
ISSN 2186-7437

NII Shonan Meeting Report

No. 2017–14

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Analysis and Verification
of Pointer Programs

Marieke Huisman
Thomas Noll

Makoto Tatsuta

October 2–5, 2017



Analysis and Verification of Pointer Programs

Organizers:
Marieke Huisman (University of Twente, The Netherlands)

Thomas Noll (RWTH Aachen University, Germany)
Makoto Tatsuta (National Institute of Informatics, Japan)

October 2–5, 2017

Computer software is ubiquitous in today’s information society, and ensuring
its correctness is of great importance. This is particularly true for safety-critical
systems, which occur in transportation, communication, healthcare, and many
other application domains. Consequently, software failures can have severe con-
sequences. To tackle the problem of correctness and reliability of such software,
formal methods are increasingly being employed. They enable the exhaustive
and mathematically founded analysis of all possible behaviours of a computer
program and the verification of properties such as functional correctness. They
also allow to reduce the effort and, thus, the cost of testing activities. Due to
their benefits, they are increasingly becoming an integral part of the develop-
ment cycle of safety-critical systems.

Many software bugs can be traced back to the erroneous use of pointers, i.e.,
references to memory addresses. They constitute an essential concept in modern
programming languages, and are used for realising (dynamic) data structures
like lists, trees etc., which are organised in the computer’s memory as a so-called
heap. Pointers are also abundantly present in object-oriented software such
as Java collections, albeit in the somewhat implicit form of object references.
Pointer-handling operations occur in device drivers, operating systems, and all
kinds of application codes including those implementing safety-critical systems.
The analysis of such software is a highly demanding and important task, as
memory leaks, dereferencing null pointers or the accidental invalidation of data
structures can cause great damage especially when software reliability is at stake.
Moreover, the increasing presence of concurrency in modern computing raises
additional problems such as the non-synchronised access to memory areas, which
can entail so-called data races. Even worse, the formal analysis of concurrent
software poses additional challenges caused by the non-deterministic execution
order (interleaving) between different strands of concurrent activities.

In consequence, the complexity of state spaces arising from dynamic data
structures, recursive method or procedure calls, and dynamic creation of and
interleaving between concurrent threads imposes challenges which cannot be
handled by standard verification algorithms such as finite-state model checking.
This problem has been a topic of continuous research interest since the early
1970s. A common approach are abstraction techniques that employ symbolic
representations of sets of program states using suitable formalisms. Various such
formalisms have been considered for this purpose, which can be distinguished

1



with regard to their expressiveness, precision, efficiency, and automatability.
The most important ones are sketched in the following.

Automata-based approaches. Regular model checking is a generic tech-
nique for algorithmic verification of infinite-state systems which uses (finite)
word, tree, or forest automata to finitely represent potentially infinite sets of
reachable configurations. As the related problems are typically undecidable,
research activities in this area have focused on developing semi-algorithms, de-
cidability results for restricted cases, and systematic over-approximations of the
state space by means of acceleration techniques.

Logic-based approaches. Shape analysis is a form of pointer analysis that
attempts to characterize collections of heap cells reachable from particular point-
ers, for example, to determine whether the cells form a list or a tree. In particu-
lar, three-valued logic can be used as a framework for designing such analyses. It
is instantiated by supplying both predicates that capture different relationships
between cells and the functions that determine how the predicates are updated
by particular program operations. Another logic-based technique is separation
logic, which extends classical Hoare logic by operators that enable modular
reasoning about heap structures. While the logic was originally designed as a
calculus for manually verifying low-level pointer manipulating programs, it has
subsequently become the basis for several abstract interpretation based verifiers.
Since then, this topic has been actively studied with regard to both its theo-
retical foundations and its practical applications. Its importance is witnessed
by the 2016 Gödel Prize, which was awarded to Stephen Brookes and Peter W.
O’Hearn for their invention of Concurrent Separation Logic.

Graph-based approaches. As heap data structures can be formalised by
graphs, it is quite natural to employ graph transformation techniques for both
specifying symbolic execution of pointer programs and abstraction mappings
on heap structures. With respect to the former, methods for verifying graph
transformation systems based on model checking and similar techniques are
being studied. With respect to abstraction methods, graph grammars such as
regular tree grammars and hyperedge replacement grammars are employed for
describing the shape of complex data structures.

Extensions for concurrency. As described earlier, another source of infinite
state spaces is unbounded concurrency, i.e., dealing with a parametric number or
with unbounded dynamic creation of threads. In order to meet this challenge,
for all of the approaches mentioned above, extensions for concurrency have
been developed. They are ranging from adaptations of regular model checking
over specific kinds of abstraction and automated induction based on network
invariants to thread-modular reasoning. An especially challenging task is to
verify programs that involve both unbounded concurrency as well as unbounded
data structures. In fact, the survey on software model checking by R. Jhala and
R. Majumdar states that “the scalable verification of heap-based data structures
is perhaps the least understood direction in software model checking” and that
“scaling verification techniques in the presence of expressive heap abstractions
and concurrent interactions remain outstanding open problems.”

2



Aims of the meeting. Although many of these approaches address similar
concerns, their formulations and formalisms often seem dissimilar and sometimes
even unrelated. Thus, the insights and results gained in one description of
heap abstraction may not directly carry over to some other descriptions. The
purpose of this Shonan meeting was to bring together both theoreticians and
practitioners working on different techniques for heap abstraction and pointer
program analysis. It aimed to provide a broad understanding of the various
techniques to support the exploitation of their commonalities such that they
can benefit from each other.

Overview of Talks

A Logical System for Modular Information Flow Verifica-
tion

Mahmudul Faisal Al Ameen, National University of Singapore, Singapore

Information Flow Control (IFC) is important to ensure secure program where
secret data does not influence any public data. The pervasive standard that IFC
aims is non-interference. Current IFC systems are separated into dynamic IFC,
static IFC, and the hybrid between static and dynamic. Dynamic IFC suffers
from high overhead and limited ability to prevent implicit flows due to the paths
not taken, we propose a novel modular static IFC systems. To the best of our
knowledge, this is the first modular static IFC systems. Unlike type-based static
IFC systems, ours is separation logic-based. The limitation of type-based IFC
systems is in the inviolability of static security label declarations for fields. As
such, they suffer from transient leaks on fields. Our proposed system verifies
each function independently with the help of separation logic. Furthermore,
we provide the proof of correctness for our novel IFC systems with respect to
termination and timing insensitive non-interference.

Foundational Program Verification Using VST

Lennart Beringer, Princeton University, USA

The Verified Software Toolchain is a verification framework for C, imple-
mented in the Coq proof assistant and proven sound w.r.t. the operational se-
mantics of CompCert’s Clight language. Its key components are a higher-order
impredicative concurrent separation logic and a library of proof automation
tactics. The talk will give a high-level overview and summarize some recent
verification examples. Meeting participants are invited to download and install
VST on their own machine (see http://vst.cs.princeton.edu) and experi-
ment with the system in their spare time.

3

http://vst.cs.princeton.edu


Relational Models and Program Logics: Logical Relations
in Iris

Lars Birkedal, Aarhus University, Denmark

In this talk I present a formalization of a logical relations model of an ML-
like type system for a call-by-value higher-order language with impredicative
polymorphism, recursive types, general references, and concurrency. The logi-
cal relation interpretation is defined in Iris, a state-of-the-art higher-order con-
current separation logic, which in turn is formalized in Coq. The proof effort
is made simpler by the use of the novel interactive proof mode for Iris Proof
Mode.

Starling: Lightweight Reasoning with Separation

Mike Dodds, University of York, UK

Starling is a lightweight, automated tool for verifying racy concurrent al-
gorithms. Starling proofs are are written in an abstracted Hoare-logic style,
and converted into terms discharged by a sequential solver (for example, Z3).
Starling is built on the Views framework, an abstract form of separation logic.
In this talk I’ll describe how we specialise the Views framework into a simple,
generic verification tool, and how we can apply this approach to verify complex
pointer programs.

Automatic Local Reasoning of Recursive Data Structures

Joxan Jaffar, National University of Singapore, Singapore

We consider the problem of verifying programs which manipulate recursive
data structures. A main challenge here is how to perform local reasoning so
that the verification of subprograms, which operate on different components or
frames of the data structure, can be combined. Separation Logic (SL) was a
significant advance in program verification of data structures. It used a “sepa-
rating” conjoin operator in data structure specifications to construct heaps from
disjoint subheaps, and a “frame rule” to very elegantly realize local reasoning.
Subsequently, the methods of Dynamic Frames (DF) and Implicit Dynamic
Frames (IDF) provided expressive ways to specify the frames of methods.

Our method begins with a domain of discourse of explicit subheaps with re-
cursive definitions. The resulting specification language can describe arbitrary
data structures, and arbitrary sharing therein, thus enabling a very precise
specification of frames. The main contribution then is a program verification
method which combines strongest postcondition reasoning in the form of sym-
bolic execution, and unfolding recursive definitions of the data structure in
question. Conceptually, this makes our method relatively complete in the sense
of Hoare Logic. Finally, we present an implementation of our verifier, which
essentially reduces to an implementation of unfolding recursive definitions. We
then demonstrate automation on a number of representative programs.

4



Finally, to demonstrate that a new level of automatic verification has been
achieved, we present the first automatic proof of a classic graph marking al-
gorithm, paving the way for dealing with a class of programs which traverse
complex data structures.

(Joint Work with Duc-Hiep Chu)

The Attestor Tool: Graph-Based Abstract Interpretation
in Practice

Christina Jansen, RWTH Aachen University, Germany

The automated analysis and verification of pointer-manipulating programs
operating on a heap is a challenging task. It requires abstraction techniques
for dealing with complex program behaviour and unbounded state spaces that
arise from both dynamic data structures and recursive procedures. In this talk
I am going to briefly present the theoretical underpinnings of a static analysis
for pointer programs, which fits into the standard abstract interpretation frame-
work. Its abstraction and (local) concretisation functions are defined by graph
grammar application. We will have a close look into the prototypic analysis tool
Attestor, which analyses Java Bytecode for garbage-freedom, null pointer deref-
erences, pointer reachability, shape preservance as well as complex functional
properties. In detail, we consider case studies including singly- and doubly-
linked list reversal, the Deutsch-Schorr-Waite tree traversal algorithm and di-
verse operations on AVL trees.

Decision Procedure for Entailment of Symbolic Heaps with
Arrays

Daisuke Kimura, Toho University, Japan

This talk gives a decision procedure for the validity of entailment of symbolic
heaps in separation logic with Presburger arithmetic and arrays. The correctness
of the decision procedure is proved under the condition that sizes of arrays in
the succedent are not existentially bound. This condition is independent of
the condition proposed by the CADE-2017 paper by Brotherston et al, namely,
one of them does not imply the other. For improving efficiency of the decision
procedure, some techniques are also presented. The main idea of the decision
procedure is a novel translation of an entailment of symbolic heaps into a formula
in Presburger arithmetic, and to combine it with an external SMT solver.

Iris: A Framework for Higher-Order Concurrent Separa-
tion Logic in Coq

Robbert Krebbers, Technical University Delft, The Netherlands

Iris is a framework for higher-order concurrent separation logic, implemented
in the Coq proof assistant. In collaboration with a growing network of collabo-
rators, Iris has been deployed in a wide variety of verification projects such ver-
ification of fine-grained concurrent data structures, a safety proof of the Rust

5



type system, logical relations for proving program refinements, and program
logics for relaxed memory models.

In this talk I will give an overview of Iris. Firstly, I will introduce the
basic building blocks of Iris and show how these can be used to verify classic
concurrent programs. Secondly, I will demonstrate the formalization of Iris in
Coq.

Enhancing Symbolic Execution of Heap-based Programs
with Separation Logic for Test Input Generation

Quang Loc Le, Teesside University, Middlesbrough, UK

Symbolic execution is a well-established method for test input generation.
By taking inputs as symbolic values and solving constraints encoding path con-
ditions, it helps achieve a better test coverage. Despite of having achieved
tremendous success over numeric domains, existing symbolic execution tech-
niques for heap-based programs (e.g., linked lists and trees) are limited due to
the lack of a succinct and precise description for symbolic values over unbounded
heaps.

In this work, we present a new symbolic execution method for heap-based
programs using separation logic. The essence of our proposal is the use of
existential quantifiers to precisely represent symbolic heaps. In order to solve
path-condition-constraints, we first present a satisfiability solver in a fragment
of separation logic with inductive predicates and arithmetic. Furthermore, we
identify conditions for a decidable subfragment. Next, we propose a context-
sensitive lazy initialization, a novel approach for efficient test input generation.
In particular, we describe a least fixed point analysis to compute a valid set of
symbolic values initialized to reference fields during the symbolic execution. We
have implemented our proposal into a prototype system, called Java StarFinder
and S2SAT solver, and evaluated it on a set of programs with complex heap
inputs. The results show that our approach significantly reduces the number of
invalid test inputs and improves the test coverage.

Automated Detection of Dynamic Data Structures in C
Programs and Binary Code

Gerald Lüttgen, University of Bamberg, Germany

This talk presents the key results of the DFG-funded research project “Learn-
ing Data Structure Behaviour from Executions of Pointer Programs” (DSI), in
which dynamic analysis techniques have been developed to identify dynamic
data structures in C programs and x86 binary code. DSI’s analysis utilizes a
novel memory abstraction that allows for a compact description of pointer-based
data structures such as linked lists and binary trees, and their interconnections
such as parent-child nesting. On top of this abstraction, an evidence-collecting
approach calculates a natural language description of the observed data struc-
tures with the help of a systematic taxonomy. The inferred data structure infor-
mation is not only helpful for program comprehension but can also be utilized
in the contexts of software verification and visualization.

6



Heap Automata for Pointer Programs and Separation Logic

Christoph Matheja, RWTH Aachen University, Germany

We introduce heap automata, a formalism for automatic reasoning about
robustness properties of the symbolic heap fragment of separation logic with
user-defined inductive predicates. Robustness properties, such as satisfiability,
reachability, and acyclicity, are important for a wide range of reasoning tasks
in automated program analysis and verification based on separation logic. Pre-
viously, such properties have appeared in many places in the separation logic
literature, but have not been studied in a systematic manner.

In this talk, we develop an algorithmic framework based on heap automata
that allows us to derive asymptotically optimal decision procedures for a wide
range of robustness properties in a uniform way. We implemented a prototype
of our framework and obtained promising results for all of the aforementioned
robustness properties. Further, we demonstrate the applicability of heap au-
tomata beyond robustness properties. We apply our algorithmic framework to
the model checking and the entailment problem for symbolic-heap separation
logic.

Complete Cyclic-Proof System for Separation Logic with
General Inductive Predicates

Koji Nakazawa, Nagoya University, Japan

A new proof system, called CSLIDω, is introduced for entailment checking in
separation logic with general inductive predicates. CSLIDω is based on Broth-
erston’s cyclic proof system, and accompanied by an unfold-match proof-search
procedure. We expect that this procedure proves decidability and completeness
of CSLIDω.

Graph-Based Abstract Interpretation of Pointer Programs

Thomas Noll, RWTH Aachen University, Germany

In this talk we introduce an abstraction framework for analysing pointer
programs featuring dynamic data structures, recursive procedures, and concur-
rent threads. It uses a graph-based symbolic representation of sets of heaps
and employs so-called hyperedge replacement grammars to describe both ab-
straction and concretisation operations on symbolic heaps. Modular reasoning
is supported in the form of contracts with graphical pre- and postconditions
that capture the net effect of a procedure’s and thread’s execution. In the latter
case, contracts are enriched by permissions that represent access rights to (parts
of) the heap, which allows to check for race conditions and other concurrency
issues.

Automated Reasoning about Separation Logic using SMT
Solvers

Ruzica Piskac, Yale University, New Haven, USA

Separation logic (SL) has gained widespread popularity as a formal foun-

7



dation of tools that analyze and verify heap-manipulating programs. Its great
asset lies in its assertion language, which can succinctly express how data struc-
tures are laid out in memory, and its discipline of local reasoning, which mimics
human intuition about how to prove heap programs correct.

While the succinctness of separation logic makes it attractive for developers
of program analysis tools, it also poses a challenge to automation: separation
logic is a nonclassical logic that requires specialized theorem provers for dis-
charging the generated proof obligations. SL-based tools therefore implement
their own tailor-made theorem provers for this task. However, these theorem
provers are not robust under extensions, e.g., involving reasoning about the data
stored in heap structures.

I will present an approach that enables complete combinations of decidable
separation logic fragments with other theories in an elegant way. The approach
works by reducing SL assertions to first-order logic. The target of this reduction
is a decidable fragment of first-order logic that fits well into the SMT frame-
work. That is, reasoning in separation logic is handled entirely by an SMT
solver. We have implemented our approach in the GRASShopper tool and used
it successfully to verify interesting data structures.

A Decidable Logic for Tree Data-Structures with Measure-
ments

Xiaokang Qiu, Purdue University, West Lafayette, USA

We present Dryad dec, a decidable logic that allows reasoning about tree
data-structures with measurements. This logic supports user-defined recursive
measure functions based on height or size, and measure-related recursive predi-
cates such as AVL trees or red-black trees. We prove the logic’s satisfiability is
decidable. The crux of the decidability proof is a small model property which
allows us to reduce the satisfiability of Dryad dec to quantifier-free linear arith-
metic theory which can be solved efficiently using SMT solvers. We also show
that Dryad dec can encode natural proof verification conditions for functional
correctness of recursive tree-manipulating programs, as well as synthesis condi-
tions for conditional linear-integer arithmetic functions. We developed the de-
cision procedure and successfully solved 100+ Dryad dec formulas raised from
various scenarios, including verifying full correctness of programs manipulating
AVL trees, red-black trees and treaps, checking size lower bounds for AVL trees
and red black trees, and synthesizing candidate solutions from a specification
and a set of counterexamples. To our knowledge, this is the first decidable logic
that can express these measure-related properties for trees.

Abstract Graphs and their Transformation

Arend Rensink, University of Twente, Enschede, The Netherlands

The data structures built up in pointer programs can for many purposes be
viewed as graphs, where the nodes are records and the edges are pointers. The
manipulation of that data by a program then corresponds to the transformation
of such a graph.

8



By regarding portions of a data graph that are “similar enough” (in a sense to
be defined precisely but dependent on the application) as identical, and merely
recording how many of each such portion there are rather than their individual
interconnections, we can arrive at a finite model that captures the essential char-
acteristics of pointer data. The transformations can then be lifted from concrete
graphs to this abstract level, giving rise to an over- or under-approximation of
the reachable states that allows a partial prediction of the behaviour of the
original pointer program.

In this presentation I give an overview of graph abstraction techniques that
have been studied for this purpose, and identify the most promising approaches.

Forest Automata for Verification of Heap Manipulation

Adam Rogalewicz, Brno University of Technology, Czech Republic

We consider verification of programs manipulating dynamic linked data
structures such as various forms of singly and doubly-linked lists or trees. We
consider important properties for this kind of systems like no null-pointer deref-
erences, absence of garbage, shape properties, etc. We develop a verification
method based on a novel use of tree automata to represent heap configurations.
A heap is split into several “separated” parts such that each of them can be rep-
resented by a tree automaton. The automata can refer to each other allowing
the different parts of the heaps to mutually refer to their boundaries. Moreover,
we allow for a hierarchical representation of heaps by allowing alphabets of the
tree automata to contain other, nested tree automata. Program instructions can
be easily encoded as operations on our representation structure. This allows ver-
ification of programs based on a symbolic state-space exploration together with
refinable abstraction within the so-called abstract regular tree model checking.
A motivation for the approach is to combine advantages of automata-based ap-
proaches (higher generality and flexibility of the abstraction) with some advan-
tages of separation-logic-based approaches (efficiency). We have implemented
our approach and tested it successfully on multiple non-trivial case studies.

The Tree Width of Separation Logic with Recursive Defi-
nitions

Adam Rogalewicz, Brno University of Technology, Czech Republic

Separation Logic is a widely used formalism for describing dynamically allo-
cated linked data structures, such as lists, trees, etc. The decidability status of
various fragments of the logic constitutes a long standing open problem. Current
results report on techniques to decide satisfiability and validity of entailments
for Separation Logic(s) over lists (possibly with data). In this paper we establish
a more general decidability result. We prove that any Separation Logic formula
using rather general recursively defined predicates is decidable for satisfiabil-
ity, and moreover, entailments between such formulae are decidable for validity.
These predicates are general enough to define (doubly-) linked lists, trees, and
structures more general than trees, such as trees whose leaves are chained in a
list. The decidability proofs are by reduction to decidability of Monadic Second
Order Logic on graphs with bounded tree width.

9



Hybrid Program Analyses for Pointwise Permission Infer-
ence

Alexander J. Summers, ETH Zürich, Switzerland

Ownership and permissions are concepts commonly employed to aid reason-
ing about programs with mutable state and concurrency, e.g. in custom program
logics such as separation logic. Permissions can be used to specify the potential
side-effects of code, guaranteeing which facts can be preserved across changes
to the program state. One way to generalise permissions to unbounded data is
to support them under quantifiers; e.g. specifying access to a graph structures
by ranging over its sets of nodes, or to array segments by ranging over integer
indices.

In this talk, I will describe ongoing work to automatically infer such quan-
tified permission specifications for a variety of heap-based data structures. Per-
mission-based program logics extend first-order logic with powerful additional
connectives, but I will show that the constraints arising from our inference
problem can nonetheless be summarised within first-order arithmetic. Using
this idea, we define a precise analysis for straight-line code, which can e.g.
summarise the permissions needed to execute a single loop iteration. We then
generate loop invariants using several novel techniques for projecting such ex-
pressions out over all loop iterations, leveraging complementary static analyses
and quantifier elimination algorithms.

The talk will include demonstrations using the Viper verification infrastruc-
ture, which I will introduce along the way.

Program Analysis and Verification by Separation Logic

Makoto Tatsuta, National Institute of Informatics, Japan

Our team is currently working on a separation-logic-based program ana-
lyzer/verifier. Our plan is to start at the point O’Hearn’s group reached and
to achieve more precise and faster systems. Our concrete target is to verify
OpenSSL. Our current topics are: an entailment checker for separation logic
with arithmetic and arrays, a loop invariant generator for Hoare triples by ab-
stract interpretations, and completeness of cyclic proofs in symbolic heaps with
general inductive predicates.

An Abstract Interpretation Framework for Input Data Us-
age

Caterina Urban, ETH Zürich, Switzerland

Nowadays, data science software plays an increasingly important role in
critical decision making in fields ranging from economy and finance to biology
and medicine. As we rely more and more on data science for making decisions,
we become increasingly vulnerable to programming errors. Errors that do not
cause failures can have serious consequences, since they give no indication that
something went wrong.

10



In this talk, we focus on programming errors related to input data usage.
Specifically, we propose an abstract interpretation framework to automatically
detect unused input data. We systematically derive static analyses for data
usage by abstraction of the program operational trace semantics. We propose
a new abstract domain to detect single unused input data stored in scalar vari-
ables, and we lift this abstraction by building upon an existing domain for the
analysis of compound data structures such as array and lists to detect unused
chunks of the data. Finally, we show that existing static analyses for seemingly
different problems can be cast into our framework. In particular, we show that
a form of live variable analysis and secure information flow analyses can be used
for input data usage, with varying degrees of precision.

Flow Interfaces -– Compositional Abstractions for Concur-
rent Data Structures

Thomas Wies, New York University, USA

Concurrent separation logics have helped to significantly simplify correct-
ness proofs for concurrent data structures. However, a recurring problem in
such proofs remains: data structure abstractions based on inductive predicates,
which work well in the sequential setting, are much harder to reason about in
a concurrent setting. To solve this problem, we propose a novel approach to
abstracting regions in the heap by encoding the data structure invariant into a
local property that can be checked on individual nodes. These properties may
depend on a quantity of each node that is computed as a fixpoint over the entire
heap graph. We refer to this quantity as a flow. Flows can encode both struc-
tural properties of the heap (e.g., the reachable nodes from the root form a tree)
as well as data invariants that are relevant for proving functional correctness.
We then introduce the notion of a flow interface, which expresses the relies and
guarantees that a heap region imposes on its context to maintain the global flow
invariant.

Our main technical result is that flow interfaces provide a new seman-
tic model for separation logic assertions that admits general implementation-
agnostic proof rules for reasoning about concurrent data structures. These in-
clude rules that allow a heap region to be split into arbitrary chunks which can
be modified and recomposed to form a new region, while maintaining the global
data structure invariant. We have used our new approach to obtain simple cor-
rectness proofs for non-trivial concurrent dictionary implementations based on
B+ trees and non-blocking lists.

Summary of Discussions

The workshop was closed with a plenary discussion. Before and during the
workshop, we had collected topics for discussion, which were: abstraction, proof
automation, how to combine methodologies and tools, common challenges, and
the spread of techniques for pointer analysis.

Most work on pointer analysis seems to be using separation logic. We started
the discussion with the question if there are specific reasons for that, but no
real conclusions were made. As somebody pointed out: “it’s all the same.”

11



Moreover, we only gathered people from the verification community; for example
in the compiler community still many different techniques are used.

During the workshop we realised that there was a wide interest in common
challenges. During the first day of the workshop, Joxan Jaffar in his presentation
introduced the mark-graph challenge, and several people later used this example
in their own presentations to illustrate their techniques. We agreed that it is a
good idea to collect challenges, and make them publicly available for the whole
community. We distinguish two kinds of challenges that are relevant for this
community: program verification challenges, and separation logic entailment
challenges. For both kinds of challenges, there already exists a competition:
VerifyThis for program verification, SLComp for separation logic entailment. It
was agreed that we should connect with these two initiatives for the collection
of challenges.

The discussion then continued to consider the possibility of combining tech-
niques and tools, in order to allow reuse of results. This idea should not be
restricted to the use of tools and techniques discussed during the workshop;
also the idea to plug in existing static analyses in program verification tools
seems to be a promising approach. To combine existing tools and techniques
would require some common interchange format for properties (and competi-
tions such as SLComp can be good means to define this). It was noted that a
wide variety of different separation logic variants is currently in use. It could
be useful to have some kind of feature model, which allows one to compare
the capacities of these logics (in addition to the hierarchy that is often shown
currently).

Finally, we also discussed where we should concentrate efforts. Should we
continue developing deep theory, or focus on scaling, and work on the verification
of industrially relevant examples or libraries? The latter also requires substantial
engineering work, which can be difficult to realise in an academic environment.
However, we also see that there is a growing interest in these kinds of techniques
by companies such as Amazon, Facebook and Galois, so we concluded that in
addition to further developing the theory, we should also keep on considering
how to put these theories into practice.

List of Participants

• Mahmudul Faisal Al Ameen, National University of Singapore, Singapore

• Lennart Beringer, Princeton University, USA

• Lars Birkedal, Aarhus University, Denmark

• Mike Dodds, University of York, UK

• Marieke Huisman, University of Twente, Enschede, Netherlands

• Joxan Jaffar, National University of Singapore, Singapore

• Christina Jansen, RWTH Aachen University, Germany

• Daisuke Kimura, Toho University, Japan

• Robbert Krebbers, Technical University Delft, The Netherlands

12

http://www.pm.inf.ethz.ch/verifythis.html
https://www.irif.fr/~sighirea/slcomp14/
http://researchmap.jp/faisal/
https://www.cs.princeton.edu/~eberinge/
http://cs.au.dk/~birke/
http://www-users.cs.york.ac.uk/~miked/
http://wwwhome.ewi.utwente.nl/~marieke/
http://www.comp.nus.edu.sg/~joxan/
https://moves.rwth-aachen.de/people/cjansen/
http://www.sci.toho-u.ac.jp/is/lab/kimura_dai_lab/kimura_dai.html
http://robbertkrebbers.nl/


• Quang Loc Le, Teesside University, Middlesbrough, UK

• Gerald Lüttgen, University of Bamberg, Germany

• Christoph Matheja, RWTH Aachen University, Germany

• Koji Nakazawa, Nagoya University, Japan

• Chin Wei Ngan, National University of Singapore, Singapore

• Thomas Noll, RWTH Aachen University, Germany

• Ruzica Piskac, Yale University, New Haven, USA

• Xiaokang Qiu, Purdue University, West Lafayette, USA

• Arend Rensink, University of Twente, Enschede, The Netherlands

• Adam Rogalewicz, Brno University of Technology, Czech Republic

• Alexander J. Summers, ETH Zürich, Switzerland

• Makoto Tatsuta, National Institute of Informatics, Japan

• Caterina Urban, ETH Zürich, Switzerland

• Thomas Wies, New York University, USA

Schedule of Meeting

Check-in Day: October 1st (Sun)

• Welcome Banquet

Day1: October 2nd (Mon)

• Introduction

– Opening by organisers

– Self-introduction by participants

• General Verification Approaches using Separation Logic

– Makoto Tatsuta: Program Analysis and Verification by Separation
Logic

– Joxan Jaffar: Automatic Local Reasoning of Recursive Data Struc-
tures

• Group photo shooting

• Separation Logic and Concurrency I

– Lennart Beringer: Foundational Program Verification Using VST

– Mike Dodds: Starling: Lightweight Reasoning with Separation

• Runtime Verification and Input Analysis

13

http://www.tees.ac.uk/schools/scm/staff_profile_details.cfm?staffprofileid=U0032098
http://www.swt-bamberg.de/luettgen/
http://moves.rwth-aachen.de/people/cmatheja/
http://www.sqlab.i.is.nagoya-u.ac.jp/~nakazawa/index.html.en
http://www.comp.nus.edu.sg/~chinwn/
https://moves.rwth-aachen.de/people/noll/
http://www.cs.yale.edu/homes/piskac/
https://engineering.purdue.edu/~xqiu/
http://wwwhome.ewi.utwente.nl/~rensink/
http://www.fit.vutbr.cz/~rogalew/
http://people.inf.ethz.ch/summersa/wiki/
http://research.nii.ac.jp/~tatsuta/index-e.html
http://people.inf.ethz.ch/caurban/
http://cs.nyu.edu/wies/


– Quang Loc Le: Enhancing Symbolic Execution of Heap-based Pro-
grams with Separation Logic for Test Input Generation

– Gerald Lüttgen: Automated Detection of Dynamic Data Structures
in C Programs and Binary Code

– Caterina Urban: An Abstract Interpretation Framework for Input
Data Usage

Day2: October 3rd (Tue)

• Separation Logic and Concurrency II

– Robbert Krebbers: Iris: A Framework for Higher-Order Concurrent
Separation Logic in Coq

– Lars Birkedal: Relational Models and Program Logics: Logical Re-
lations in Iris

• Automata-Based Approaches to Separation Logic

– Christoph Matheja: Heap Automata for Pointer Programs and Sep-
aration Logic

– Adam Rogalewicz: Forest Automata for Verification of Heap Manip-
ulation

• Graph Transformation

– Arend Rensink: Abstract Graphs and their Transformation

– Thomas Noll: Graph-Based Abstract Interpretation of Pointer Pro-
grams

– Christina Jansen: The Attestor Tool: Graph-Based Abstract Inter-
pretation in Practice

• Decision Problems in Separation Logic

– Koji Nakazawa: Complete Cyclic-Proof System for Separation Logic
with General Inductive Predicates

– Ruzica Piskac: Automated Reasoning about Separation Logic using
SMT Solvers

– Adam Rogalewicz: The Tree Width of Separation Logic with Recur-
sive Definitions

Day3: October 4th (Wed)

• Separation Logic and Concurrency III

– Alexander J. Summers: Hybrid Program Analyses for Pointwise Per-
mission Inference

– Thomas Wies: Flow Interfaces – Compositional Abstractions for
Concurrent Data Structures

• Extensions of Separation Logic I

14



– Chin Wei Ngan: Multi-Party Session Logic

– Xiaokang Qiu: A Decidable Logic for Tree Data-Structures with Mea-
surements

• Excursion and Main Banquet

Day4: October 5th (Thu)

• Extensions of Separation Logic II

– Mahmudul Faisal Al Ameen: A Logical System for Modular Infor-
mation Flow Verification

– Daisuke Kimura: Decision Procedure for Entailment of Symbolic
Heaps with Arrays

• Plenary Discussion and Closing

15


