
ISSN 2186-7437

NII Shonan Meeting Report

No. 2016-3

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Mining & Modeling Unstructured Data
in Software‐Challenges for the Future

Sonia Haiduc
Takashi Kobayashi

Michele Lanza
Andrian Marcus

March 7–10, 2016



Mining & Modeling Unstructured Data in
Software – Challenges for the Future

Organizers:
Sonia Haiduc (Florida State University)

Takashi Kobayashi (Tokyo Institute of Technology)
Michele Lanza (University of Lugano)

Andrian Marcus (The University of Texas at Dallas)

March 7–10, 2016

To analyze, comprehend, and reverse engineer software projects and their software
development processes, developers rely on various sources of information. Bug re-
ports, execution logs, mailing lists, code review reports, change logs, requirements
documents, and the actual source code contain implicit developer knowledge about the
project and past development efforts. Most of this knowledge is captured as unstruc-
tured information, that is, natural language text used to exchange information among
people.

Researchers in the Information Retrieval (IR), Data Mining (DM), and Natural Lan-
guage Processing (NLP) fields have experimented with various techniques (such as,
Latent Dirichlet Allocation and Vector Space Model) and ad‐hoc approaches to en-
able the mining of unstructured data from software artifacts. However, these techniques
were not designed to work with the complexities and peculiarities of unstructured soft-
ware engineering data, and thus are not readily applicable to the software engineering
research domain.

The challenges for both researchers and practitioners are to determine the appropri-
ate set of techniques to tackle the problem at hand and to understand how to use them
effectively.

The goal of this Shonan meeting is to facilitate the cross-fertilization of three di-
verse research communities, namely the one on mining software repositories, the one
on mining unstructured data, and the one on software summarization. We believe that
at the intersection of these three research fields lies a vast and still underexplored re-
search territory, which can only be investigated if approaches developed by the three
communities and merged in a synergetic way. Given the wide range of expertise needed
in the research on mining unstructured data from software artifacts, collaborations are
often necessary.

The meeting aims to tackle these challenges and make mining unstructured data
clear, accessible, and applicable to the software engineering domain. We achieved this
via three paths:

• First, we invited peers to give a written description of their experiences with
mining unstructured data, by sharing the techniques they used, the challenges
they faced, and the solutions that they found successful.

1



• Second, we encouraged discussion and dissemination of the presented work in
following extended group discussion sessions.

• Third, we organized a group discussion in the form of a panel, according to
the“ fishbowl”technique, to identify and discuss topics that are most relevant
to the meeting participants. By collecting available techniques, solutions, and
challenges yet to be overcome, we aim to advance the state-of-the-art in mining
unstructured software engineering data.

The meeting aims to address the following topics:

• Applications of unstructured data mining techniques to support software main-
tenance, software reverse engineering tasks (e.g., feature location, traceability),
and for enhancing software quality;

• Novel sources of unstructured data, such as mobile app stores, phone records,
screenshots, interviews, or wiki pages;

• Usage of NLP, IR, and ML techniques for mining unstructured data;

• Classification and dissemination of techniques for extracting unstructured data;

• Identification of open research challenges and proposed solutions;

• Approaches for handling imperfect data, such as summarization approaches;

• Novel extractors for unstructured data and performance evaluation with respect
to existing techniques;

• Linking of unstructured and structured data for richer information;

• Negative results (“ what did not work”) when mining unstructured data, and
experience reports;

• Large-Scale mining of Unstructured Data in Big Data environments;

We aim to facilitate in-depth discussions of techniques for mining unstructured
data, their similarities and differences, applications in modern Data Mining, as well as
potential pitfalls and problems.

2



Overview of Talks

Island Parsing (Tutorial)

Luca Ponzanelli and Andrea Mocci (University of Lugano, Switzerland)

Artifacts containing natural language, like Q&A websites (e.g., Stack Overflow),
tutorials, and development emails, are essential to support software development, and
they have become a popular subject for software engineering research. The analysis of
such artifacts is particularly challenging because of their heterogeneity: these resources
consist of natural language interleaved with fragments of multiple programming and
markup languages. In this tutorial, I will focus on our efforts towards a systematic ap-
proach to model contents of such artifacts, enabling holistic analyses that fully exploit
their intrinsic heterogeneous nature. In particular, I will illustrate our StORMeD frame-
work (http://stormed.inf.usi.ch), and how its parsing service can be effectively used to
implement a holistic summarizer for Stack Overflow discussions, that takes into ac-
count both the narrative and the structured fragments extracted and modeled from the
contents.

srcML for MUD (Tutorial)

Jonathan Maletic (Kent State University, USA)

The tutorial is intended for those interested in constructing custom software analy-
sis and manipulation tools to support research. srcML (srcML.org) is an infrastructure
consisting of an XML representation for C/C++/C#/Java source code along with effi-
cient parsing technology to convert source code to-and-from the srcML format. The
briefing describes srcML, the toolkit, and the application of XPath and XSLT to query
and modify source code. Additionally, a hands-on tutorial of how to use srcML and
XML tools to construct custom analysis and manipulation tools will be conducted.

Finding the Meaning of Life in API Documentation

Martin Robillard (McGill University, Canada)

Learning resources are crucial for helping developers learn to use software develop-
ment technologies. However, the gap between the information needs of developer and
externalized knowledge to meet these needs shows no sign of closing. I will discuss
the problem of automatically finding information that explains a certain technology,
and discuss how far we got with a technique to find information that explains how to
use API types.

Using NLP to Identify Meaningful Sentences in Informal Documen-
tation

Christoph Treude (University of Adelaide, Australia)

Sentences on Stack Overflow or other informal documentation sites are often not
meaningful on their own without their surrounding code snippets or the question that
prompted a given answer. Based on a study to identify sentences from Stack Overflow

3



that are related to a particular API type and that provide insight not contained in the
API documentation of that type, we discuss a set of NLP features that can help identify
sentences that are meaningful on their own, including co-occurring part-of-speech tags
and the presence of the verb“ to be”.

Towards Trace-Any: Interactive and Transitive Recovery of Trace-
ability Links

Hironori Washizaki (Waseda University, Japan)

Recovering missing important links from software is the key to success of its main-
tenance such as specifying locations that need correction. Towards tracing any software
material at any abstraction level, this talk discusses two techniques for recovering trace-
ability links: log-based interactive recovery involving link recommendation and user
feedback, and, transitive recovery by connecting different links.

Is code behaving as expected? Extracting expected behavior from
natural language artefacts

Alessandra Gorla (IMEDEA, Spain)

Natural language artefacts often encode important information regarding the ex-
pected behavior of code artefacts. Analyzing natural language artefacts to extract such
information and using it to check whether it matches the actual behavior of code arte-
facts can highlight the presence of faults or covert behavior. In this talk I will present
three ideas along this line. The first one is about using Android app descriptions and
comparing them against implementations to identify covert – and often malicious –
behaviour. The second one has the same goals, but uses the text of UI element labels
instead of app descriptions. Finally, the third one is about analyzing Javadoc comments
to automatically generate test oracles to highlight faults in Java methods.

Generating Tests for Android Apps from Natural Language Bug Re-
ports and App Reviews

Alex Orso (Georgia Institute of Technology, USA)

As confirmed by a recent survey conducted among developers of the Apache,
Eclipse, and Mozilla projects, two extremely challenging tasks during maintenance are
reproducing and debugging field failures – failures that occur on user machines after
release. Unfortunately, the information provided by users in bug reports or, even worse,
app reviews is in most cases too limited to allow for reproducing, further investigating,
and ultimately understanding a failure. To help developers with these tasks, we plan to
leverage program analysis and NLP techniques to (1) infer a set of step that can lead
to a failure from a natural language bug report or app review, (2) match these steps to
graphical elements of the app, source code elements, or both, and (3) synthesize test
cases that mimic the reported field failure and can be used to debug it. Because this
project is in its very initial phase, the main goal of this talk is to introduce the project’s
motivation and goals, present some very preliminary results, and discuss the next steps
of the work.

4



Extracting the Essence of Software Systems’Architectures through
Unstructured-Data Mining

Nenad Medvidovic (University of Southern California, USA)

Engineers frequently neglect to carefully consider the impact of their changes to a
software system. As a result, the software system’s architecture eventually deviates
from the original designers’intent and degrades through unplanned introduction of
new and/or invalidation of existing design decisions. Architectural decay increases
the cost of making subsequent modifications and decreases a system’s dependability,
until engineers are no longer able to effectively evolve the system. At that point, the
system’s actual architecture must be recovered from the implementation artifacts.
However, this is a time-consuming and error-prone process, and leaves critical issues
unresolved: the problems caused by architectural decay will likely be obfuscated by
the system’s many elements and their interrelationships – the epitome of unstructured
data- thus risking further decay. In this talk I will focus on pinpointing the locations
in a software system’s architecture that reflect architectural decay, the points in time
when that decay tends to occur, and the reasons why that decay occurs. Specifically,
I will present an emerging catalogue of commonly occurring symptoms of decay –
architectural“ smells”. I will illustrate the occurrence of smells identified in the
process of recovering the architectures of a large number of real-world systems. I
will also highlight the relationship between architectural smells and the much better
understood code smells. Finally, I will touch upon several undesirable but common
occurrences during the evolution of existing systems that directly contribute to decay.
I will conclude by identifying a number of simple steps that engineers can undertake to
stem software system decay.

Interactive Code and Knowledge Search Supported by Text Analysis

Xin Peng (Fudan University, China)

Open-source code repositories and question-and-answer websites provide a huge
amount of useful code and development knowledge. However, developers often feel it
hard to find required code and answers by using keyword-based search. To improve the
current practice, we think it is beneficial to provide more advanced code and knowledge
search support that can better capture both the intent of developers’search requests
and the meaning of code fragments and questions. In this talk, I will introduce our past
and ongoing works on interactive code and development knowledge search supported
by text analysis.

Quality of Source Code Lexicon

Venera Arnaoudova (Washington State University, USA)

It has been well documented that a large portion of the cost of any software lies in
the time spent by developers in understanding a program’s source code before main-
tenance, repairs, or updates can be undertaken. To understand software, developers
spend a considerable amount of time reading the source code lexicon, i.e., the identi-
fiers (names of programming entities such as classes or variables) and comments that

5



are used by developers to embed domain concepts and to communicate with their team-
mates. In this talk we will review existing metrics for lexicon quality and how lexicon
quality has been related to program understanding and to software quality.

Part-Of-Speech Tagging of Source Code Identifiers and Comments

Jonathan Maletic (Kent State University, USA)

An approach for using heuristics and static program analysis information to markup
part-of-speech for program identifiers is presented. It does not use a natural language
part-of-speech tagger for identifiers within the code. A set of heuristics is defined akin
to natural language usage of identifiers usage in code. Additionally, method stereo-
type information, which is automatically derived, is used in the tagging process. The
approach is built using the srcML infrastructure and adds part-of-speech information
directly into the srcML markup.

Mining Fine-Grained Code Changes to Resolve Merge Conflicts

Katsuhisa Maruyama (Ritsumeikan University, Japan)

I believe that fine-grained code changes behind merge conflicts are useful for re-
solving those conflicts. My talk presents an idea for supporting such resolution using
a tool that both records fine-grained code changes of Java source code and extracts a
particular part of them.

Mining IDE Interaction Data

Roberto Minelli (University of Lugano, Switzerland)

Developers continuously interact with Integrated Development Environments (IDEs)
while working. These interactions carry a lot of actionable information. For example,
researchers recorded the navigation paths followed by developers, and used this infor-
mation to support source code exploration. However, most of the potential of interac-
tion data is largely unexplored and unused. In our research we developed DFlow, an
IDE interaction profiler. We collected over 700 hours of development time recorded
with DFlow. In this talk we will illustrate how to interpret and mine this novel and
complex source of information. We will understand how developers spend their time
inside the IDE, how they navigate source code, and how the user interface of an IDE
might impact on their productivity. At the end of our talk, we will also illustrate our
vision: Interaction-Aware IDEs, IDEs that improve programmers’productivity by
leveraging all the fine-grained IDE interactions.

Linking between Unstructured Software Artifacts with Structural
Flavor

Shinpei Hayashi (Tokyo Institute of Technology, Japan)

Linking different types of software artifacts, e.g., requirements-to-code, requirements-
to-rationale, or code-to-code, is a key technique in software engineering, and the textual

6



information of them are utilized for matching the artifacts. Since typical software ar-
tifacts also have behavioral and/or structural aspects even if they are based on natural
language descriptions, additional consideration of such aspects is useful for a better
matching. In this talk, I will show some example experiences of utilizing the (semi-
)structure of textual information of software artifacts for linking them.

List of Participants

• Venera Arnaoudova, Washington State University, USA

• Daniel German, University of Victoria, Canada

• Michael Godfrey, University of Waterloo, Canada

• Alessandra Gorla, IMDEA, Spain

• Sonia Haiduc, Florida State University, USA

• Shinpei Hayashi, Tokyo Institute of Technology, Japan

• Takashi Kobayashi, Tokyo Institute of Technology, Japan

• Nicholas Kraft, ABB Research, USA

• Michele Lanza, University of Lugano, Switzerland

• Jonathan Maletic, Kent State University, USA

• Andrian Marcus, University of Texas at Dallas, USA

• Katsuhisa Maruyama, Ritsumeikan University, Japan

• Collin McMillan, University of Notre Dame, USA

• Nenad Medvidovic, University of Southern California, USA

• Marija Mikic-Rakic, Google, USA

• Roberto Minelli, University of Lugano, Switzerland

• Andrea Mocci, University of Lugano, Switzerland

• Vincent Ng, University of Texas at Dallas, USA

• Masao Ohira, Wakayama University, Japan

• Alessandro Orso, Georgia Institute of Technology, USA

• Xin Peng, Fudan University, China

• Martin Pinzger, University of Klagenfurt, Austria

• Luca Ponzanelli, University of Lugano, Switzerland

• Martin Robillard, McGill University, Canada

• Christoph Treude, University of Adelaide, Australia

• Hironori Washizaki, Waseda University, Japan

• Thomas Zimmermann, Microsoft Research, USA

7



Meeting Schedule

Check-in Day: March 6(Sun)

• Welcome Banquet

Day1: March 7 (Mon)

• 09:00–10:30 - Introduction

• 10:30–11:00 - Coffee Break

• 11:00–12:30 - Tutorial 1 : “Island Parsing”

• 12:30–14:00 - Lunch

• 14:00–15:30 - Talks and Fishbowl conversation 1:Code inside the MUD

• 15:30–16:00 - Coffee Break

• 16:00–17:30 - Talks and Fishbowl conversation 2:MUD outside the Code

Day2: March 8 (Tue)

• Group Photo Shooting

• 09:00–10:30 - Talks and Fishbowl conversation 3:MUD inside the Code

• 10:30–11:00 - Coffee Break

• 11:00–12:30 - Tutorial 2 : “srcML for MUD”

• 12:30–14:00 - Lunch

• 14:00–15:30 - Talks and Fishbowl conversation 4:Other MUDdy stuff

• 15:30–17:30 - Walk and Talk – informal session during hiking –

Day3: March 9 (Wed)

• 09:00–10:30 - Breakout Sessions 1

• 10:30–11:00 - Coffee Break

• 11:00–12:30 - Breakout Sessions 2

• 12:30–14:00 - Lunch

• 14:00–22:00 - Excursion (Kamakura) & Dinner at Misaki-kan Hon-ten featuring
Maguro.

Day4: March 10 (Thu)

• 09:00–11:30 - Breakout summaries & + Wrap up

• 12:00–14:00 - Lunch

8


