
ISSN 2186-7437

NII Shonan Meeting Report

No. 2017-6

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Language-integrated queries: toward
standard logics for big analytics

Laurent Daynès
George Fletcher
Wook Shin Han

May 29 - June 1, 2017



Language-integrated queries: toward standard

logics for big analytics

Organizers:
Laurent Daynès (Oracle Labs, France)

George Fletcher (TU Eindhoven, Netherlands)
Wook Shin Han (Pohang University of Science and Technology, South Korea)

May 29 - June 1, 2017

1



1 Introduction

Database management systems (DBMSs) are typically optimized for a partic-
ular data model (e.g., relational, semi-structured, graph-based) and interfaced
with a unique query language (e.g., SQL, HiveQL, XQuery, JSONiq, SPARQL).
In contrast, database applications are written in general-purpose programming
languages that offer developers a large choice of libraries (e.g., to simplify pre-
sentation to the end-users, the writing of business logic, etc.).

For various architectural reasons, database applications execute in an en-
vironment distinct from that of the DBMS, i.e., on a client machine (e.g., a
connected mobile device) or on a middle-tier, or even within the database itself.
This situation causes two main problems that have been the focus of research for
several decades: (1) how to better integrate database querying with application
programming languages to eliminate impedance mismatch while retaining the
full power of the database querying capabilities; and (2), how to minimize the
traffic, both in terms of number of interactions and volume of data exchanged,
between the database and its applications.

1.1 Current State of the art

With respect to integrating querying with programming languages, the indus-
trial landscape is currently dominated by ORM solutions (Hibernate, Ruby-on-
Rails, SQLAlchemy, DJango, Propel, RedBeanPHP, to name the most promi-
nent). These frameworks are based on popular architectural patterns (e.g.,
active records, data mappers) that greatly simplify application development by
wrapping database operations in type-safe object-oriented interfaces, allowing
developers to write code completely in the host language.

Unfortunately, these solutions encourage developers to write code that iter-
ates over collections of objects representing database records using idioms of the
language to perform bulk operations like filters and joins that would be better
done by the database. This often results in poor performance as it both in-
creases traffic with the database and can overwhelm the application?s memory
with very large intermediate results.

To avoid these problems, a number of language-integrated query techniques
for embedding queries into general-purpose programming languages have emerged.
These techniques seek to reconcile the goals of type-safety, uniform program-
ming idioms, on one hand, and better capturing of querying intent to optimize
interactions with databases, on the other. Two directions are being investigated:
(1) use some form of static analysis or type system to identify part of programs
that can be turned into queries; (2), extend conventional language with explicit
quotation or surface syntax for expressing queries more directly.

This second approach has gained popularity with Microsoft?s LINQ which
offers programmers a unified API for querying arbitrary data providers and
supports facilities to extend the syntax of the host language to add query con-
structs.

Unfortunately, this approach is too restricted for a couple of reasons. First,
although queries appear integrated syntactically, a driver still needs to translate
the query into a form that can be shipped for execution at the back-end where
the actual data resides. In practice, the query is just translated back to SQL
query. Consequently, deep integration of language expressions and queries is

2



missing, and complex queries featuring user-defined functions often require sev-
eral round-trips between the database and the runtime to exchange intermediate
results.

Second, a heavy burden is put on the data provider designer, who has to
resort to either (1) developing a superficial provider, that only implements the
most basic query primitives or, (2), investing a considerable amount of time, ef-
fort and expertise in developing a sophisticated data provider capable of analyz-
ing the syntactic representation of queries and of translating it into one or more
requests that can be executed by the back-end. In all cases, sub-expressions
from the host language that participate in the query must be translated into
an equivalent expression in the interface of the data provider (e.g., SQL). This
translation may not always be possible, or requires a substantial amount of
work, such as, providing an equivalent stored procedure at the database side
for all user-defined functions used in the application queries. When this isn?t
possible, a complex query expression must be split into multiple queries and in-
termediate results must be materialized at the application side in order to apply
the host language?s sub-expressions. This is a trait shared by all of the solutions
mentioned above, and one that cannot be solved as long as data providers fail
to offer a querying interface that can accept foreign language expressions.

1.2 Needs for an Algebra for data analytics?

Since its introduction in the 1970’s, Codd’s relational algebra (RA) has served
as an indispensable workhorse in the engineering of relational database systems.
As the mediating layer between specification of queries by clients in their host
language, on one hand, and compilation of optimized physical query execution
plans, on the other, the RA is arguably one of the key technologies which led to
the rise of practical data management solutions in the 1980’s. Generalizations
and extensions of RA played an analogous role in the 1990?s and 2000?s, to
address new challenges arising, for example, in the management of object-based
and semi-structured data collections.

In the last decade, we have witnessed a continued explosion of research and
development of data intensive systems and languages for big data analytics.
These range, for example, from distributed computing frameworks such Apache
Spark and Apache Flink to document-centric data stores such as MongoDB or
Microsoft Azure DocumentDB, to acceleration engine for graph data analytics
like PGX. To bridge the gap between the specification of analytic tasks by
clients of these systems, on one hand, and compilation of optimized execution
plans, on the other, an analogue of the relational algebra for big data analytics
processing is called for. Although each of the systems in the contemporary data
engineering landscape to some degree realizes its own flavor of a query algebra,
there is currently no recognized logical language which serves this role. Recent
efforts such as Apache Calcite are a step in the right direction, but are still
focused on the relational paradigm.

As discussed above, on the other end of the spectrum there have been efforts
on integrating native data querying capabilities into languages (aka language
integrated querying) such as .NET, Java, PHP, and JavaScript. Such efforts
extend the various languages by the addition of query operators and expressions
which often go beyond the expressiveness of the relational algebra.

3



A broad community discussion of the features and design of extended al-
gebras for big data analytics, as integrated in general-purpose programming
languages, is crucial to bring big data analytics solutions to the next level of
maturity.

As data processing platforms equip themselves with support for new pro-
gramming languages (e.g., JavaScript support in Postgres and Microsoft Azure
DocumentDB; Python support in Amazon Redshift; R in Oracle, Microsoft SQL
server, IBM dashDB, SPARK, etc.), the need for a data provider interface ca-
pable of accepting multi-lingual expressions in queries regardless of particular
query syntax will only continue to grow in importance.

1.3 Workshop organization and outcomes

The goal of this meeting is to take the first steps towards elaborating solutions
for (1) a standard language-, data-model-, and platform-independent declara-
tive interface to data providers which is able to leverage available multi-lingual
capabilities of data providers; and, (2) corresponding compilation and execu-
tion strategies. For this broad discussion, we aimed to bring together relevant
leading researchers from both academia and industry, across the domains of
programming languages, data management systems, and distributed and par-
allel systems specialized in data processing (e.g., Graph Analytics, Machine
Learning, etc.).

The workshop was organized in two parts: a first part in which selected
participants were invited to present their views and experiences on a particular
aspect of the problem space; the second part was organized into working groups
that discussed in depth several key topics. Additional impromptu presentations
where given throughout the workshop. Three working groups formed to address
the following topics:

1. How should a language agnostic intermediate representation (IR) for data
analytics programs look like? How to compile such an IR into a form exe-
cutable over an heterogeneous, multi-model data processing architecture;

2. Remaining challenges for language-integrated querying, taking into ac-
count the need for integrating new forms of data processing (e.g., machine
learning) and new data models (e.g., graph).

3. What is the state of end-user interfaces for data analytics and can we
better support data exploration.

4



Notes from sessions are available from the workshop web-site in the form of
google doc. One main outcome from these groups is a decision from several par-
ticipants to initiate collaborative work, starting with the writing of a Horizon
2020 EU grant proposal in the area of big Data technologies and extreme-scale
analytics. A second outcome is a collaborative effort to write an up to date
survey in the form of a tutorial on the state of language-integrated query tech-
niques that can be presented in upcoming important main database research
venues (VLDB, SIGMOD).

Overview of Talks

Chimera are useful ? Embedding scripting languages in
data management systems and vice-versa

Hannes Mühleisen, CWI

Data Science takes place in specialized scripting environments such as Python
or R. These environments were never designed to handle huge datasets, but are
now routinely used for precisely that task. Data management is an issue, reading
large dataset from flat files or through a socket connection involves huge over-
heads and thus increases the time-to-analysis to impracticable amounts. In this
talk, we will discuss the concepts and innovations required to embed complex
data management systems into a statistical scripting environment.

Strymon: Queryable Online Simulation for Modern Data-
centers

Vasiliki Kalavri, ETH Zurich

A modern enterprise datacenter is a complex, multi-layered system whose
components often interact in unpredictable ways. Yet, to keep operational costs
low and maximize efficiency, we would like to foresee the impact of changing
workloads, updating configurations, modifying policies, or deploying new ser-
vices. In this talk, I will share our research group?s vision for Strymon; a
multi-purpose platform that aims to provide a cross-layer model for modern
datacenters and support automatic reconfiguration through online simulation.
Driven by a real-use case from our industrial partners, I will highlight the need
for Strymon to support a diverse set of data representations, input sources,
query languages, and execution models. Finally, I will share our initial design
decisions and give an overview of Timely Dataflow; our platform of choice for
Strymon?s core implementation.

Language-integrated query: state of the art and open prob-
lems

James Cheney, University of Edinburgh

In this talk I will give a brief and broad overview of approaches to incorpo-
rating queries (or other forms of heterogeneous computation) into programming
languages, focusing on three general strategies:

5



• using query operator APIs (e.g. .NET LINQ operators, Delite, Flume-
Java),

• directly embedding the syntax of SQL or other query languages (e.g. C#,
SML#, Ur/Web),

• overloading language constructs or extending the language with query
operations (e.g. Kleisli, F#, Database Supported Haskell, or Links)

and comparing and contrasting them, briefly highlighting areas for future re-
search.

Managing the Proliferation Problem – Oracle Labs perspec-
tive on language-integrated querying & data analytics

Hassan Chafi, Oracle

SQL Extension for Complex OR Mapping in HTAP,

Kihong Kim, SAP

OR mapping of analytical objects to HTAP database tables often leads to
complex relational models, consisting of thousands of joins and unions, and thus
efficient query processing is very difficult. However, since humans can consume
a small number of values at a time, each analysis report requires a subset of such
complex objects and thus many of the joins can be eliminated per query basis.
This work presents SQL extensions to easily simplify complex OR mapping
models from SAP applications.

A new DAWN for data analysis

Kunle Olukotun (Stanford)

DAWN is a new Stanford lab to create infrastructure for usable machine
learning. We observe that ML algorithms are now ?good enough? for many
applications, but the bottlenecks to real-world use are tasks around the algo-
rithm, such as data labeling, data augmentation, and robust serving. We are
developing runtimes, algorithms and serving systems to tackle these problems.

A principled approach to language integrated queries

Kim Nguyen (LRI, Universit Paris-Sud)

BOLDR is a modular framework that enables the evaluation of queries con-
taining application logic (and, in particular, user-defined functions) in databases.
BOLDR detects the boundaries of queries present in an application, translates
them into an intermediate representation together with the relevant language
environment needed to evaluate them, rewrites them in order to avoid query
avalanches and to make the most out of database optimizations, and converts
the database(s) results back to the application.

6



Flare: Native Compilation for Heterogeneous Workload

Tiark Rompf (Purdue University)

The need for modern data analytics to combine relational, procedural, and
map-reduce-style functional processing is widely recognized. State-of-the-art
systems like Spark have added SQL front-ends and relational query optimiza-
tion, which promise an increase in expressiveness and performance. But how
good are these extensions at extracting high performance from modern hard-
ware platforms? While Spark has made impressive progress, we show that for
relational workloads, there is still a significant gap compared with best-of-breed
query engines. And when stepping outside of the relational world, query opti-
mization techniques are ineffective if large parts of a computation have to be
treated as user-defined functions (UDFs). We present Flare: a new back-end
for Spark that brings performance closer to the best SQL engines, without giv-
ing up the added expressiveness of Spark. We demonstrate order of magnitude
speedups both for relational workloads such as TPC-H, as well as for a range of
machine learning kernels that combine relational and iterative functional pro-
cessing. Flare achieves these results through (1) compilation to native code, (2)
replacing parts of the Spark runtime system, and (3) extending the scope of
optimization and code generation to large classes of UDFs.

Modeling Ice on Windmills: a use-case for multi-model /
multi-engine data processing

Wolfgang Lehner (TU Dresden)

List of Participants

• Laurent Daynès, Oracle Labs

• Prof. George Fletcher, Eindhoven University of Technology

• Prof. Wook-Shin Han, Pohang University of Science and Technology

• Prof. Toshiyuki Amagasa, University of Tsukuba

• Dr. Sihem Amer-Yahia, CNRS

• Prof. Kim Nguyen, Université Paris-Sud

• Dr. Matthias Brantner, Oracle Labs

• Dr. Hassan Chafi, Oracle Labs

• Prof. Chee-Yong Chan, NUS

• Prof. James Cheney, University of Edinburgh

• Prof. Adam Chlipala, MIT

• Prof. Sebastian Erdweg, TU Delft

7



• Dr. Sungpack Hong, Oracle Labs

• Prof. Wolfgang Lehner, TU Dresden

• Dr. Sebastian Maneth, University of Bremen

• Prof. Ioana Manolescu, INRIA

• Prof. Guido Moerkotte, University of Mannheim

• Dr. Hannes Mühleisen, CWI

• Prof. Makoto Onizuka, Osaka University

• Prof. Tiark Rompf, Purdue University

• Prof. Eelco Visser, TU Delft

• Prof. Nikolay Yakovets, Eindhoven University of Technology

• Dr. Giuseppe Castagna, CNRS - Université Paris Diderot

• Dr. Vasiliki Kalavri, ETH Zurich

• Dr. Parke Godfrey, York University

• Dr. Shin-ichiro Okamoto, Yahoo Japan

• Dr. Kihong Kim, SAP Labs Korea

• Prof. Kunle Olukotun, Stanford University

• Prof. Yuqing Melanie Wu, Pomona College

• Mr./Ms. Yukyoung Lee, Pohang University of Science and Technology
(POSTECH)

8



Meeting Schedule

Check-in Day: May 28 (Sun)

• Welcome Banquet

Day 1: May 29 (Mon)

• Introduction movie of NII Shonan meeting

• Workshop introduction by organizers

• ”Chimera are useful: Embedding scripting languages in data management
systems and vice-versa”, Hannes Mühleisen (CWI)

• ”Strymon: Queryable Online Simulation for Modern Datacenters”, Vasi-
liki Kalavri (ETH Zurich)

• ”Language-integrated query: state of the art and open problems?, James
Cheney (University of Edinburgh)

• ”Managing the Proliferation Problem – Oracle Labs perspective on language-
integrated querying & data analytics”, Hassan Chafi (Oracle)

• ”SQL Extension for Complex OR Mapping in HTAP”, Kihong Kim (SAP)

• ”A new DAWN for data analysis”, Kunle Olukotun (Stanford)

• Demonstrations / Posters

– ”Gelly-Stream: Continuous Single-Pass and Iterative Graph Process-
ing on Unbounded Data”, Vasiliki Kalavri

– ”Language-Integrated Query in a Proof Assistant”, Adam Chlipala

– ”Deep embedding of JavaScript in the Oracle Database”, Matthias
Brantner, Laurent Daynès

– ”IceDust 2: Derived Bidirectional Relations and Calculation Strategy
Composition”, Eelco Visser

– ”Integrating BD-DSLs into Scala”, Wolfgang Lehner

• Organizing Working Groups

Day 2: May 30 (Tue)

• Day 2 introduction

• Working groups session 1

• Plenary progress report

• Working groups session 2

• Working groups end of day report

Day3: May 31 (Wed)

• Day 3 Introduction

9



• ”A principled approach to language integrated queries”, Kim NGuyen
(LRI, Université Paris-Sud)

• ”Flare: Native Compilation for Heterogeneous Workloads in Apache Spark?,
Tiark Rompf (Purdue University)

• Working Groups session 3

• Excursion and Main Banquet

Day4: June 01 (Thu)

• Day 3 introduction

• Working Groups Wrap up

10


