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1 Summary
Many existing graph algorithms have a strong assumption that the input graph is planar,
however, most graphs such as social networks or biological networks in real-world
applications are non-planar.

The main goal of the workshop is to promote Graph Algorithm research in Asia-
Pacific region, and form a research community to collaboratively solve complex prob-
lems arising in a variety of application domains such as social networks or systems
biology. In particular, special emphasis on the Beyond Planar Graphs is addressed.

This workshop aims to identify research opportunities on Beyond Planar Graphs,
focusing on the Asia-Pacific context. More specifically, we develop innovative algo-
rithms to handle sparse non-planar graphs with specific application of large and com-
plex network visualization:

• k-planar graphs: a graph is k-planar if it has a drawing in which no edge crosses
more than k edges.

• k-skew graphs: a graph is k-skew if it has a drawing in which deletion of k edges
makes the resulting graph planar.

• k-quasi-planar graphs: a graph is k-quasi-planar if it has a drawing in which no
k edges mutually cross each other.

This workshop aims to bring world-renowned researchers on Graph Algorithm,
Graph Drawing, Computational Geometry, Graph Theory, and Combinatorial Opti-
mization, and collaboratively develop innovative theory and algorithms for sparse non-
planar topological graphs with specific applications of large and complex network vi-
sualization.

More specifically, we have the following aims:

• Structural properties: We aim to characterize classes of sparse non-planar
topological graphs. We prove important structural properties of such graphs.

• Testing algorithm: We want to determine the complexity of the problem of
testing whether a given graph satisfies such topological constraints is NP-hard. If
not, we design efficient (polynomial time) algorithms for testing such properties.

• Drawing algorithm: We aim to design polynomial time algorithms to construct
a straight-line drawing of an embedding that satisfies topological constraints.
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Our specific objectives are:

• Identify research opportunities on Beyond Planar Graphs, focusing on the Asia-
Pacific context.

• Form a broader research community with cross-disciplinary collaboration, be-
tween Computer Science (Graph Algorithm, Theoretical Computer Science, Com-
binatorial Optimization) as well as Mathematics (Graph Theory, Combinatorics).

• Foster greater exchange between Graph Drawing community, Computational
Geometry community and Graph Theory community, and to draw more researchers
in the Asia-Pacific region to enter this rapidly growing area of research.

• Assist emerging researchers to find linkages to international researchers and
competitive research grants and funding.

2 Program
• Nov 27 Sunday Evening

– Reception

Nov 28 Monday Morning

– Introduction

– Invited Talk 1: Peter Eades

– Invited Talk 2: Fabrizio Montecchiani

• Nov 28 Monday Afternoon

– Invited Talk 3: Ignaz Rutter

– Invited Talk 4: Martin Nöllenburg

– Invited Talk 5: Yoshio Okamoto

– Invited Talk 6: Luca Grilli

– Invited Talk 7: Seok-Hee Hong

– Open Problem Session

• Nov 29 Tuesday Morning

– Open Problem Session

– Group Discussion I

• Nov 29 Tuesday Afternoon

– Group Discussion II

– Group Report I

• Nov 30 Wednesday Morning

– Group Discussion III

– Group Report II

2



• Nov 30 Wednesday Afternoon

– Afternoon: Excursion to Kamakura

• Dec 1 Thursday Morning

– Group Discussion IV

– Group Report III

– Planning and Wrap up

3 Invited Talks

Straight-line Drawings for Nearly Planar Topological Graphs
Peter Eades, University of Sydney, Australia

We discuss three classes of topological graphs that are “nearly” planar in some
sense. In particular, we investigate whether graphs in these classes admit straight-line
drawings.

1. A 1-skew graph G = (V,E) is a graph with an edge (s, t) such that G′ =
(V,E−{(s, t)}) is planar. Suppose that G has a straight-line drawing D in which
the edge (s, t) crosses edges e1, e2, . . . , ek. It is simple to observe that for each
i, one endpoint of ei is left of (s, t) and the other is right of (s, t). This simple
observation leads to an elegant theorem characterizing those topological graphs
on the sphere that have a straight-line drawing in the plane [6]. To prove this
theorem, we present a characterization of maximal 1-skew topological graphs
that have a straight-line drawing in the plane. The proofs of these theorems are
algorithms. Further, we describe an interesting proof technique using a variant
of Tutte’s barycentre algorithm.

2. A 1-plane graph is a topological graph in which each edge has at most one cross-
ing. Thomassen [21] characterized those 1-plane graphs that admit a straight-line
drawing in terms of two forbidden subgraphs. We describe a linear-time algo-
rithm which tests for these forbidden subgraphs, and constructs a straight-line
drawing if the forbidden subgraphs are absent [14]. In particular, we describe an
augmentation technique that adds edges to increase connectivity.

3. A RAC (right-angle crossing) graph is a topological graph that admits a straight-
line drawing in which each edge crossing forms a right angle. Research on RAC
graphs is motivated by human experiments that have shown that right-angled
edge crossings do not inhibit human understanding of diagrams. In particular, it
has been shown that a RAC graph with n vertices has at most 4n− 10 edges [5];
further, if it has exactly n− 10 edges then it is 1-planar [7].

An interesting open problem is to characterize those 1-planar topological graphs
that have a RAC drawing. Dehkordi [3] conjectures that six forbidden subgraphs char-
acterize those 1-plane graphs that have RAC drawings.
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Geometric Representations of 1-Planar Graphs
Fabrizio Montecchiani, University of Perugia, Italy

A graph is 1-planar if it can be drawn in the plane such that each edge is crossed
at most once. Among the various families of beyond planar graphs recently investi-
gated in the literature, the 1-planar graphs are among the most popular ones. We first
briefly recall the main results concerning both the density of 1-planar graphs and the
complexity of recognizing 1-planar graphs.

After this introduction, we review the main results concerning geometric represen-
tations of 1-planar graphs. Namely, we first describe some results and proof techniques
for straight-line drawings and 1-bend drawings with right-angle crossings and with few
edge slopes.

We then turn our attention to visibility representations of 1-planar graphs. In par-
ticular, we describe recent results and proof techniques concerning bar 1-visibility rep-
resentations, rectangle visibility representations, and ortho-polygon visibility represen-
tations.

My open problems include:

• The 1-planar slope number of 1-planar graphs with maximum vertex degree ∆
is the minimum number of edge slopes that is sufficient to compute a 1-planar
straight-line drawing of any 1-planar graph with maximum vertex degree ∆. We
ask if this number can be bounded by a function that depends only on ∆ and
does not depend on the number of vertices of the graph.

• An edge partition of a 1-plane graph G (i.e., of a graph with a given 1-planar
embedding) is a coloring with two colors of the edges of G, say red and blue,
such that both the graph induced by the red edges and the graph induced by
the blue edges are plane. We ask whether every 3-connected 1-plane graph has
an edge partition such that the red graph has vertex degree at most c, for some
constant c, and treewidth at most two.

Simultaneous Embeddings and Stream Planarity
Ignaz Rutter, TU Eindhoven, The Netherlands

Motivated by the problem of visualizing sequences of graphs representing differ-
ent time steps of dynamic graphs, we survey results and techniques for simultaneous
embeddability and testing the planarity of a stream of edges, where only the edges
contained in a sliding window of fixed size are simultaneously visible.

For simultaneous embeddings we focus on the main variants of straight-line ge-
ometric embeddings (SGE) and topological drawings where shared edges have to be
represented by the same curve. The latter are also called simultaneous embeddings
with fixed edges, or SEFE for short. While the main body of the literature on SGE
focuses on determining graph classes that do always or do not always admit an SGE,
and few algorithmic results are known, the literature for SEFE contains algorithms for
a wide range of instances, though the complexity of the general case is still open.

We give an overview of the techniques used to approach special cases of the SEFE
problem. Our coverage of the SEFE problem ends with a discussion of the geometric
realizability problem, which asks for a realization of a SEFE drawing with polylines
that use few bends. One of our main open problems is to reduce the gap between the
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best known lower bound of three bends per edge and the best known upper bound of 6
bends per edge.

Finally, we introduce stream planarity as an attempt to overcome the hardness of
SEFE for three or more input graphs, which limits its application to very short se-
quences of graphs, only. In a stream graph the edges are represented in the form of a
stream and a sliding window of fixed size is used to determine the subgraph for each
time step. In this way, the graph sequences can be very long, but the amount of change
between any two time steps is very limited, in the sense that only one edge is added and
one disappears. Here we survey the main results and relate them other recently studied
graph embedding problems.

Geometric Graph Layouts of Beyond Planar Graphs
Martin Nöllenburg, TU Vienna, Austria

Crossings represent a major nuisance for reading and understanding drawings and
visualizations of graphs. Non-planar graphs, however, cannot be drawn in the plane
without crossings. In this talk I survey different approaches and techniques for im-
proving the aesthetics of geometric graph layouts of non-planar graphs.

The first part of the talk covers three different approaches to improve the visual
appearance of crossings:

• In a slanted orthogonal drawing, a graph with maximum degree 4 is drawn such
that all edges are sequences of horizontal, diagonal, and vertical line segments
with bend angles of 135◦. Moreover, crossings are only permitted on diagonal
segments, which makes them visually distinguishable from vertices, whose in-
cident edges connect only vertically and horizontally. Moreover, all crossings
have 90◦ crossing angles. Different optimization problems have been studied in
the literature.

• The second approach uses edge casing, i.e., for each crossing one edge is above
the other edge and the lower of the two edges is interrupted by a small gap to
indicate this. Different optimization problems for the sequences and the geome-
try of edge casings in the stacking and weaving models have been proposed and
studied in the literature.

• The third approach uses bundled crossings to reduce the number of perceived
crossings. Here a bundled crossing is defined by the mutual crossings of all pairs
of edges from two disjoint edge sets E1 and E2 such that all these crossings
can be enclosed by a (small) pseudodisk. The complexity and algorithms for
minimizing the number of bundled crossings have been studied in the literature.

In the second part of the talk two techniques are presented that make crossings
disappear visually by not showing them explicitly:

• In confluent drawings of graphs, the edges are represented as smooth paths be-
tween their respective endpoints that are composed of sequences of non-crossing
curves that pass through a set of junctions, similarly to a schematic layout for a
system of train tracks. In each junction all incoming curves on one side connect
to all incoming curves on the other side and vice versa. Several results on con-
fluent drawings are known in the literature, e.g., classes of graphs that have or
do not have confluent drawings.
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• Finally, partial edge drawings (PEDs) are straight-line graph drawings in which
the middle part of each edge is erased. Using the closure principle of Gestalt
theory, humans may still see the link between two vertices even if some part of
it is missing. This can strongly reduce the number of crossings shown in the
layout. The literature provides several results on such PEDs, e.g., graphs that
admit or do not admit a PED, as well as algorithms for optimizing the remaining
edge stubs.

Angular Resolution — Around Vertices and Crossings
Yoshio Okamoto, UEC, Japan

Angular resolution is one of the traditional criteria for aesthetic graph drawing.
While the classical work was only concerned with vertex angular resolution, which is
defined as the minimum angle formed by two edges incident to a vertex, more recent
work has started to look at crossing angular resolution, which is defined as the mini-
mum angle formed by two crossing edges. The total angular resolution is then defined
as the minimum of the vertex angular resolution and the crossing angular resolution.

In this talk, we look at traditional and recent results on angular resolutions, and
identify some open problems that relate other well-known concepts in graph drawing.

Testing Fan-planarity and Maximal Outer-fan-planarity
Luca Grilli, University of Perugia, Italy

A fan-planar drawing is a simple drawing that can be formally defined in terms of
two forbidden crossing patterns: (i) an edge crossed by two independent edges, and (ii)
an edge e crossed by two incident edges having their common endpoint on different
sides of e [17]. A fan-planar graph is a graph that admits a fan-planar drawing.

An outer-fan-planar graph is a graph that admits an outer-fan-planar drawing,
which is a fan-planar drawing with all vertices along the external boundary. A maximal
outer-fan-planar graph is an outer-fan-planar graph such that the addition of any edge
destroys its outer-fan-planarity.

A 2-layer fan-planar graph is a graph that admits a 2-layer fan-planar drawing,
i.e. a fan-planar drawing where vertices are placed on two distinct horizontal lines and
edges are vertically monotone lines.

In this talk, we discuss the main results concerning fan-planar graphs.

• Density: Kaufmann and Ueckerdt [17] proved that every n-vertex fan-planar
graph, without loops and multiple edges, has at most 5n − 10 edges, which is a
tight bound for n ≥ 20. Binucci et al. [2] showed that n-vertex outer-fan-planar
graphs have at most 3n− 5 edges, and that this bound is tight for n ≥ 5.

• Hardness of fan-planarity: Binucci et al. [2] have shown that testing fan-
planarity in the variable embedding setting is NP-complete; the NP-hardness fol-
lows by a reduction from the 1-planarity testing problem, which is NP-complete
in the variable embedding setting [12, 18]. We show that testing fan-planarity
remains NP-complete even in the fixed rotation system setting [1], using a re-
duction from the 3-partition problem.
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• Testing maximal outer-fan-planarity: We present a linear-time algorithm to
test whether a given graph G is maximal outer-fan-planar [1]. In the affirmative
case, the algorithm provides an outer-fan-planar embedding of G. We first con-
sider the 3-connected case and give a linear-time testing algorithm that is able
to produce all the outer-fan-planar embeddings, in case of a positive answer; the
number of outer-fan-planar embeddings is at most twelve. Finally, we obtain a
linear-time testing algorithm for 2-connected graphs, using the decomposition
of the input graph into its 3-connected components, called an SPQR-tree data
structure.

Testing Outer-1-planarity and Full Outer-2-planarity
Seok-Hee Hong, University of Sydney, Australia

A graph is 1-planar if it can be embedded in the plane with at most one crossing per
edge. It is known that the problem of testing 1-planarity of a graph is NP-complete [12,
18].

A graph is outer-k-planar for an integer k ≥ 0, if it admits an outer-k-planar
embedding, that is, every vertex is on the outer face and no edge has more than k
crossings. A graph is full-outer-k-planar, if it admits a full-outer-k-planar embedding,
that is, an outer-k-planar embedding such that no crossing appears along the outer face.

In this talk, we first present a linear time algorithm to test whether a given graph is
outer-1-planar [13]. The algorithm can be used to produce an outer-1-planar embed-
ding in linear time if it exists.

Next, we present linear-time algorithms for testing full-outer-2-planarity of a graph
G, where G is connected, biconnected or triconnected [15]. The algorithm also pro-
duces a full-outer-2-planar embedding of a graph, if it exists. In particular, we prove
several structural properties of triconnected outer-2-planar graphs and full-outer-2-
planar graphs, and show that every triconnected full-outer-2-planar graph has a con-
stant number of full-outer-2-planar embeddings.

4 Working Group 1: Confluent Thickness
Confluent drawings [4] are an unconventional drawing style to draw non-planar graphs
in a planar way. They consist of a set of graph vertices (represented as points) and a
set of junctions, connected by a crossing-free set of smooth curves. In each junction
two bundles of curves enter a single point from opposite sides, such that they share a
common tangent in the junction point. Now two vertices u and v are connected by an
edge in the underlying graph if and only if there is a locally monotone path (a smooth
path without sharp bends) from u to v via a sequence of junctions. One can imagine
the layout as a set of train tracks and two vertices are connected by an edge if and only
if a train can drive from one to the other without changing its travel direction. In such
a layout, each junction realizes all pairwise links between the two incident bundles
without showing any explicit crossings, see Fig. 1 for an example.

Several results are known on confluent drawings, e.g. [4, 9, 8, 10, 16]. For some
graph classes it is known that they admit a confluent drawing, e.g., interval graphs,
complements of trees, or cographs. On the other hand, there are graphs that do not have
a confluent drawing, e.g., the Petersen graph, the 4D hypercube, or certain subdivisions
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Figure 1: A confluent drawing of K4,3.

of non-planar graphs. The complexity of deciding whether a graph admits a confluent
drawing is open.

The thickness of a graph G is the minimum number k such that G can be decom-
posed into k planar subgraphs whose union is G. If each of these subgraphs is colored
in a distinct color, G can be drawn with colored edges such that no two edges of the
same color cross.

Our goal in the working group was to study confluent drawings of confluent thick-
ness 2, i.e., the arcs of a confluent drawing are colored red and blue such that each
monochromatic sub-layout is a planar confluent drawing, but arcs of different color
may cross. We call such a drawing 2-confluent. We may optionally allow some arcs to
have both colors. Obviously, these definitions may be generalized to confluent thick-
ness k > 2.

During our working group sessions in Shonan, we obtained the following results
and observations:

4.1 Bipartite layouts on parallel lines
A common way to draw bipartite graphs is to put the two partitions of vertices on
two vertical lines with all edges inside the strip between the lines. In this way a full
bipartite graph can be drawn using confluence by merging all edges from either side
into a single edge (recall Fig. 1). We found a family of graphs that can be drawn in this
manner using two colors. This family is the bipartite complement of a set of disjoint
bipartite cliques. Such a graph can be drawn as in Figure 2 (right). Intuitively, there are
bridges that connect from the left to the right. These bridges are positioned between the
cliques of the complementary graph. Each left-side part of a clique connects to bridges
above it in red and to bridges below it in blue. Each right-side part of a clique connects
to bridges above it in blue and bridges below it in red. As a consequence from a vertex
one can reach all other vertices in red or blue except those from the same clique as this
would require going up and down from a bridge in two different colors (black lines are
both red and blue).

However, we could construct a bipartite graph that does not have bipartite layout
on parallel lines. In particular a set of five complete bipartite graphs that have a unique
edge in common does not have such a representation. The proof is based on the fact that
the edge shared by the cliques has to be represented with at least five smooth curves, so
called branches, as in Figure 3. At least three of the five branches have the same color,
say red. The red cliques that lie either above or below the shared edge need to connect
to the branches. They can not connect to them without creating a red-red crossing.

4.2 Mycielski construction
We also studied whether an embedded quasi-planar graph, i.e., a graph that can be rep-
resented in the plane without three mutually crossing edges, can be drawn confluently
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Figure 2: A confluent drawing of a set of disjoint bipartite cliques (left) and its com-
plement drawn confluent with two colors.

Figure 3: (Left) an edge shared by five cliques have to be represented by five branches;
(Right) three cliques connecting to three red branches create red-red crossing.

using a constant number of colors. We showed that there exists no constant c such
that every graph of this family is c-confluent. We did this by considering the iterated
Mycielskian graphs, a family of recursively defined graphs with the property that the
Mycielskian graph Mi requires i colors for a valid vertex coloring. Since these graphs
are triangle-free, we can use them as the dual of our quasi-planar graphs, where every
edge of Mi corresponds to a line segment (edge between two vertices) in the quasi-
planar graph and two edges of the quasi-planar graph intersect each other when their
corresponding vertices in Mi share an edge. We showed how to construct the primal
graph of Mi, starting from the primal graph of Mi−1. Finally, since the family of My-
cielskian graphs is infinite, we showed that the primal graph of Mi requires i colors
and since no vertices in the primal graph share an edge, confluency does not change
this.

4.3 Computational hardness
We consider the following problem, where we require that the given embedding must
be preserved:

Input: A graph G and its embedding.

Question: Find the minimum number k such that G and its embedding have a k-
confluent drawing.
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We show that this problem is NP-hard by reducing from the vertex coloring prob-
lem. The vertex coloring problem is known to be NP-hard even for planar graphs. Let
a planar graph G′ be an instance of the vertex coloring problem. To construct G, we
replace each vertex in G′ by an curve (here, drawn as a polyline). Then we give an
embedding such that each pair of edges in G share a bundle if and only if the corre-
sponding vertices in G′ are adjacent (see Figure 4, where the black boxes indicate a
double crossing of the curves). By construction, such a pair of edges must have differ-
ent colors. Trivially, there exists a k-coloring for G′ if and only if G and its embedding
have a k-confluent drawing. Note that, the fact G′ is planar implies that always there
exists such an embedding.

Figure 4: Reducing from the vertex coloring problem.

We do not yet know if a graph with confluent thickness larger than two exists (as-
suming no fixed embedding is required). We believe there should exist one, but so far
we have failed to find an example. This is one of the main problems left for the future.

5 Working Group 2: k-Blip Graphs

5.1 Asymmetric crossing numbers
A crossing between two edges in drawing of a graph is a symmetric relation, and one
typically seek a drawing that minimizes the number of crossings. On day one of the
workshop, Martin Nöllenburg surveyed optimization results by Eppstein et al. [11]
on the so-called cased drawings, which order the edges of a crossing and interrupts
the lower edge in an appropriate neighborhood of the crossing, in order to improve
readability. Eppstein et al. [11] solved several optimization problems for such antisym-
metric crossings, however, they did not consider the properties near planarity. Recall
that a drawing of a graph is called k-plane if every edge crosses at most k other edges;
and a graph is called k-planar if it admits a k-plane drawing.

The following definition, suggested at the Open Problem session of the workshop,
combines cased drawings and k-planarity. Let k ∈ N.

• A drawing of a graph is called a k-blip drawing if each edge crossing can be
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assigned to one of the two crossing edges such that no more than k crossings are
assigned to each edge in E.

• A graph is called a k-blip graph if it admits a k-blip drawing.

One of the research groups at the workshop explored the properties of k-blip graphs.
The following three sections summarize the results obtained in Shonan or shortly after
the workshop.

5.2 Basic properties
Using Hall’s theorem on bipartite matchings, we have shown that every (2k)-planar
graph is k-blip. However, the converse is false. Furthermore, for every k ∈ N, we
have constructed a graph Gk that is k-blip but not 1-planar. If every edge crosses at
most 2k others, then the crossings can be distributed among the edges to minimize the
maximum load on an edge.

Further, a k-blip graph admits a drawing in which there are at most |E′| crossing
between any subset of E′ ⊆ E of edges. This implies a relation with quasi-planarity.
Recall that a graph G is q-quasiplanar, for q ∈ N, if it admits a drawing in which
there is no subset of q pairwise crossing edges, hence no more than

(
q
2

)
= q(q −

1)/2 crossings. In a k-blip drawing, there are at most kq crossings among q edges.
Consequently, a k-blip graph is (2k + 1)-quasiplanar.

(2k)-PLANAR ⊂ k-BLIP ⊂ (2k + 1)-QUASIPLANAR

5.3 Density
Every k-blip graph G = (V,E) admits a drawing with at most k|E| crossings (by
double counting the number of crossing-edge assignments). This already implies that
k-blip graphs are sparse for any constant k. A k-blip n-vertex graph has at most O(

√
k ·

n) edges. Indeed, the crossing number of a graph G with n vertices and m edges is
bounded by cr(G) ≥ 1024

31827 ·m3/n2 when m ≥ 103
6 n [19]. Combined with the bound

cr(G) ≤ km, we obtain

1024

31827
· m

3

n2
≤ cr(G) ≤ km =⇒ m ≤ max(5.58

√
k, 17.17) · n.

We have tried to improve the upper bounds for small values of k, in particular for
k = 1. Pach et al. [19] proved that a graph G with n ≥ 3 vertices satisfies cr(G) ≥
7
3m− 25

3 (n− 2). Combined with the bound cr(G) ≤ km, we have

m ≤ 25(n− 2)

7− 3k
.

For k = 1, this gives m ≤ 6.25n − 0.5 for k = 1. This is the current best bound for
the density of 1-blip graphs.

We believe that these upper bounds can be improved. As noted above, every 2-
planar graph is 1-blip. A 2-planar n-vertex graph has at most 5n = 10 edges, and this
bound is the best possible [20]. Even though the class of 1-blip graphs contains all
2-planar graphs, we have not found any 1-blip graph with more than 5n − 10 edges.
Nevertheless, we have found several constructions for 1-blip n-vertex graphs with 5n−
Θ(1) edges; see Figure 5.
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(a) (b) (c) (d)

Figure 5: Four patterns that produce for 1-blip graphs with n vertices and 5n − Θ(1)
edges.

A 2-planar graph with n vertices 5n− 10 edges is also 1-blip. Pach and Tóth [20]
construct such a graph by starting with a plane graph with pentagonal faces (e.g., using
nested copes of an icosahedron), and then add all five diagonals in each pentagonal
face; see Fig. 5(a). We can modify this construction by inserting new vertex in any
pentagon, and connect it to the 5 vertices of the pentagon; Fig. 5(b). Every new edge
crosses exactly one diagonal of the pentagon, so the new crossings can be charged to
the new edges. Since the new vertices have degree 5, the bound m ≤ 5n− 10 prevails.

A similar construction is based on hexagonal faces; see Fig. 5(c). Start with a
fullerene, a 3-regular, plane graph G0 with n0 vertices, 12 pentagon faces, and n0/2−
10 hexagon faces (including the external face). Add diagonals in each face to connect
a vertex to their 2nd neighbors (the graph is 2-planar so far); finally insert a new vertex
in each face of G0, and connect them to all vertices of that face. We obtain a 1-blip
graph G. The number of vertices is n = n0 + 12 + (n0/2 − 10) = 3

2n0 + 2, and the
number of edges is 3

2n0 + 10 · 12 + 12 · (n0/2− 10) = 15
2 n0 = 5n− 10.

A third construction, is based on a sequence of nested squares; Fig. 5(d) shows
how to add 16 edges between two consecutive squares such that the 16 crossings are
assigned to distinct edges. We can add two diagonals in the external face and the
innermost square. Using s squares, we have n = 4s, and m = 4s+16(s−1)+2 ·2 =
20s− 12 = 5n− 12.

5.4 Recognition
If we are given a drawing of a graph, the crossings can be efficiently distributed among
the edges to minimize the maximum load on an edge, as noted by Eppstein et al. [11].
This is due to the fact that directing the edges of the crossing graph of Γ such that
the maximum indegree is minimized, can be solved in time quadratic in the number of
edges of the crossing graph [22].

If no drawing is given, we face the recognition problem for 1-blip graphs: Given
graph G = (V,E), decide whether G is a 1-blip graph. We conjecture that the problem
is NP-hard, perhaps by a reduction from 1-planarity, which is known to be NP-hard [12,
18]. The key tool for a possible reduction would be a “blocker gadget,” which is a 1-
blip graph that has only one 1-blip drawing (up to isometries). We have considered
complete graphs and complete bipartite graphs.

A complete graph on n vertices, Kn, is 1-blip if and only if n ≤ 8. Figure 6 shows
a 1-blip drawing of K8. The crossing number of Kn, for n ≥ 10, is larger than the
number of edges

(
n
2

)
, and so it is not 1-blip. For n = 9, we have cr(K9) = 36 and

K9 has
(
9
2

)
= 36. Consequently, in any 1-blip drawing of K9 must have rmcr(K9)

edge crossings and every edge is charged for precisely one crossing. A short argument
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shows, however, that no such drawing exists, consequently K9 is not a 1-blip graph.

Figure 6: A 1-blip drawing of K8.
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