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This is the report on the NII Shonan Meeting on Geometric Graphs: Theory and Applications,
which was held during October 30-November 2, 2017 at Shonan International Village, Japan.
The meeting number is 2017-16.
The main goal of the meeting is to facilitate the exchange of tools, techniques, questions,
and ideas that will lead to a better understanding of geometric graphs that arise in different
applications. To achieve the goal, 26 prominent researchers, including quite a few young
researchers, over the world who have been working on these topics participated in the
meeting and shared their ideas for solving problems arising in geometric graphs in theory
and applications.

The focus of the meeting is mainly on sharing open problems and exploring possible approaches
to solve them. There were 4 plenary talks, each for an hour, by eminent researchers, and 6
regular talks, each for a half an hour by young researchers in these fields. Each talk started
with an introduction to the research topic and presented the latest results on the topic. It
ended with a few related open problems so that participants could discuss on them with
the speakers and other participants afterwards. Two open problem sessions were arranged
and the invited participants of the meeting posed open problems during the sessions. The
talks and open problem sessions were arranged in the morning and in the afternoon we
had discussion sessions for those open problems. During the workshop, we focused on the
following research topics.

Combinatorial questions on geometric graphs. The study of geometric graphs is a
classical topic in computational geometry. Many practical problems have natural models
via geometric objects. For example, map labeling, problems in wireless and sensor networks
and VLSI physical design, database queries, etc. Here the vertices of the graph are mapped
to some geometric objects and an edge between a pair of vertices indicates the existence of
some specific relation depending on the problem. Here, the objectives are three fold, namely

(i) characterizing the graph to have some desired embedding in Rd, for some chosen d,
depending on the problem specification,

(ii) combinatorial questions regarding various properties of the graph, for example, mini-
mum number of layers required to draw the graph in planar way, coloring vertices/edges
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with minimum number of colors to avoid conflict among the objects/paths, showing
the relationship among different parameters of the graph, namely coloring number,
clique size, etc,

(iii) algorithmic questions regarding polynomial time computation of some parameters of
the graph, or approximating the parameters to a desired accuracy in polynomial time,
etc.

For an example, we may refer to the following problems on a geometric complete graph G
with n points:

(i) maximum number of planar spanning trees of G that can be packed in G,

(ii) maximum number of plane perfect matching of the vertices in G that can be packed in
G,

(iii) maximum number of plane Hamiltonian paths in G that can be packed in G. All these
questions are still unanswered.

Random Geometric Graphs. In recent years, a lot of progress has been made in the
study of geometric intersection graphs, but many important combinatorial and algorithmic
questions are still open. Recently, in the network science community the interest is growing
towards the geometrical characterization of real network. A large real network is usually
considered as a random graph (Erdos and Renyi (1960)). It is assumed that each pair of
vertices in the network is connected with probability p, and is independent of the other edges
of the graph. Here, the desired problems are modeled by random walk on geometric graphs
for the average case analysis of the performance of the corresponding network. On the other
hand, random geometric graph was first formally suggested by Gilbert (1961), whose vertices
are random points in Euclidean plane and an edge between a pair of points (nodes) exists if
their distance is less than a given constant r. These classes of graphs are known to have
numerous applications as a model for studying communication primitives (broadcasting,
routing, etc.) and topology control (connectivity, coverage, etc.) in idealized wireless sensor
networks as well as extensive utility in theoretical computer science and many fields of the
mathematical sciences, namely routing problems in the internet, data mining, community
detection, to name a few.

Many important problems are still unsolved for random geometric graphs. For example,
given a geometric k-NN (k nearest neighbor) graph G with n random points in R2 and each
point is connected with its k nearest neighbors for a given value of k, the lower and upper
bounds on k for the graph G to be connected are 0.3043 log n and 0.5139 log n respectively
[Balister, Bollobás, Sarkar and Walters 2006]. It will be interesting to tighten the bound
on k for the connectivity of G. Also for a directed complete graph G with the edge cost of
each directed edge (−−−→pi, pj) is α if pj is the α-th nearest neighbor of pi, computing (i) the
expected cost of minimum spanning tree, (ii) expected value of the spanning ratio between
the farthest pair of points, etc. will be interesting problems to study.

In specific, we studied various structural and combinatorial properties of Delaunay graphs,
unit disk graphs and visibility graphs during the meeting. Delaunay graphs guarantee a
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constant spanning ratio or stretch factor, which is the ratio of the shortest paths between two
points in a geometric graph and in its spanning subgraph. The geometric separator for unit
disks in the plane is a closed curve that separates the unit disks into two disjoint sets, one
consisting of disks lying inside of the curve and one consisting of disks lying outside of the
curve, while those disks intersected by the curve belong to the separator. We are interested
in the existence of a balanced separator for unit disk graphs and efficient algorithms for
computing such a separator. Based on the properties, we discussed on efficient algorithms for
solving problems on those graphs, including optimal routing in Delaunay and visibility graphs,
balanced separators for unit disk graphs, and graph recognition from weak embeddings.
In addition, there were discussions on adaptive point location data structures, rigidity of
triangulations, and Kakeya-related problems. The details of the problems and discussion are
given in the following sections.

Finally, we, the organizers and participants of the meeting, would like express our sincere
gratitude to National Institute of Information (NII) for providing us the excellent facility of
Shonan International Village and supporting the meeting in various ways.
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Overview of Talks

We had four plenary talks by prominent scholars and 6 regular talks by young researchers
who have been working on geometric graphs and have presented a number of research results
in theory and applications.

This is the list of the plenary talks.

• On spanning properties of various Delaunay graphs by Prosenjit Bose.

• The Reverse Kakeya Problem by Otfried Cheong.

• Adaptive Planar Point Location by Siu-Wing Cheng.

• Recognizing Weak Embeddings of Graphs by Csaba D. Toth.

This is the list of regular talks.

• Balanced Line Separators of Unit Disk Graphs by Yoshio Okamoto.

• Shortcuts for the Circle by Sang Won Bae

• Geodesic Voronoi Diagrams in a Simple Polygon by Eunjin Oh.

• Global Rigidity of Triangulations with Braces by Shin-ichi Tanigawa.

• Open Problems on Optimal Patrolling by Akitoshi Kawamura.

• Routing on the Visibility Graph by André van Renssen.

On Spanning Properties of Various Delaunay Graphs

Speaker: Prosenjit Bose, Carleton University, Ottawa, Canada
A geometric graph G is a graph whose vertices are points in the plane and whose edges are
line segments weighted by the Euclidean distance between their endpoints. In this setting, a
t-spanner of G is a connected spanning subgraph G′ with the property that for every pair of
vertices x, y, the shortest path from x to y in G′ has weight at most t > 1 times the shortest
path from x to y in G. The parameter t is commonly referred to as the spanning ratio or
the stretch factor. Among the many beautiful properties that Delaunay graphs possess, a
constant spanning ratio is one of them. We provide an overview of various results concerning
the spanning ratio among other properties of different types of Delaunay graphs and their
subgraphs.
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The Reverse Kakeya Problem

Speaker: Otfried Cheong (a joint work with Sang Won Bae, Sergio Cabello, Fabian Stehn,
Yoonsung Choi, and Sang-duk Yoon)
In 1917, Soichi Kakeya posed the following problem: What is the minimum area region
in the plane in which a needle of length 1 can be turned through 360◦ continuously, and
return to its initial position [6]? For convex regions, the problem was solved by Pál [8], who
showed that the solution is the equilateral triangle of height one, having area 1/

√
3. For the

general case, Besicovitch gave the surprising answer that one could rotate a needle using an
arbitrary small area [2, 3]. Kakeya-type problems have received considerable attention in
the literature, as there are strong connections to problems in number theory [4], geometric
combinatorics [10], arithmetic combinatorics [7], oscillatory integrals, and the analysis of
dispersive and wave equations [9].
If one generalizes the problem for convex regions slightly, and asks for the smallest convex
region in which a given convex shape P can be turned through 360◦, the problem seems
to be still wide open: the answer is not even known when P is an equilateral triangle or a
square.

In this paper, we consider a “reverse” version of the problem, where the convex compact
shapes P and Q are already given, and we ask: how large can we make P such that it can
turn through 360◦ inside Q?
Let’s assume that the origin is in the interior of P , and denote P rotated by θ around the
origin by Pθ. Being able to turn P inside Q obviously implies that Pθ can be translated
into Q for any orientation θ. Is this condition also sufficient?
In his 1921 paper solving the convex case of the Kakeya problem, Pál [8] conjectured that
this is the case. Intriguingly, the paper contains a footnote added during the proof stage,
stating that Harald Bohr had proven this conjecture. Unfortunately, this proof seems to
have never been published, and we have not been able to find another proof in the literature.
We also do not know how exactly Pál defined “turning” in this context: Is the angle changing
in a strictly monotone way, or merely monotonically?
We therefore prove a stronger version of Pál’s conjecture: For a given angle θ, let λ(θ) be
the largest scaling factor such that P ∗θ := λ(θ)Pθ can be translated into Q. We prove that
the function θ 7→ λ(θ) is continuous.
Our main results are the following two theorems:

Theorem 1. Given a convex m-gon P and a convex n-gon Q, we can in time O(mn2 log n)
compute the continuous function λ(θ) and a continuous function t : [0, 2π] 7→ R2 such that
P ∗θ + t(θ) ⊆ Q.

Theorem 2. For any compact convex shapes P and Q, there exists a continuous function t :
[0, 2π] 7→ R2 such that P ∗θ + t(θ) ⊆ Q.

In other words, P can be rotated, while continuously scaling and translating it to maintain
the largest possible size that will fit inside Q at that orientation.
The polygonal version, Theorem 1, follows quite easily from a construction by Agarwal et
al. [1]. The proof for general convex shapes turns out to be much harder—we have not been
able to find a limit argument to obtain it from the polygonal version.
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Theorem 2 immediately implies Pál’s conjecture: If Pθ can be translated into Q for any θ,
then λ(θ) > 1 always, and so Pθ + t(θ) is a continuous motion that turns P inside Q.
Returning to the polygonal case, where P is a convex m-gon and Q is a convex n-gon,
the work by Agarwal et al. [1] implies that the functions θ 7→ λ(θ) and θ 7→ t(θ) have
complexity O(mn2), and gives an algorithm to compute a description of these functions in
time O(mn2 log n). Given these functions, one can answer questions such as:

• What is the largest similar copy of P inscribed into Q?

• What is the largest similar copy of P that can be turned through 360◦ inside Q?

The answer to the first question is the maximum of λ(θ), and was the original goal of Agarwal
et al.’s paper. The answer to the second question is given by the minimum of λ(θ).
Agarwal et al. give a construction of a convex m-gon P and a convex n-gon Q such that
there are Θ(mn2) placements of similar copies of P inscribed into Q and realizing distinct
sets of vertex-edge contacts. However, this is not a lower bound on the complexity of the
functions λ(θ) and t(θ), since not all these placements are maximal.
We prove the following lower bounds on the complexity of these functions:

Theorem 3. For any n there is a convex n-gon Q such that there are Θ(n2) maximal
placements of an equilateral triangle in Q.
For any n and m there is a convex n-gon Q and a convex m-gon P such that there are
Θ(mn2) maximal placements of P in Q (see Figure 1).
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Figure 1: Construction of P (in red) and Q (in green).

These bounds imply that it may be difficult to improve on Agarwal et al.’s algorithm, or on
the quadratic-time algorithm for finding the largest equilateral triangle inscribed to a convex
polygon by DePano et al. [5].
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Finally, we consider the following problem: Given a triangle Q, find three points u, v, w, one
on each edge of Q, such that the diameter of the set {u, v, w} is minimized. It turns out that
this is closely related to our problem.

Theorem 4. For a given triangle Q, three points u, v, w, one on each edge of Q, such that
the diameter of the set {u, v, w} is minimized satisfy the following conditions: (a) If the
largest angle α of Q is at least 120◦, than u is the intersection of the angular bisector of α
with the edge a, while v and w are the orthogonal projections of u onto b and c. (b) If no
angle of Q is larger than 120◦, then u, v, w are given by the largest equilateral triangle that
can be fully rotated inside Q.
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Adaptive Planar Point Location

Speaker: Siu-Wing Cheng
We present a self-adjusting point location structure for convex and connected subdivisions.
Let n be the number of vertices. For a convex subdivision S, our structure uses O(n)
space and processes any online query sequence Q in O(n+OPT ) time, where OPT is the
minimum time required by any linear decision tree for answering point location queries in S
to process Q. The O(n+OPT ) time bound includes the preprocessing time. Our result is a
two-dimensional analog of the static optimality property of splay trees. We will also discuss
extension to connected subdivisions.
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Recognizing Weak Embeddings of Graphs

Speaker: Csaba D. Toth
Department of Mathematics, California State University Northridge, Los Angeles, CA, USA.
(a joint work with Hugo A. Akitaya and Radoslav Fulek.)
Given a graph G and a 2-dimensional manifold M , one can decide in linear time whether G
can be embedded into M [9], although finding the smallest genus of a surface into which G
embeds is NP-hard [11]. An embedding ψ : G→M is a continuous piecewise linear injective
map where the graph G is considered as a 1-dimensional simplicial complex. Equivalently, an
embedding maps the vertices into distinct points and the edges into interior-disjoint Jordan
arcs between the corresponding vertices. We would like to decide whether a given map
ϕ : G→M can be “perturbed” into an embedding ψ : G→M . Let M be a 2-dimensional
manifold equipped with a metric. A continuous piecewise linear map ϕ : G→M is a weak
embedding if, for every ε > 0, there is an embedding ψε : G → M with ‖ϕ − ψε‖ < ε,
where ‖.‖ is the uniform norm (i.e., sup norm).

Problem Statement and Results. An embedded graph H in an orientable 2-manifold
M is an abstract graph together with a rotation system that specifies, for each vertex of
H, the counterclockwise (abbreviated as ccw) cyclic order of incident edges1. The strip
system H of H (a.k.a. thickening of H) is a 2-manifold with boundary constructed as a
quotient space of a disjoint union of topological discs, i.e., by gluing together topological
discs along boundaries, as follows. For every u ∈ V (H), create a topological disk Du, and
for every edge uv ∈ E(H), create a rectangle Ruv. For every Du and Ruv, fix an arbitrary
orientation of ∂Du and ∂Ruv, respectively. Partition the boundary ∂Du into deg(u) arcs,
and label them by Au,v, for all uv ∈ E(H), in the cyclic order around ∂Du determined by
the rotation of u in the embedding of H. Finally, the manifold H is obtained by identifying
two opposite sides of every rectangle Ruv with Au,v and Av,u via an orientation preserving
homeomorphism (i.e., consistently with the chosen orientations of ∂Ruv, ∂Du and ∂Dv).
We formulate a problem instance as a function ϕ : G → H (for short, ϕ), where G is an
abstract graph, H is an embedded graph, and ϕ : G→ H is a simplicial map that maps
the vertices of G to vertices of H, and the edges of G to edges or vertices of H, such that
incidences are preserved. The simplicial map ϕ : G→ H is a weak embedding if there is
an embedding ψϕ : G→ H that maps each vertex v ∈ V to a point in Dϕ(v), and each edge
uv ∈ E(G) to a Jordan arc in Dϕ(u) ∪Rϕ(u)ϕ(v) ∪Dϕ(v) that has a connected intersection
with each of Dϕ(u), Rϕ(u)ϕ(v), and Dϕ(v), and Rϕ(u)ϕ(v) = ∅ if u = v. We say that the
embedding ψϕ approximates ϕ. Our main results is the following.

Theorem 1. [2] (i) Given an abstract graph G with m edges, an embedded graph H, and a
simplicial map ϕ : G→ H, we can decide in O(m logm) time whether ϕ is a weak embedding.
(ii) If ϕ : G→ H is a weak embedding, then for every ε > 0 we can also find an embedding
ψε : G→M with ‖ϕ− ψε‖ < ε in O(m logm) time.

Throughout the paper we assume that G has n vertices and m edges. In the plane (i.e.,
M = R2), only planar graphs admit weak embeddings hence m = O(n), but our techniques
work for 2-manifolds of arbitrary genus, and G may be a dense graph. Our result improves

1Our methods extend to nonorientable surfaces with minor changes in the combinatorial representations,
using a signature λ : E(H)→ {−1, 1} to indicate whether the edge u (and Ruv) is orientation-preserving or
-reversing [4].
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the running time of the previous algorithm [8] from O(m2ω) 6 O(m4.75) to O(m logm). It
also improves the running times of several recent polynomial-time algorithms in special cases,
e.g., when the embedding of G is restricted to a given isotopy class [7], and H is a path [3].

Nonsimplicial Maps. If ϕ : G→ H is a continuous map (not necessarily simplicial) that is
injective on the edges (each edge is a Jordan arc), we may assume that ϕ(V (G)) ⊆ V (H) by
subdividing the edges of H with at most n = |V (G)| additional vertices if necessary. Then ϕ
maps every edge e ∈ G to a path of length O(n) in H. By subdividing the edges e ∈ E(G)
at all clusters along ϕ(e), we reduce the recognition problem to the regime of simplicial maps
(Theorem 1). The total number of vertices may increase to O(mn) and the running time to
O(mn log(mn)).

Corollary 1. Given an abstract graph G with m edges, an embedded graph H with n vertices,
and a piecewise linear continuous map ϕ : G→ H that is injective on the interior of every
edge in E(G), we can decide in O(mn log(mn) time whether ϕ is a weak embedding.

For example, this applies to straight-line drawings in R2 if the edges may pass through
vertices.

Corollary 2. Given an abstract graph G with n vertices and a map ϕ : G→ R2 where every
edge is mapped to a straight-line segment, we can decide in O(n2 log n) time whether ϕ is a
weak embedding.

Outline. Our results rely on ideas from [1, 5, 6] and [8]. To distinguish the graphs G and
H, we use the convention that G has vertices and edges, and H has clusters and pipes.
A cluster u ∈ V (H) corresponds to a subgraph ϕ−1[u] of G.
The main tool in our algorithm is a local operation, called “cluster expansion,” which
generalizes similar operations introduced previously for the case that G is a cycle. Given
an instance ϕ : G → H and a cluster u ∈ V (H), it modifies u and its neighborhood (by
replacing u with several new clusters and pipes) and it is “reversible” in the sense that the
resulting new instance ϕ′ : G′ → H ′ is a weak embedding if and only if ϕ : G → H is a
weak embedding. Our operation increases the number of clusters and pipes, but it decreases
the number of “ambiguous” edges (i.e., multiple edges in the same pipe). The proof of
termination and the running time analysis use potential functions.
In a preprocessing phase, we perform a cluster expansion operation at each cluster u ∈ V (H).
The main loop of the algorithm applies another operation, “pipe expansion,” for two adjacent
clusters u, v ∈ V (H) under certain conditions. It merges the clusters u and v, and the pipe
uv ∈ E(H) between them, and then invokes cluster expansion. If any of these operations finds
a local configuration incompatible with an embedding, then the algorithm halts and reports
that ϕ is not a weak embedding (this always corresponds to nonplanar subconfigurations
since the neighborhood of a single cluster or pipe is homeomorphic to a disk). We show that
after O(m) successive operations, we obtain an irreducible instance for which our problem is
easily solvable in O(m) time. Ideally, we end up with G = H (one vertex per cluster and
one edge per pipe), and ϕ = id is clearly an embedding. Alternatively, G and H may each
be a cycle (possibly G winds around H multiple times), and we can decide whether ϕ is a
weak embedding in O(m) time by a simple traversal of G. If G is disconnected, then each
component falls into one of the above two cases, i.e., the case when ϕ = id or the case when
ϕ 6= id.
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The main challenge was to generalize previous reversible local operations (that worked well
for cycles [6, 5, 10]) to arbitrary graphs. Our expansion operation for a cluster u ∈ V (H)
simplifies each component of the subgraph ϕ−1[u] of G independently. Each component is
planar (otherwise it cannot be perturbed into an embedding in a disk Du). However, a planar
(sub)graph with k vertices may have 2O(k) combinatorially different embeddings: some of
these may or may not be compatible with adjacent clusters. The embedding of a (simplified)
component C of ϕ−1[u] depends, among other things, on the edges that connect C to adjacent
clusters. The pipe-degree of C is the number of pipes that contain its incident edges. If
the pipe-degree of C is 3 or higher, then the rotation system of H constrains the embedding
of C. If the pipe-degree is 2, however, then the embedding of C can only be determined up
to a reflection, unless C is connected by two independent edges to a component in ϕ−1[v]
whose orientation is already fixed.
We need to maintain the feasible embeddings of the components in all clusters efficiently.
In [8], this problem was resolved by introducing 0-1 variables for the components, and
aggregating the constraints into a system of linear equations over Z2, which was eventually
resolved in O(m2ω) 6 O(m4.75) time. We improve the running time to O(m logm) by
maintaining the feasible embeddings simultaneously with our local operations.
Another challenge comes from the simplest components in a cluster ϕ−1[u]. Long chains of
degree-2 vertices, with one vertex per cluster, are resilient to our local operations. Their
length may decrease by only one (and cycles are irreducible). We need additional data
structures to handle these “slowly-evolving” components efficiently. We use a dynamic
heavy-path decomposition data structure and a suitable potential function to bound the
time spent on such components.

References

[1] Hugo A. Akitaya, Greg Aloupis, Jeff Erickson, and Csaba D. Tóth. Recognizing weakly
simple polygons. Discrete Comput. Geom., 58(4):2017, 785–821.

[2] Hugo A. Akitaya, Radoslav Fulek, and Csaba D. Tóth. Recognizing weak embeddings
of graphs. In Proc. 29th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018,
to appear.

[3] Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Strip
planarity testing for embedded planar graphs. Algorithmica, 77(4):1022–1059, 2017.

[4] Henning Bruhn and Reinhard Diestel. MacLane’s theorem for arbitrary surfaces. J.
Combin. Theory Ser. B, 99:275–286, 2009.

[5] Hsien-Chih Chang, Jeff Erickson, and Chao Xu. Detecting weakly simple polygons. In
Proc. 26th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1655–1670,
2015.

[6] Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Patrignani, and Maurizio
Pizzonia. On embedding a cycle in a plane graph. Discrete Math., 309(7):1856–1869,
2009.

[7] Radoslav Fulek. Embedding graphs into embedded graphs. In Proc. 28th Internat.
Sympos. on Algorithms and Computation (ISAAC), LIPIcs. Schloss Dagstuhl, 2017.

11



[8] Radoslav Fulek and Jan Kynčl. Hanani–Tutte for approximating maps of graphs.
Preprint, arXiv:1705.05243, 2017.

[9] Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary surface.
SIAM J. Discrete Math., 12(1):6–26, 1999.

[10] Mikhail Skopenkov. On approximability by embeddings of cycles in the plane. Topology
Appl., 134(1):1–22, 2003.

[11] Carsten Thomassen. The graph genus problem is NP-complete. J. Algorithms, 10(4):568–
576, 1989.

12

https://arxiv.org/abs/1705.05243


Balanced Line Separators of Unit Disk Graphs

Speaker: Yoshio Okamoto
The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
(a joint work with Paz Carmi, Man-Kwun Chiu, Matthew J. Katz, Matias Korman, AndrïğćŢ
van Renssen, Marcel Roeloffzen, Taichi Shiitada, and Shakhar Smorodinsky.)
Balanced separators in graphs are a fundamental tool and used in many divide-and-conquer-
type algorithms as well as for proving theorems by induction. Given an undirected graph
G = (V,E) with V as its vertex set and E as its edge set, and a non-negative real number
α ∈ [1/2, 1], we say that a subset S ⊆ V is an α-separator if the vertex set of G \ S can
be partitioned into two sets A and B, each of size at most α|V | such that there is no edge
between A and B. The parameter α determines how balanced the two sets A and B are
in terms of size. For a balanced separator to be useful we want both the size |S| of the
separator and α > 1/2 to be small.
Much work has been done to prove the existence of separators with certain properties in
general sparse graphs. For example, the well-known Lipton–Tarjan planar separator theorem
states that for any n-vertex planar graph, there exists a 2/3-separator of size O(

√
n). Similar

theorems have been proven for bounded-genus graphs, minor-free graphs, low-density graphs,
and graphs with polynomial expansion.
These separator results apply to graph classes that do not contain complete graphs of
arbitrary size, and each graph in the classes contains only O(n) edges, where n is the number
of vertices. Since any α-separator of a complete graph has Ω(n) vertices, the study of
separators for graph classes that contain complete graphs seems useless. However, it is not
clear how small a separator can be with respect to the number of edges for possibly dense
graphs.
Our focus of interest is possibly dense geometric graphs, which often encode additional
geometric information other than adjacency. Even though one can use the separator tools in
geometric graphs, often the geometric information is lost in the process. As such, a portion
of the literature has focused on the search of balanced separators that also preserve the
geometric properties of the geometric graph.
Among several others, we highlight the work of Miller et al., and Smith and Wormald. They
considered intersection graphs of n balls in Rd and proved that if every point in d-dimensional
space is covered by at most k of the given balls, then there exists a (d+ 1)/(d+ 2)-separator
of size O(k1/dn1−1/d) (and such a separator can be found in deterministic linear time). More
interestingly, the separator itself and the two sets it creates have very nice properties; they
show that there exists a (d−1)-dimensional sphere that intersects at most O(k1/dn1−1/d)
balls and contains at most (d+ 1)n/(d+ 2) balls in its interior and at most (d+ 1)n/(d+ 2)
balls in its exterior. In this case, the sphere acts as the separator (properly speaking, the
balls that intersect the sphere), whereas the two sets A and B are the balls that are inside
and outside the separator sphere, respectively. Note that the graph induced by the set A
consists of the intersection graph of the balls inside the separator (similarly, B for the balls
outside the separator and S for the balls intersecting the sphere).
We emphasize that, even though the size of the separator is larger than the one from Lipton–
Tarjan for planar graphs (specially for high values of d), the main advantage is that the three
subgraphs it creates are geometric graphs of the same family (intersection graphs of balls in
Rd). The bound on the separator size does not hold up well when k is large, even for d = 2:

13



if
√
n disks overlap at a single point and the other disks form a path we have k =

√
n and

m = Θ(n), where m is the number of edges in the intersection graph. Hence, the separator
has size O(

√
kn) = O(m3/4).

Fox and Pach gave another separator result that follows the same spirit: the intersection
graph of a set of Jordan curves in the plane has a 2/3-separator of size O(

√
m) if every

pair of curves intersects at a constant number of points. A set of disks in R2 satisfies this
condition, and thus the theorem applies to disk graphs. Their proof can be turned into a
polynomial-time algorithm. However, we need to construct the arrangement of disks, which
takes O(n22α(n)) time, where α(n) is the inverse Ackermann function, and in practice an
efficient implementation is non-trivial.
From a geometric perspective these two results show that, given a set of unit disks in the
plane, we can always find a closed curve in the plane (a circle and a Jordan curve, respectively)
to partition the set. The disks intersected by the curve are those in the separator, and the
two disjoint sets are the disks inside and outside the curve, respectively.

In this paper, we continue the idea of geometric separators and show that a balanced separator
always exists, even if we constrain the separator to be a line. Given a set of n unit disks with
m pairs of intersecting disks, we show that a line 2/3-separator of size O(

√
(m+ n) log n)

can be found in expected O(n) time, and that an axis-parallel line 4/5-separator of size
O(
√
m+ n) can be found in deterministic O(n) time.

We emphasize that our results focus on unit disk graphs, while the other results hold for disk
graphs of arbitrary radii, too. Indeed, if we want to separate disks of arbitrary radii with a
line, we show that the separator’s size may be as large as Ω(n). We also prove that for unit
disks our algorithm may fail to find a line 2/3-separator of size better than O(

√
m log(n/

√
m))

in the worst case. In this sense, the size of our separators is asymptotically almost tight. We
also present experimental results: We evaluate the performance of our algorithm, compare it
with the method by Fox and Pach in terms of the size of the produced separators for random
instances, and conclude that our algorithm outperforms theirs for the intersection graphs of
unit disks.
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Shortcuts for the Circle

Speaker: Sang Won Bae
Kyonggi University, Korea
(a joint work with Mark de Berg, Otfried Cheong, Joachim Gudmundsson and Christos
Levcopoulos)
Graph augmentation problems have received considerable attention over the years. The goal
in such problems is typically to add extra edges to a given graph G in order to improve
some quality measure. One natural quality measure is the (vertex- or edge-)connectivity
of G. This has led to work where one tries to find the minimum number of edges that can
be added to the graph to ensure it is k-connected, for a desired value of k. Another natural
measure is the diameter of G, that is, the maximum distance between any pair of vertices.
The goal then becomes to reduce the diameter as much as possible by adding a given number
of edges, or to achieve a given diameter with a small number of extra edges.
Chung and Garey (1984) studied this problem for the special case where the original graph is
the n-vertex cycle. They showed that if k edges are added, then the diameter of the resulting
graph is at least n

k+2 − 3 for even k and n
k+1 − 3 for odd k, and that there is a way to add k

edges so that the resulting graph has diameter at most n
k+2 − 1 for even k and n

k+1 − 1 for
odd k.
The algorithmic problem of finding a set of k > 1 edges that minimizes the diameter of the
augmented graph was first asked by Chung in 1987. Since then many papers have considered
the problem for general graphs. Große et al. (2015) were the first to consider the diameter
minimization problem in the geometric setting where the graph is embedded in the Euclidean
plane. They presented an O(n log3 n) time algorithm that determined the optimal shortcut
that minimizes the diameter of a polygonal path with n vertices. The running time was later
improved to O(n log n) by Wang (2016).

In the above papers only the discrete setting is considered, that is, shortcuts connect two
vertices and the diameter is measured between vertices. In the continuous setting all points
along the edges of the network are taken into account when placing a shortcut and when
measuring distances in the augmented network. In the continuous setting, Yang (2013)
studied the special case of adding a single shortcut to a polygonal path and gave several
approximation algorithms for the problem. De Carufel et al. (2016) considered the problem
for paths and cycles. For paths they showed that an optimal shortcut can be determined in
linear time. For cycles they showed that a single shortcut can never decrease the diameter,
while two shortcuts always suffice. They also proved that for convex cycles the optimal
pair of shortcuts can be computed in linear time. Recently, Cáceres et al. (2016) gave a
polynomial time algorithm that can determine whether a plane geometric network admits a
reduction of the continuous diameter by adding a single shortcut.

We are interested in a geometric continuous variant of this problem. Let C be a unit circle
in the plane. We define the distance d(p, q) between two points p, q ∈ C to be the length of
the smaller arc along C that connects p to q. Thus the diameter of C in this metric is π.
We now want to add a number of shortcuts—a shortcut is a chord of C—to improve the
diameter. Here the distance dS(p, q) between p and q for a given collection S of shortcuts
is defined as the length of the shortest path between p and q that can travel along C and
along the shortcuts where, if two shortcuts intersect in their interior, we do not allow the
path to switch from one shortcut to the other at the intersection point. In other words, if
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the path uses a shortcut, it has to traverse it completely. Note that if we view the circle C
as a graph with infinitely many vertices (namely all points on C) where the graph distance
is the distance along C, then adding shortcuts corresponds to adding edges to the graph.
For a set S of shortcuts, define

diam(S) := max
p,q∈C

dS(p, q)

to be the diameter of the resulting graph. We are interested in the following question: given
k, the number of shortcuts we are allowed to add, what is the best diameter we can achieve?
In other words, we are interested in the quantity

diam(k) := inf
|S|=k

diam(S).

It is obvious that

π = diam(0) > diam(1) > · · · > diam(k) > · · · > lim
k→∞

diam(k) = 2.

Our main results are as follows.

• For 1 6 k 6 7, we determine diam(k) exactly. Our results show that diam(k) is not
strictly decreasing as a function of k. This not only holds at the very beginning—it is
easy to see that diam(1) = diam(0)—but, interestingly also for certain larger values of
k. In particular, we show that diam(7) = diam(6).

• We have diam(8) < diam(7).

• We show that diam(k) = 2 + Θ(1/k
2
3 ).

We rely on a number of numerical calculations in this work. A Python script that performs
these calculations can be found at http://github.com/otfried/circle-shortcuts.
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Geodesic Voronoi Diagrams in a Simple Polygon

Speaker: Eunjin Oh
Since the early 1980s, many classical geometric problems have been studied in the presence of
polygonal obstacles. In the presence of polygonal obstacles, the distance between two points
is measured by the length of a shortest path between the two points avoiding obstacles. It is
called the geodesic distance to distinguish it from the Euclidean distance. Under the geodesic
distance, most of the classical geometric structures such as the Voronoi diagram and the
convex hull are naturally extended to the geodesic setting.In this talk, I will introduce some
of the recent work on Voronoi diagrams inside a simple polygon. A geodesic Voronoi diagram
of point sites in a simple polygon partitions the polygon into cells based on the geodesic
distances to the sites. The geodesic nearest-point Voronoi diagram partitions the polygon
into cells, exactly one cell per site, such that every point in a cell has the same nearest site
under the geodesic metric. Similarly, the geodesic farthest-point Voronoi diagram partitions
the polygon into cells, at most one cell per site, such that every point in a cell has the same
farthest site under the geodesic metric.

Although the first nontrivial algorithms for computing the geodesic nearest-point and farthest-
point Voronoi diagrams were presented in 1980s, the optimal running times for these problems
are not known. In other words, there are gaps between the best known running times and
the best known lower bounds. However, very recently, there was the first improvement on
the computation of the geodesic nearest-point and farthest-point Voronoi diagrams since
1998 and 1993, respectively. This talk will mainly deals with these algorithms.
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Global Rigidity of Triangulations with Braces

Speaker: Shin-ichi Tanigawa (Based on a joint work with Tibor Jordán[4].)
Cerebrated Cauchy’s theorem[1] states that if the vertex-edge graphs of two convex polyhedra
are isomorphic and corresponding faces are congruent then the two polyhedra are the same.
This theorem in particular implies that a convex simplicial polyhedron (i.e., a convex
polyhedron with triangular faces) is rigid as a bar-and-joint framework. A natural question
would be whether simplicial polyhedra have a stronger rigidity property such as global
rigidity (i.e., unique realizability). Cauchy’s theorem states uniqueness within the family
of convex realizations, but the uniqueness fails if we drop the assumption of convexity. For
example if the graph of a simplicial polyhedron has a separator of size three, then one can
always construct a distinct realization by reflecting one side of the polyhedron along the
hyperplane spanned by those three points. Thus 4-connectivity is necessary for the global
rigidity of 1-skeleta.
In 1992 B. Hendrickson [3] proved a necessary condition for a generic realization of a graph
to be globally rigid, which in turn implies that the 1-skeleton of a generic polyhedron cannot
be globally rigid regardless of the connectivity of the underlying graph.
Motivated by this background, W. Whiteley studied the rigidity of simplicial polyhedra with
braces. See Figure 2. He proved that a simplicial polyhedron with a bracing edge has a
substantially stronger rigidity property if the underlying graph is 4-connected:

Theorem 1. [Whiteley [5]] A generic simplicial polyhedron with one bracing edge is re-
dundantly rigid (i.e., rigid after the removal of any edge) in R3 if the underlying graph is
4-connected.

In his talk at the Advances in Combinatorial and Geometric Rigidity Workshop (BIRS, Banff,
2015) he conjectured that every 4-connected uni-braced generic simplicial polyhedron is in
fact globally rigid. In this work we prove the following more general statement.

Theorem 2. A generic simplicial polyhedron with at least one bracing edge is globally rigid
in R3 if the underlying graph is 4-connected.

As we remarked above, 4-connectivity is a trivial necessary condition for the global rigidity,
and hence Theorem 2 chracterizes the global rigidity of generic simplicial polyhedra with
braces.
Theorem 2 will follow by showing that a 4-connected uni-braced triangulation (that is, a
4-connected maximal planar graph with one extra edge) is globally rigid in the sense of the
rigidity theory. Our proof for the latter claim is first to show an inductive construction
of 4-connected uni-braced triangulations and then to show each operation preserves the
global rigidity. The operation we consider is the so-called vertex splitting operation, which is
defined as follows.
Let H = (V,E) be a graph. For a vertex v ∈ V we use NH(v) to denote the set of neighbours
of v in H. Given a vertex v1 ∈ V and a partition {U01, U0, U1} of NH(v) with |U01| = k, the
k-vertex splitting operation at v1 with respect to {U01, U0, U1} removes the edges connecting
v1 to U0 and inserts a new vertex v0 as well as new edges between v0 and {v1} ∪ U01 ∪ U0.
See Figure 3.
The operation is nontrivial if U0 and U1 are both non-emtpy.

18



Figure 2: A simplicial polyhedron and a simplicial polyhedron with a brace.
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v

u1

v1
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u2 u2

Figure 3: A 2-vertex splitting operation at v with U01 = {u1, u2}.

The vertex-splitting operation is well-known in rigidity theory as well as in the theory of
polyhedra and triangulations of surfaces. Steinitz proved that every triangulation can be
obtained from K4 by a sequence of 2-vertex splitting operations. Whiteley [6] proved that
(d− 1)-vertex splitting preserves rigidity in Rd.
Whiteley conjectured that (d− 1)-vertex splitting preserves global rigidity in Rd provided it
does not create vertices of degree d. The corresponding statement for global rigidity was
conjectured by Connelly and Whiteley.

Conjecture 1 (Connelly and Whiteley [2]). Let H be globally rigid in Rd with at least d+ 2
vertices and let G be obtained from H by a nontrivial (d− 1)-vertex-splitting operation. Then
G is globally rigid in Rd.

This conjecture is still open for d > 3. Our second main result is the following.

Theorem 3. Suppose that G can be obtained from Kd+2 by a sequence of non-trivial
(d− 1)-vertex splitting operations. Then G is globally rigid in Rd.

References

[1] A.L. Cauchy, Sur les polygones et polyedres, second memoire, J. Ecole Polytechnique,
1813.

19



[2] R. Connelly and W. Whiteley, Global rigidity: the effect of coning, Discrete Comp.
Geometry, Volume 43, Number 4, 717–735, 2010.

[3] B. Hendrickson, Conditions for unique graph realizations, SIAM J. Comput 21 (1992),
pp 65-84.

[4] T. Jordán and S. Tanigawa, Global rigidity of triangulations with braces, EGRES
technical report, TR-2017-06, 2017.

[5] W. Whiteley, Infinitesimally rigid polyhedra. II: Modified spherical frameworks, Trans.
Amer. Math. Soc. 306, No. 1, 115–139, 1988.

[6] W. Whiteley, Vertex splitting in isostatic frameworks, Structural Topology 16, 23–30,
1991.

20



Open Problems on Optimal Patrolling

Speaker: Akitoshi Kawamura (Kyushu University)
In patrolling problems [2, 3, 4], several mobile agents with predefined speeds move on the
edges of a graph and try to ensure that every specified point on the graph is (perpetually)
visited at least once in any time period of unit length. Problems of this kind are studied
with various motivations and in various forms: the agents may have the same or different
speeds; the underlying graph may be a path, a cycle, a tree, or more general graphs; the
points to be visited may be just some of the vertices or all points on the edges. Finding
an optimal patrolling schedule is not straightforward, even in the simplest settings. I will
introduce some recent results and open questions about properties of and algorithms for
optimal patrolling. In this abstract I list three specific open problems.

Open Problem 1. Consider the problem [2] where the goal is to visit every point on the
given line segment at least once in every time interval of unit length. What is the smallest
constant c such that the following holds for any k and any set of speeds v1, . . . , vk > 0?

It is impossible to deploy k agents with speeds v1, . . . , vk and patrol a line segment
of length greater than c(v1 + · · ·+ vk).

The obvious partition-based strategy (in which each agent i goes back and forth on a
subsegment of length vi/2) patrols a total length of (v1 + · · · + vk)/2, proving c > 1/2.
Perhaps surprisingly, a longer fence can be patrolled [5], and our current best knowledge is
that c > 2/3, as shown in [7]. On the other hand, it is relatively easy to see that c 6 1. We
have not succeeded in proving that c < 1.

Open Problem 2. Consider the patrolling problem on a given tree (with edge lengths)
where the goal is to visit every leaf at least once in any time interval of unit length. Is there
a polynomial-time algorithm to determine whether a given tree can be patrolled by a given
number of agents with speed 1?

There is a simple (and in particular polynomial-time) way to solve the problem on stars (i.e.,
in the special case where the depth of the tree is 1) [6]. The analogous problem on general
graphs is NP-hard, even for a single agent, because it subsumes the traveling salesman
problem.
In our setting, a single point can be guarded by multiple agents together. The situation
might be different if we require [1] that a point must be visited sufficiently often by some
single agent.

Open Problem 3. Consider the problem [7] where the goal is to protect just one point.
That is, instead of the speed of each agent i, we are given a number ai, which means that i
can visit the point only after time ai has elapsed since its last visit. Can we determine in
polynomial time whether this is possible for a given sequence (a1, . . . , ak)? Is the problem in
NP? Is it NP-hard?

The problem is in NP if there is a polynomial p such that, if patrolling is possible with a
given sequence (a1, . . . , ak) at all, then it is possible by a periodic schedule with period at
most p(dlog a1e+ · · ·+ dlog ake). We do not know whether there is such a polynomial upper
bound on the period.
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Routing on the Visibility Graph

Speaker: André van Renssen (a joint work with Prosenjit Bose, Matias Korman, and Sander
Verdonschot.)
Routing is a fundamental problem in networking. The goal is to find a path from a source
vertex to a destination vertex in the network. When the whole network is known to the
routing algorithm, there exist many algorithms to find paths. The problem is more challenging
when the only information available is the location of the current vertex, its neighbours and a
constant amount of additional information (such as the source and destination vertex). This
is often referred to as local routing (or k-local for some constant k, when the k-neighbourhood
is considered). In our setting, we assume that the network is a graph embedded in the
plane, with edges being straight line segments connecting pairs of vertices, weighted by
the Euclidean distance between their endpoints. Algorithms routing on such networks are
referred to as geometric routing algorithms (see [10] and [11] for surveys of the area).
Deterministic routing algorithms that guarantee delivery in these networks typically route
on plane subgraphs of the complete Euclidean graph. This means that of the potentially
quadratic number of edges available to the routing algorithm, only a linear number are ever
considered. This forces these algorithms to use paths that are much longer than necessary.
We present the first deterministic local routing algorithm that considers more edges by not
restricting its choices to a plane subgraph.

s

t

Figure 4: The visibility graph of a point set, where the constraints are thick red line segment.
An example of a routing path from s to t is shown in orange.

Moreover, we study routing algorithms in a more general setting. In certain cases, some
edges of a network may not be usable if for example there is a large obstacle blocking direct
communication between two nodes. We model this impossibility via a set S of non-intersecting
line segment constraints whose endpoints are vertices of the network (see Figure 4). Given
a set P of n points in the plane and a set S of non-intersecting line segment constraints,
we say that two vertices u and v can see each other provided that either the line segment
uv does not properly intersect any constraint in S or uv is itself a constraint in S. If two
vertices u and v can see each other, the line segment uv is referred to as a visibility edge.
The visibility graph of P with respect to a set of constraints S has P as vertex set and all
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visibility edges as edge set. In other words, the visibility graph is the complete graph on P
minus all edges that properly intersect one or more constraints in S.
Although this setting has been studied extensively in the context of motion planning amid
obstacles ([7, 8, 1, 6]), there has not been much work on routing in this setting. Bose et al. [2]
showed that it is possible to route locally and 2-competitively between any two visible vertices
in the constrained Θ6-graph. Additionally, an 18-competitive routing algorithm between any
two visible vertices in the constrained half-Θ6-graph was provided. In the same paper it was
shown that no deterministic local routing algorithm is o(

√
n)-competitive between all pairs

of vertices of the constrained Θ6-graph, regardless of the amount of memory it is allowed to
use.
We present three deterministic 1-local O(1)-memory routing algorithms on the visibility
graph. The first locally computes a plane subgraph of the visibility graph (the constrained
half-Θ6-graph) and uses face routing [9, 5] to route on this subgraph. This algorithm leads
to the natural question of whether it is possible to route on the visibility graph without
computing a plane subgraph.

Theorem 1. There exists a 1-local O(1)-memory routing algorithm for the visibility graph
by routing on the (plane) constrained half-Θ6-graph, that reaches the destination in O(n)
steps.

Our second algorithm answers this question in the affirmative by locally computing a
non-plane subgraph of the visibility graph (the constrained Θ6-graph) and routing on that.

Theorem 2. There exists a 1-local O(1)-memory routing algorithm for the visibility graph
by routing on the (non-plane) constrained Θ6-graph, that reaches the destination in O(n)
steps.

However, since computing any subgraph of the visibility graph incurs some overhead, we
aim to route on the visibility graph directly, i.e., without computing any subgraph. This is
indeed also possible, as the second algorithm can be modified to obtain a routing algorithm
that routes directly on the visibility graph. To the best of our knowledge, this is the first
deterministic local routing algorithm does not compute a plane subgraph of the visibility
graph.

Theorem 3. There exists a 1-local O(1)-memory routing algorithm for the visibility graph
that reaches the destination in O(n) steps.

Unfortunately, these algorithms do not give guarantees on the length of the routing path, only
on the number of edges used. Hence, designing an algorithm that is competitive with respect
to the shortest path remains open. Is this possible when we consider only deterministic
algorithms or does this require the local algorithm to be non-deterministic? Or are we even
forced to either increase the local information or store some specific additional information
at the vertices?
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Discussion on Open Problems

We also had a number of open problems posed and discussed during the meeting. Many
of them are posed by the invited speakers and they are already mentioned in the previous
section. Here we list another four open problems that were discussed during the meeting.

Assigning Radius

posed by Ahmad Biniaz, Carleton University, Ottawa, Canada.
Given a set of n points p1, p2, . . . , pn lying on a line, assign radius ri to pi such that the
resulting graph is connected and

∑n
i=1 r

2
i is minimized. We say that two points pi and pj

are connected by an edge if |x(pj)− x(pi)| 6 max{ri, rj}.

A variation is to assign radius ri to pi such that the resulting intersection graph of the disks
is connected and

∑n
i=1 r

2
i is minimized. We say that two points pi and pj are connected in

the intersection graph if |x(pj)− x(pi)| 6 ri + rj .

Both problems can be solved using dynamic programming. However, it is slow. Is there any
efficient way of solving the optimization problems?

Optimal Patrolling

posed by Akitoshi Kawamura (partly based on joint work with Yusuke Kobayashi, Hideaki
Noshiro, and Makoto Soejima.)
In patrolling problems, several mobile agents move on a graph (with edge lengths) and try
to cooperate so that every specified point on the graph is (perpetually) visited sufficiently
often (that is, no point should be left unattended for a long time).
Problems of this kind are studied with various motivations and in various forms: the agents
may have the same or different speeds; the underlying graph may be a path, a cycle, a tree,
or more general graphs; the points to be visited may be just the vertices or all points on the
edges. Finding an optimal patrolling schedule is not straightforward, even in the simplest
settings. I will introduce some results and open questions about properties of and algorithms
for optimal patrolling.

Patrolling a fence (line segment). A requirement is that every point of the fence must
be visited by at least one agent during one unit time. Let k be the number of agents, each
with speed v1, v2, . . . , vk. Here the goal is to maximize the length of the fence. Dividing the
fence into pieces, proportional to the speeds gives a total length v1+v2+···+vk

2 .
PBS(Partition Based Strategy) is optimal for vi = vj for all i, j ∈ {1, . . . k}, and for two
agents. However, PBS is not always optimal. Then what is the largest value c such that the
following is true for all k and v1, . . . , vk?

No fence of length larger than c(v1 + · · ·+ vk) can be patrolled by agents with
speeds v1, . . . , vk.

It is known that c 6 1, c > 0.520 [2014], and c > 0.666 [CIAC 2015].
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Patrolling vertices on a path. When vertices have different idle times, a simple greedy
strategy is not optimal. This kind of problem is also known as Charlemagne’s Challenge,
which is a periodic latency problem.

Sorting Linear Functions

posed by Siu-Wing Cheng.
Preprocess n linear functions so that given a query parameter t, report the functions in the
sorted order encounter by the vertical line x = t efficiently.
Given Θ(n2) space, a query can be answered (reporting the functions in the sorted order)
by a binary search and reporting in O(n) time. But, can we do it using o(n2) space and
o(n log n) query time? There have been many trials using cutting and bucketing.
It may require sophisticated data structures.

1. Partition the lines (linear functions) into O(log n) groups of O(n/ log n) lines.

2. Construct the data structure above for each group. Total space is O(n2/ log2 n) ×
O(log n) = O(n2/ log n).

3. Given a query, compute the sorted lists from the groups and merge them into one.
This takes O(n/ log n)×O(log n) +O(n log log n) time.

Diameters, Centers of Polygons with Holes in 2D and 3D

posed by Matias Korman.
There are plenty of works on computing the (geodesic) diameter and (geodesic) center of
convex and simple polygons, and polygons with holes in the plane. Surprisingly, it takes
much more time for the problem with polygons with holes than with polygons without holes.
This is mainly due to the fact that the shortest path connecting two points lying in a polygon
is not necessarily unique for polygons with holes.
We consider the problem in higher dimensions. In specific, consider a polyhedron in 3D.
Is the shortest path unique? Is it possible that the diametral pair of a polyhedron lie in
the interior of the polyhedron? How can we compute the diameter (diametral pair) of a
polyhedron efficiently?
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Meeting Schedule

Check-in Day: October 29, 2017 (Sun)

• Welcome Banquet

Day1: October 30, 2017 (Mon)

• Talks and Discussions

Day2: October 31, 2017 (Tue)

• Talks and Discussions

Day3: November 01, 2017 (Wed)

• Talks and Discussions

• Group Photo Shooting

• Excursion and Main Banquet

Day4: November 02, 2017 (Thu)

• Talks and Discussions

• Wrap up
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