k-NN sets of a and b. It’s an interesting question as to how effectively
such estimators of density and density ratios may perform in practice. For
the overall estimate to be stable, the estimates of the terms appearing in the
exponents — ID∗A and ID∗B — must themselves be stable. This can possibly be
achieved by blending the estimates over the respective neighborhoods of a and
b.
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1.2 Alternative mass-based similarity which takes class
distribution into account

Jaakko Peltonen
In many problem domains it is expected that not all statistical properties of

the data variation will be relevant to analysts; for example part of the variation
may be due to noise, known artifacts or distortions of the measurement process,
or due to properties of the underlying phenomenon that are known, trivial, or
otherwise uninteresting for analysis. Such uninteresting, noise or nuisance varia-
tion should not affect similarity or distance metrics that aim to solve exploratory
or predictive tasks. Known data annotation of classes, ontologies, or constraints
can help disambiguate which variation is relevant versus non-relevant, or more
generally score how relevant each variation should be to the metric. In general
the relevance of variation along variables, subspaces, of features is a local phe-
nomenon. Such relevance needs to be combined with other desired properties
of a metric such as adaptivity to data density.

In previous work [11] we have designed class annotation based local Rie-
mannian metrics that are topology preserving and take local changes in class
distributions into account. However, such metrics were not directly designed to
be adaptive to data density, were not directly designed for robust estimation
with finite data sets in high dimensionalities, and were designed as distance met-
rics instead of similarity measures. In new research, it is possible to research the
connection between such metrics and estimation of similarity measures including
relationship to mass-based similarities, and algorithms for efficient estimation of
similarities that take into account both local changes of data density and local
changes in relevance of data variation.
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1.3 Relationship between dimensionality reduction and
hubness

Miloš Radovanović, Michel Verleysen, John Lee, Frank-Michael Schleif
An important class of currently used performance measures for dimension-

ality reduction (DR) methods rely on the reasonable assumption that it is im-
portant for a DR method to preserve local neighborhoods from the original
data in the reduced representational space. Apparently, this assumption has
potential for strong interaction with the known property of hubness, with re-
spect to models built from data, to unevenly distribute among the data points
the responsibility for the errors that a model makes. Concretely for DR and
neighborhood preservation, this leads to the hypothesis that hubness may cause
the cost associated to “misplacing” a hub point in the reduced space to be
significantly higher than that of non-hub points.

In the first phase, we will attempt to validate the above hypothesis by mea-
suring neighborhood preservation errors associated with each data point, and
correlating them with data point hubness. In case enough evidence is accumu-
lated to support strong correlation, phase two will apply the obtained insights
to modifying existing DR methods, at first focusing on the stochastic neighbor
embedding (SNE) family, with the goal of producing DR methods that provide
the correct amount of “special treatment” to hub points in order to improve
neighborhood preservation. Along this line a strategy could be to modify the
original cost function of SNE methods by adding an additional cost term or by
changing the probability function in the divergence measure (again) such that
potential hub points accumulating a higher weight in the divergence calculation
than normal points. One may also impose an underlying topology in the two
dimensional representation by constraining the positions of hubs and allowing
more flexibility for other points in the low dimensional representation.

The proposed research not only has the potential to produce more effective
DR methods in the short term, but also to provide better understanding of
the underlying intricacies of high-dimensional spaces and mechanisms that can
affect the DR process, leading to novel classes of methods and exciting new
research directions in the long run.
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1.4 Other issues related to Dimensionality reduction

John Lee, Michel Verleysen

1.4.1 Task-dependent dimensionality reduction

Dimensionality reduction (DR) is often cast within a completely unsupervised
framework, similarly to clustering. When restricted to linear dimensionality
reduction, some attempts have been made towards supervised methods, like
projection pursuit to some extent and linear discriminant analysis. As to non-
linear DR, most methods remain totally unsupervised and their typical purpose
is exploratory data analysis in the broad sense. In this context, though, one
might wonder whether the users have some intent or goal in mind and would
like to particularize DR to suit their objectives. Typically this can cover the use
of available class labels that are usually not involved in DR, except maybe in vi-
sualization or quality assessment. Another use case is meta-parameter browsing.
Most DR methods have meta-parameters that impact their general behavior,
like the scale or size of the considered neighborhoods, the trend to favor either
false neighbors or missing ones, etc. Yet another aspect is the users’ final intent.
Do they use DR for itself and, if not, what is their true, underlying goal? Is it
clustering, classification? For all these reasons, it might be useful to have DR
methods where:

• some interactivity with user is possible

• metric learning can be integrated

Interactivity allows the users to test meta-parameters value and to assess visu-
ally or quantitatively the results. Optimization techniques should be adapted
to enable seamless transitions between the subsequent problems that such use
case implies. As to metric learning, DR is often considering default metric like
the Euclidean distance. Task dependent metrics would be an improvement. A
practical example is mixed data, where continuous, discrete, ordinal and cate-
gorical features are considered together, raising the question of their respective
weight in the metric.

1.4.2 Dimensionality reduction based on data dependent similarity

Dimensionality reduction often relies on default choices for the metric, like the
Euclidean distance. A few examples have tried to innovate with respect to this
habit, like Isomap, where a graph of K-ary neighborhoods is used to approximate
geodesic distances along the underlying manifold with shortest paths through
the graph. To some extent, other spectral DR methods like Laplacian eigen-
maps and variants implicitly use commute-time distances in K-ary neighborhood
graphs. Similarities used in stochastic neighbor embedding are also a way of
implicitly defining a data-dependent metric. Euclidean distances are wrapped
up in softmax similarities whose normalization brings invariances. Moreover,
the bandwidth in the exponential allow for adaptation to local data density.
Multi-scale similarities push that idea even further (multiple invariances, mul-
tiple bandwidths). A perspective that is not yet explored is to use anisotropic
distances, like when switching from Euclidean to (local) Mahalanobis. Although
it thought to be useful, such data-dependent metric involves many additional
parameters that need to be adjusted carefully.
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1.5 A generic proof of kernel characteristic of Isolation
Kernel

Kai Ming Ting and Ye Zhu

Isolation Kernel, implemented using iForest, has been shown to have the
following characteristic empirically:

‘Two points in sparse region are more similar than two points of
equal inter-point distance in dense region.’ [5] (A formal description
of this characteristic is provided in the paper.)

A recent work has used nearest neighbour partitioning mechanism (aka
Voronoi diagram) to induce Isolation Kernel [6]. Although a proof is provided
for the above-mentioned characteristic of Isolation Kernel, the proof relies on
this particular implementation [6].

The characteristic of Isolation Kernel is independent of its partitioning mech-
anism, as long as the partitions created satisfy the requirement that ‘large par-
titions in sparse regions and small partitions in dense regions’. Thus, a generic
proof of the characteristic, independent of the partitioning mechanism, is sought.

Such a generic proof will provide (i) a better understanding of the kernel’s
behaviour; (ii) a guidance to further development of Isolation Kernel in terms
of designing different partitioning mechanisms and potential deviations from
the stated characteristic; and (iii) a connection to mass-based similarities [7,8]
which have the same similarity characteristic (and can be implemented using
the same partitioning mechanism) but derived from a different formulation.

1.6 Feature Map of Isolation Kernel

Jaakko Peltonen and Kai Ming Ting

What are the equivalent features (provided intrinsically) from Isolation Ker-
nel?

There are many uses of the features derived this way. Examples are: (a)
Random sampling of these features have been employed to reduce the computa-
tional cost of employing the full set of features derived from a data independent
kernel. Features derived from Isolation Kernel can be similarly applied. (b) It
facilitates the application of random projection.

1.7 Is Concentration of Measure an issue in practice?

Kai Ming Ting, John Lee, Michel Verleysen, Takashi Washio, Ye Zhu

Is concentration of measure [12,13] an issue in practice?
Email discussion was conducted on this question after the meeting. Some

have the view that ‘real’ datasets appear to have low intrinsic dimensions and
sufficient structure—this has kept the concentration effect at bay in practice.
Some has the view that the current ‘real’ datasets have been influenced by the
data collection methods thus far. This can change in the future. The study of
this effect in high dimensional problems shall not be ignored.
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1.8 Other issues related to data-induced similarities

Kai Ming Ting

The following issues were raised in the meeting:

(a) What are the base kernels for different isolation partitioning mechanisms
for Isolation Kernel?

The base kernel refers to the data independent kernel that Isolation Kernel
approximates under uniform density distribution. Using the approxima-
tion derived by Leo Breiman, Isolation Kernel implemented using iForest
has been shown to approximate to Laplacian Kernel under uniform density
distribution [5].

An implementation using the Voronoi diagram [6] has a different base
kernel; so as any other implementations of Isolation Kernel. The knowl-
edge of the base kernel facilitates practitioners in choosing the ‘prior’ for
a particular problem at hand.

(b) How to make Isolation Kernel more adaptive to different aspects of data
characteristics, tailored for a specific task.

The existing Isolation Kernels [5,6] are unsupervised, i.e., the data de-
pendency is solely based on data distribution. While Isolation Kernel has
been shown to perform better than distance metric learning (which utilizes
the class information) in SVM classifiers [5], it is possible that utilizing
additional information in the data may further improve the task-specific
outcome.

In another perspective, existing Isolation Kernels do not have explicit
learning. It would be interesting to investigate incorporating an optimiza-
tion process to further enhance Isolation Kernel for the task at hand.

(c) Data-induced similarity of different characteristics

Isolation Kernel is one type of data-induced similarity which has a specific
kernel characteristic that is akin to one aspect of human-judged similarity
(as described in Section 1.5). There are other aspects of human-judged
similarity [9,10]. It would be interesting to examine other types of data-
induced similarity which have these characteristics; and whether they have
practical advantages over data independent similarity.

(d) Similarity for mixed data types

Data-induced similarity is focused on numeric attributes only. Extending
its ability to handle categorical attributes and mixed attribute types will
benefit both the scientific community as well as industry.
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2 Presentations provided in the meeting

A total of 12 presentations were planned and made on the first three days of the
meeting; and 3 short presentations were added on the last day. The presentation
slides are shared among participants using DropBox.

(i) Data-Induced Similarities

• Mass-based dissimilarity: Kai Ming Ting & Takashi Washio

Abstract: The use of distance metrics such as the Euclidean or Man-
hattan distance for nearest neighbour algorithms allows for interpre-
tation as a geometric model, and it has been widely assumed that the
metric axioms are a necessary condition for many data mining tasks.
We show that this assumption can in fact be an impediment to pro-
ducing effective models. We propose to use mass-based dissimilarity,
which employs estimates of the probability mass to measure dissim-
ilarity, to replace the distance metric. This substitution effectively
converts nearest neighbour (NN) algorithms into Lowest Probability
Mass Neighbour (LMN) algorithms. Both types of algorithms employ
exactly the same algorithmic procedures, except for the substitution
of the dissimilarity measure. We show that LMN algorithms over-
come key shortcomings of NN algorithms in classification and clus-
tering tasks. Unlike existing generalised data independent metrics
(e.g., quasi-metric, meta-metric, semi-metric, peri-metric) and data
dependent metrics, the proposed mass-based dissimilarity is unique
because its self-dissimilarity is data dependent and non-constant.

• Learning with non-metric proximities: Frank-Michael Schleif

Abstract: Efficient learning of a data analysis task strongly depends
on the data representation. Most methods rely on (symmetric) simi-
larity or dissimilarity representations by means of metric inner prod-
ucts or distances, providing easy access to powerful mathematical
formalisms like kernel or branch-and-bound approaches. Similari-
ties and dissimilarities are however often naturally obtained by non-
metric proximity measures which can not easily be handled by clas-
sical learning algorithms. In the last years major efforts have been
undertaken to provide approaches which can either directly be used
for such data or to make standard methods available for these type
of data. The presentation provides a comprehensive overview for the
field of learning with non-metric proximities. First we introduce the
formalism used in non-metric spaces and motivate specific treatments
for non-metric proximity data. Secondly we provide a systematiza-
tion of the various approaches. For a few approaches we discuss
complexity issues and generalization properties. We also address the
problem of large scale proximity learning which is often overlooked in
this context and of major importance to make the method relevant
in practice. The discussed algorithms and concepts are in general ap-
plicable for proximity based clustering, one-class classification, clas-
sification, regression or embedding tasks. Various applications show
the relevance of the discussed approaches, which provide a generic
framework for multiple input formats. The goal of the presentation
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is to give an overview about recent developments in this domain,
covering in particular principled approaches as concerns learning in
indefinite spaces and its mathematical foundations and extensions to
large scale problems.

• Mutual Reachability Distances: Ricardo J. G. B. Campello

Abstract: In this talk I elaborate on how a family of mutual reacha-
bility distances can transform the original data space in a way that
distances can be locally stretched in a data-dependent way, and how
this type of transformation plays a fundamental role in recent effec-
tive and efficient density-based data mining algorithms. In partic-
ular, I discuss their application to density-based clustering, outlier
detection, and semi-supervised classification.

• Some thoughts on learning theory for metric learning: Yiming Ying

Abstract: Metric learning has attracted a large amount of interest.
Despite many algorithms that have been proposed, there is little
work on the statistical foundation to explain the empirical successes
behind such methods. For instance, a fundamental question is how to
characterize the generalization ability and classification performance
of such algorithms in terms of how well they perform on new (test)
data when trained on given historical data.

In this talk I will present our efforts in this challenging research di-
rection. Firstly, we show that generalization analysis of supervised
metric learning reduces to the estimation of Rademacher average
over “sums-of-i.i.d.” sample-blocks. Then, we derive generalization
bounds for metric/similarity learning with different matrix-norm reg-
ularizers by estimating their Rademacher complexities. Our analysis
using U-statistics and Rademacher complexity indicates that sparse
similarity learning with L1-norm regularization can lead to signifi-
cantly better bounds than those with Frobenius-norm regularization.
Secondly, we address the links between similarity learning and the
classification performance of the resulting classifier. We show that
the generalization error of the resulting classifier can be bounded by
the generalization bound of similarity learning. This shows that a
good generalization of the learned similarity function guarantees a
good classification of the resulting classifier.

• Isolation Kernel and its effect on SVM: Kai Ming Ting

Abstract: This presentation reports a recent data dependent kernel
that is derived directly from data. Data dependent kernel has been
an outstanding issue for about two decades which hampered the de-
velopment of kernel-based methods. We introduce Isolation Kernel
which is solely dependent on data distribution, requiring neither class
information nor explicit learning to be a classifier. In contrast, ex-
isting data dependent kernels rely heavily on class information and
explicit learning to produce a classifier. We show that Isolation Ker-
nel approximates well to a data independent kernel function called
Laplacian kernel under uniform density distribution. With this rev-
elation, Isolation Kernel can be viewed as a data dependent kernel
that adapts a data independent kernel to the structure of a dataset.
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We also provide a reason why the proposed new data dependent ker-
nel enables SVM (which employs a kernel through other means) to
improve its predictive accuracy. The key differences between Ran-
dom Forest kernel and Isolation Kernel are discussed to examine the
reasons why the latter is a more successful tree-based kernel.

(ii) Rescaling and Dimensionality reduction

• CDF-based rescaling—An effective way to deal with inhomogeneous
density datasets: Ye Zhu

Abstract: Density-based clustering algorithms find clusters in regions
of high density which are separated by regions of low density. The
clusters are typically identified by grouping points which are above
a global density threshold. They are able to find clusters of arbi-
trary sizes and shapes while effectively separating noise. Despite its
advantage over other types of clustering, it is well-known that most
density-based algorithms face the same challenge of finding clusters
with varied densities.

In this talk, I present a principled density-ratio approach that enables
a density-based clustering algorithm to identify clusters with varied
densities. Density-ratio estimate the ratio between the density of
a given point and the average density of its local neighbourhood.
Existing density-based methods could use density-ratio estimation
to find clusters as regions of local high densities, which are separated
by regions of local low densities.

Instead of reconditioning an existing density-based algorithm with
the density-ratio estimator, I provide three CDF-based rescaling meth-
ods as a pre-processing step to rescale a given dataset, then exist-
ing density-based algorithm can be applied unaltered to the rescaled
dataset to perform density-ratio based clustering. These three rescal-
ing methods can be treated as density equalisation w.r.t. a density
estimator with a certain bandwidth such that different clusters shows
similar densities after rescaling. Therefore, a single density threshold
can be used to identify all clusters that would otherwise impossible
had the same algorithm been applied to the unscaled dataset.

• Multiscale stochastic neighbor embedding: John A. Lee

Abstract: Nonlinear dimensionality reduction (DR) is also known as
manifold learning and consists in determining a low-dimensional rep-
resentation of high-dimensional data, which is somehow faithful to
their initial salient features, like underlying manifolds, clusters, out-
liers, or distribution in general. The consensual proxy for the task
of DR is that dissimilar data items should be represented far apart,
whereas similar items should lie close to each other. This proxy is
implemented as such for the quality assessment of DR methods and
results. In practice DR QA evaluates the correct average preservation
of K-ary neighbourhoods around all data points, for various values of
size K. Over the history of DR, this proxy has also been instantiated
in various way to design DR methods, like the preservation of data
variance in principal component analysis (PCA) or the preservation
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of dot products in classical multidimensional scaling (CMDS) or dis-
tance preservation in stress-based MDS. More recently, improved re-
sults have been obtained with similarity preservation, where distances
are wrapped into similarities with specific invariance properties. In
particular, the similarities used in stochastic neighbour embeddings
and variants are interpreted as probabilities for two points to be
neighbours and the normalization in their softmax ratio makes them
invariant to squared distance shifts. This property is decisive to dis-
crepancy in distance concentration between the HD data space and
the LD representation. Another property is related to the cost func-
tion used to carry out DR, which is analogous to an energy functional
in an N-body placement problem (masses and springs). For some cost
functions, the gradient mimicks spring plasticity (overly elongated
springs deform and do no longer oppose an attractive force). Plas-
ticity allows ‘tearing’ manifold, leading to improved neighbourhood
preservation on average. Eventually, a last feature of DR methods
is how they consider the issue of scale. Linear DR tends to preserve
large neighbourhoods in priority, whereas nonlinear modern methods
tend to preserve smaller, local neighbourhoods. This is sometimes
specified explicitly, like in SNE and variants, where the user provides
a scale parameter called ‘perplexity’. We present a method where
scale must no longer be specified. Similarities are then averages over
multiple scales, covering all possible neighbourhood sizes. Experi-
mental results show that this approach yields improved results while
also dispensing the user with the selection of a preferred scale.

• Dimensionality reduction—Targeted Projection Pursuit: Maia An-
gelova

Abstract: Big data come with high dimensions. Reducing dimen-
sionality without losing essential information, hidden in the data is
number one priority of dimension-reduction techniques. Another pri-
ority is the ability to visualise data in a format accessible by users
who are not necessarily specialists in the field.

Targeted Projection Pursuit (TPP) [Faith et al Bioinformatics 2006],
is a dimension reduction machine learning method that allows the ex-
ploration of previously clustered data on the two-dimensional screen.

The theory behind the TPP method is discussed and some appli-
cations for re-clustering and classifications are given. These appli-
cations include gene expression data for leukemia cancers [Faith et
al, Bioinformatics 2006] and data for the usage of telecare devices for
North East of England [Angelova et al IEEE Access 2018] will be pre-
sented. The performance of the method is demonstrated compared
to other dimensionality reduction techniques. Further directions for
development to include time series and stochastic data are discussed.

References:

J Faith, R Mintram and M Angelova. Targeted Projection Pursuit
for Gene Expres-sion Data. Bioinformatics, 22, No 21, pp 26672673
(2006), doi:10.1093/bioinformatics/btl463.

Maia Angelova, Jeremy Ellman, Helen Gibson, Paul Oman, Suthar-
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shan Rajasegarar, Ye Zhu. User Activity Pattern Analysis in Tele-
care Data. IEEE Access, Issue Date: DECEMBER 2018, 6, Issue:1,
33306-33317, DOI: 10.1109/ACCESS.2018.2847294.

• Similarities and Learning with Random Projections: Ata Kaban

Abstract: Random projection (RP) is a simple, computationally effi-
cient and theoretically well grounded dimensionality reduction tech-
nique. This talk highlights some aspects of its relationship with the
notion of similarity in Euclidean data spaces. (1) We show that, with
high probability, RP preserves dot products and their sign to an ex-
tent that depends on the cosine similarity of the vectors. (2) Further-
more, we show that, for halfspace learning, the use of RP yields new
generalisation bounds in terms of the expectation of a function of co-
sine similarities between the classifier and points of the input space.
Such bounds hold without any assumptions beyond i.i.d. sampling
of the data, both in the case of learning from RP-ed data, as well as
for learning from the original data, and have close links with margin
distribution bounds. (3) Moreover, RP is not confined to linear mod-
els. An analogous application of the ideas to the nearest neighbour
classifier reveals geometric characteristics that explain the statistical
difficulty or easiness of a problem for nearest neighbour - this turns
out to be a notion of intrinsic dimension of the input space. (4) A
further example we give is learning a Mahalanobis metric within a
generic classifier, which is known to have a sample complexity that
strongly depends on the data dimension in general. Here a RP-based
analysis highlights the Frobenius norm of the similarity matrix as a
measure of problem difficulty, and this recovers a known finding in
a special case. (5) Finally, we note that learning a Fisher linear dis-
criminant (FLD) classifier may be interpreted as learning the sign of
a Mahalanobis dot-product similarity, and we show how this can be
done in small sample conditions by means of an ensemble of FLDs
that each receive an independent RP-ed version of the data. We give
theoretical guarantees as well as state of the art empirical results for
this approach, including an analysis of the number of base learners
necessary for the similarity matrix of the ensemble to reach arbitrar-
ily close in spectral norm, with high probability, from that of the
infinite ensemble.

• Nonlinear Dimensionality Reduction with Missing Values: Michel
Verleysen

Abstract: Dimensionality reduction (DR) aims at faithfully and mean-
ingfully representing high-dimensional data into a low-dimensional
(LD) space. Recently developed neighbor embedding DR methods
lead to outstanding performances, thanks to their ability to foil the
curse of dimensionality. Unfortunately, they cannot be directly em-
ployed on incomplete data sets, which become ubiquitous in machine
learning. Discarding samples with missing features prevents their
LD coordinates computation and deteriorates the complete samples
treatment. Common missing data imputation schemes are not ap-
propriate in the nonlinear DR context either. Indeed, even if they
model the data distribution in the feature space, they can at best
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enable the application of a DR scheme on the expected data set. In
practice, one would instead like to obtain the LD embedding with
the closest cost function value on average with respect to the com-
plete data case. As state-of-the-art DR techniques are nonlinear, the
latter embedding results from minimizing the expected cost function
on the incomplete database, not from considering the expected data
set. This paper addresses these limitations by developing a general
methodology for nonlinear DR with missing data, being directly ap-
plicable with any DR scheme optimizing some criterion. In order
to model the feature dependencies, a high-dimensional extension of
Gaussian mixture models is first fitted on the incomplete data set.
It is afterward employed under the multiple imputation paradigm to
obtain a single relevant LD embedding, minimizing the cost function
expectation. Extensive experiments demonstrate the superiority of
the suggested framework over alternative approaches.

Reference: Cyril de Bodt, Dounia Mulders, Michel Verleysen and
John Aldo Lee. Nonlinear Dimensionality Reduction With Missing
Data Using Parametric Multiple Imputations. IEEE Transactions on
Neural Networks and Learning Systems, published online 27 August
2018, DOI: 10.1109/TNNLS.2018.2861891

(iii) Related issues

• Hubness and Data Dependent Dissimilarity Measures: Miloš Rado-
vanović

Abstract: Hubness – the tendency of k-nearest neighbor graphs con-
structed from tabular data using some distance measure to con-
tain hubs, i.e. points with in-degree much higher than expected –
has drawn a fair amount of attention in recent years due to the
observed impact on techniques used in many application domains.
This talk summarizes the knowledge and recent research on hubness,
making the connections with data dependent dissimilarity measures
(DDDMs), and is organized in three parts: (1) Origins of hubness,
which discusses the causes of the emergence of hubs (and their low in-
degree counterparts, the anti-hubs), and their relationships with di-
mensionality, neighborhood size, distance concentration, and the no-
tion of centrality; (2) Applications related to DDDMs, which presents
some notable effects of (anti-)hubs on techniques for machine learn-
ing, data mining and information retrieval, identifies two different
approaches to handling hubs adopted by researchers – through fight-
ing or embracing their existence – and reviews techniques and appli-
cations belonging to the two groups, with particular focus on their
relationship with DDDMs; and (3) Discussion, which initiates dia-
logue about open problems and areas with significant opportunities
for research on connections between hubness and DDDMs.

• Local Intrinsic Dimensionality: An Extreme-Value-Theoretical Foun-
dation for Similarity Applications: Michael E. Houle

Abstract: Researchers have long considered the analysis of similar-
ity applications in terms of the intrinsic dimensionality (ID) of the
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data. This presentation is concerned with a generalization of a dis-
crete measure of ID, the expansion dimension, to the case of smooth
functions in general, and distance distributions in particular. A local
model of the ID of smooth functions, LID, is first proposed and then
explained within the well-established statistical framework of extreme
value theory (EVT). Moreover, it is shown that under appropriate
smoothness conditions, the cumulative distribution function of a dis-
tance distribution can be completely characterized by an equivalent
notion of data discriminability. As the local ID model makes no as-
sumptions on the nature of the function (or distribution) other than
continuous differentiability, its extreme generality makes it ideally
suited for the non-parametric or unsupervised learning tasks that of-
ten arise in similarity applications. The LID model is then extended
to a multivariate form that can potentially account for the contri-
butions of different distributional components towards the intrinsic
dimensionality of the entire feature set, or equivalently towards the
discriminability of distance measures defined in terms of these fea-
ture combinations. Formulas are established for the effect on LID
under summation, product, composition, and convolution operations
on smooth functions in general, and cumulative distribution functions
in particular. For some of these operations, the dimensional or dis-
criminability characteristics of the result are also shown to depend on
a form of distributional support. Finally, a theoretical relationship
is established between the LID model and the classical correlation
dimension.

(iv) Additional presentations provided on the last day

• David Gao

• An Information Retrieval Approach to Visualization of High-dimensional
Data, and Learning Metrics from Annotation and Interaction: Jaakko
Peltonen

Abstract: In this talk we discuss how neighbor embedding can be
formalized as an information retrieval task, its performance can be
measured by information retrieval measures, and the embeddings can
be directly optimized for the information retrieval task, by the Neigh-
bor Retrieval Visualizer (NeRV) method family. Several variants of
the method family are presented. We also discuss how a topology-
preserving Riemannian local information-theoretic metric, the Learn-
ing Metric, can be derived from data annotation, and how it can be
used in neighbor embedding. We further discuss how a metric can be
learned iteratively from annotation gathered from visual interaction
with human experts.

• Hiroshi Motoda
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