
ISSN 2186-7437

NII Shonan Meeting Report

No. 2016-4

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Higher-order model checking

Naoki Kobayashi
Luke Ong

Igor Walukiewicz

March 14–17, 2016



Higher-order model checking

Organizers:
Naoki Kobayashi (Tokyo University)
Luke Ong (University of Oxford)

Igor Walukiewicz (CNRS, Bordeaux University)

March 14–17, 2016

Finite state model checking has been widely studied and successfully applied
to system verification. The main theme of this meeting, higher-order model
checking, is a generalization of finite state model checking, obtained by replac-
ing finite state models with more expressive models called recursion schemes.
Higher-order model checking (HOMC) has found applications in analysis of
object-oriented and concurrent programs with recursion and higher-order pro-
cedures.

Recursion schemes are a kind of simply-typed grammar for generating pos-
sibly infinite ranked trees. A recursion scheme is a finite system of equations,
defining a finite set of higher-order functions by mutual recursion. The order of
a recursion scheme is given by the highest type-theoretic order of the functions
defined by it. From a programming language perspective, recursion schemes
may be viewed as programs (i.e. closed, ground-type terms) of the simply-typed
lambda calculus with recursion, constructed from a set of uninterpreted function
symbols. Higher-order model checking is the model checking of trees generated
by recursion schemes. The higher-order model checking problem asks, given a
recursion scheme G and a correctness property φ, whether the tree generated by
G satisfies φ.

Topics of the workshop are:

• Extensions of HOMC: beyond simple types (e.g. untyped and recursively
typed recursion schemes, higher-type Böhm trees); beyond omega-regular
properties: finitary parity, omega-B, stack unboundedness, etc.

• Algorithms for HOMC: HorSatZDD, Preface, C-SHORe, etc.

• Higher-order grammars and pushdown automata: Context sensitivity of
unsafe Maslov languages and other open problems. Effective denota-
tional semantics and strategy-aware models for HOMC: Compositional
approaches to HOMC.

1



Overview of Talks

Concurrent Hyland-Ong Games

Pierre Clairambault, ENS Lyon

This talk will be an overview of recent work in collaboration with Simon
Castellan and Glynn Winskel on concurrent game semantics for higher-order
programming languages.

Game semantics are an important tool for the semantics and verification of
higher-order programs. They are central in Ong’s original decidability proof
for MSO on HORS, and recent developments by Tsukada and Ong on compo-
sitional HOMC. The close line of work of algorithmic game semantics exploits
effective representations of higher-order effectful programs provided by game
semantics to develop verification algorithms. Those rely on an important body
of prior work on games model for sequential higher-order languages. For mod-
eling concurrent programs though, the easiest choice is to represent them as
non-deterministic sequential strategies, wiring in the non-determinism of the
scheduler. This causes a combinatorial explosion problem and blurs the causal
structure of the program.

In recent work, we have developed a new framework based on event struc-
tures for the game semantics of higher-order concurrent languages that avoids
interleavings, and focuses on the causal structure of programs. In this talk I
will give an overview of our work. I will first give a high-level description of the
model, relying on examples from higher-order concurrent effectful languages
(e.g. Idealized Parallel Algol – IPA). Then I will describe two applications:
firstly, a causal version of Ghica and Murawski’s interleaving-based fully ab-
stract games model of IPA. Secondly, a new interpretation of the sequential
language PCF. Unlike the traditional one, the interpretation is parallel, and
displays independent branches of computation. However, just as the traditional
one, our model has a finite definability property and its extensional collapse is
fully abstract.

On the Proof Theory of Infinitary Proofs

Amina Doumane,Université Paris Diderot

Infinitary and circular proofs are commonly used in fixed point logics. Being
natural intermediate devices between semantics and traditional finitary proof
systems, they are commonly found in completeness arguments, automated de-
duction, verification, etc. However, their proof theory is surprisingly underde-
veloped. In particular, very little is known about the computational behavior
of such proofs through cut elimination. Taking such aspects into account has
unlocked rich developments at the intersection of proof theory and programming
language theory. One would hope that extending this to infinitary calculi would
lead, e.g., to a better understanding of recursion and corecursion in program-
ming languages. Structural proof theory is mostly based on two fundamental
properties of a proof system: cut elimination and focalization. The first one is
only known to hold for restricted (purely additive) infinitary calculi, thanks to
the work of Santocanale and Fortier; the second one has never been studied in

2



infinitary systems. In this work, we consider the infinitary proof system MALL
for multiplicative and additive linear logic extended with least and greatest fixed
points, and prove these two key results. We thus establish MALL as a satisfying
computational proof system in itself, rather than just an intermediate device in
the study of finitary proof systems.

Linear Dependent Types for Higher-order Model Checking

Marcon Gaboardi, University of Buffalo

Linear dependent types are a data-dependent generalization of bounded lin-
ear logic that have proved useful to reason about programs resource consump-
tion. They give a convenient abstraction of PCF programs behavior including
intensional and extensional information. We previously used them to describe
program complexity and to ensure differential privacy. In this talk we will de-
scribe how linear dependent types can be extended to reason about reachability
properties. Concretely we will provide an embedding of Kobayashi’s intersec-
tion type system for reachability in linear dependent types. This embedding
provides a different perspective on how to structure the typing information for
higher order model checking. The embedding gives also evidence of the rela-
tions between linear dependent types and indexed linear logic. Ultimately, our
goal is to provide a general way to describe different intensional and extensional
information as higher order model checking problems.

This is ongoing work, joint with Charles Grellois.

Semantics of Linear Logic and Higher-Order Model Check-
ing

Charles Grellois, University of Bologna

MSO properties can be checked over infinite trees using alternating parity
automata. Alternation enables the automaton to duplicate or erase subtrees
during its execution, a behavior strikingly similar to the one of the exponential
of linear logic. Following this observation, we proved with Mellis that models of
linear logic can be adapted in order to capture the higher-order model-checking
problem for properties expressed by an alternating automaton A without parity
condition: the interpretation of a higher-order recursion scheme G is the set of
states from which the infinite tree [[G]] it computes is accepted by A.

To extend this model-theoretic approach, we refined the coloring policy of the
Kobayashi-Ong type system and showed that it can be defined in a modal way.
This enables us to extend models of linear logic with a coloring comonad, and a
parity fixpoint operator, which interprets the recursion of higher-order recursion
schemes inductively or coinductively, depending on the coloring information
stored in the denotations of the model. We apply this extension to two models
of linear logic, and notably to the Scott model of linear logic, in which the
interpretation of a type is finite. This finiteness properties allows us to obtain
a semantic proof of the decidability of higher-order model-checking, but also a
decidability proof of the selection problem originally formulated by Carayol and
Serre.

3



Unboundedness and the Analysis of Higher-Order Programs

Matthew Hague, Royal Holloway University of London

Recently, it has been shown that the diagonal problem for higher-order re-
cursion schemes (HORS), and hence the simultaneous unboundedness problem,
is decidable. From recent work by Zetzsche this means that we can construct
the downward closure of the set of traces constructed by a given HORS. This
also means we can construct the downward closure of the Parikh image of a
HORS. In addition, the result also implies decidability of separability by piece-
wise testable languages, as well as the decidability of reachability of parame-
terised asynchronous networks of HORS.

Hence, we have a several new tools in the analysis of HORS. There are at
least two future challenges: how can we use these tools to further the analy-
sis of (concurrent) higher-order systems, and how can we put these tools into
practice?

Partial Evaluation and Normalisation by Traversals

Neil D. Jones, DIKU, University of Copenhagen

Game semantics re-examined: The game semantics for PCF can be thought
of as a PCF interpreter. In game semantics papers the denotation of an ex-
pression is a game strategy. When played, the game results in a traversal. A
recent paper by Ong normalises simply typed lambda-expression by generating
traversals.

A surprising consequence: it is possible to build a lambda calculus inter-
preter with none of the traditional implementation machinery: beta-reduction;
environments binding variables to values; and “closures” and “thunks” for func-
tion calls and parameters. (Interestingly, this was implicitly visible in early
work on full abstraction.)

It looks promising to study game semantics from a new angle: their oper-
ational aspects. We apply partial evaluation to translate lambda-expressions
into LLL, a low-level language. Further, this may give a new approach to an
old topic: semantics-directed compiler generation.

This is joint work with Danii Berezun, St. Petersburg State University.

Overview of Higher-Order Model Checking Project at Tokyo

Naoki Kobayashi, Tokyo University

This talk gives an overview of our project on higher-order model checking and
its applications to program verification and data compression. After recalling
the higher-order model checking problem and how it can be applied to program
verification, I will summarize the goal and current status of the project, and
demonstrate some of the tools we have developed so far. If time permits, I will
also provide a tutorial on type-based approach to higher-order model checking.

4



Higher-order Fixpoint Logic

Martin Lange, University of Kassel

Higher-Order Fixpoint Logic (HFL) is an extension of the modal mu-calculus
by higher-order features, syntactically represented using a simply typed lambda
calculus. Its formulas of order 0 form the modal mu-calculus and express prop-
erties of states in a transition system, i.e. predicates. Its formulas of order
1 express predicate transformers, i.e. mappings from predicates to predicates.
Monotone predicate transformers form a complete lattice over any transition sys-
tems, thus a denotational semantics for fixpoint formulas over predicate trans-
formers can be given. This principle easily extends to functions of higher order.
We will introduce the syntax and semantics of HFL and give some examples
of properties expressible in HFL (but not in the mu-calculus) thus trying to
give some intuition on how such formulas can be read and understood. We will
survey some results known about the expressive power and complexity of HFL,
most importantly that the model checking problem for the order-k fragment is
complete for k-EXPTIME.

Analyzing Time Complexity of Regular Expression Match-
ing Based on Backtracking

Yasuhiko Minamide, Tokyo Institute of Technology

We develop an analysis for a regular expression that precisely determines
the time complexity of its backtrack-based matching. More precisely, we decide
i of O(ni) for a regular expression with polynomial time complexity. A regular
expression is translated to a string-to-tree transducer with regular lookahead
whose output represents the computation tree of backtrack-based matching.
Then, we decide the order of the size increase of the transducer by extending
the result of Aho and Ullman1 for transducers without lookahead to those with
regular lookahead. We will also talk about our experimental results.

Contextual approximation and higher-order procedures

Andrzej Murawski, University of Warwick

We investigate the complexity of deciding contextual approximation (refine-
ment) in finitary Idealized Algol, a prototypical language combining higher-
order types with state. Earlier work in the area established the borderline
between decidable and undecidable cases, and focussed on the complexity of
deciding approximation between terms in normal form.

In contrast, in this paper we set out to quantify the impact of locally de-
clared higher-order procedures on the complexity of establishing contextual ap-
proximation in the decidable scenarios. We show that the obvious decision
procedure based on exhaustive beta-reduction can be beaten. Further, by clas-
sifying regexes by levels, we give tight bounds on the complexity of contextual

1A. V. Aho and J. D. Ullman: Translations on a context free grammar, Information and
Control, 19(5), 1971.

5



approximation for terms that may contain redexes up to level k, namely, (k-1)-
EXPSPACE-completeness.

Interestingly, the bound is obtained by selective beta-reduction: redexes
from level 3 onwards can be fired without losing optimality, whereas redexes
of level up to 2 are handled by a dedicated decision procedure based on game
semantics and a variant of pushdown automata.

This is joint work with Ranko Lazic.

Alternating Dependency Tree Automata, Higher-type Mu-
calculus and Type-checking Games

Luke Ong, University of Oxford

The equivalence of alternating parity tree automata, modal mu-calculus,
and parity games as definitional devices for tree languages is a keystone result
underpinning the model checking of reactive systems. We lift this 3-way equi-
expressivity result to languages of higher-type Bhm trees, which may be viewed
as higher-order functions over trees.

Joint work with Matthew Hague, Steven Ramsay and Takeshi Tsukada.

Models of Lambda-Calculus and Caucal Hierarchy for Weak
Logics

Pawe l Parys, University of Warsaw

We study weak logics in relationship to infinitary safe lambda-calculus, safe
higher order recursive schemes, and the Caucal hierarchy. In particular, we
study weak MSO logic extended by the unbounding quantifier (WMSO+U),
expressing the fact that there exist arbitrarily large finite sets satisfying a given
property. We prove two results for this logic. Firstly, we show that for every
formula of WMSO+U there exists a finitary model of inifinitary safe lambda-
calculus recognizing the set of infinitary lambda-terms which generate a tree
satisfying the given formula. Secondly, we show how this implies that the cor-
responding Caucal hierarchy, obtained by unravellings and interpretations via
WMSO+U, coincides with the standard Caucal hierarchy, obtained by unrav-
ellings and interpretations via MSO. In fact, the Caucal hierarchy remains the
same also when only the first-order logic is allowed in interpretations.

This is joint work with Szymon Toruczyk, ongoing work that we are finishing
and preparing for publication.

Higher-Order Horn Clauses and Higher-Order Model Check-
ing

Steven Ramsay, University of Oxford

A standard approach to showing that the tree generated by a given recursion
scheme satisfies a given property is to find an inductive invariant for the scheme
that implies the property. For example, in the intersection type approach to
higher-order model checking (HOMC), the goal is typically to construct a type

6



environment of a certain form, which then constitutes a symbolic representa-
tion of the invariant. In this work, we consider the problem of finding higher-
order inductive invariants in a purely logical setting, namely: the satisfiability
problem for (constrained) higher-order horn clauses. Viewed as a general for-
mulation of higher-order constraint solving, the problem has a much broader
appeal than recursion scheme model checking, yet we argue that much of the
technology already developed by the HOMC community can be made highly
effective at solving it. In particular, we describe an adaptation of Kobayashi’s
Hybrid Algorithm to the problem and highlight its similarities to McMillan’s
Lazy Annotation algorithm (as used in first-order horn clause solving).

Towards Finite-Dimensional Feature Types for Synthesis

Jakob Rehof, Technical University Dortmund

In the context of Combinatory Logic Synthesis we investigate the type in-
habitation problem as a logical foundation for component-oriented synthesis.
From a type-theoretic standpoint, we are led to investigating the complexity
and expressive power of fragments of type systems containing combinations of
schematic types and intersection types. In this talk we will describe an ongoing
effort to design finite-dimensional restrictions of the intersection type system
which can express logical feature vectors of interest in synthesis and schematic
program construction. Our search for such systems has led to a fine-grained
analysis of borderlines dividing undecidable and decidable fragments of the in-
tersection typed lambda calculus, and where finite-dimensional restrictions may
suggest new lines of division orthogonal to known principles of restriction such
as rank or order.

Denotations for Parity Automata

Sylvain Salvati, INRIA Bordeaux

In this talk, we will present a model of lambda Y-calculus that recognizes
the same languages as parity automata. In particular, we propose an explicit
representation of the interpretation of fixpoints.

Verifying Relational Properties of Functional Programs by
First-Order Refinement

Ryosuke Sato, University of Tokyo

Much progress has been made recently on fully automated verification of
higher-order functional programs, based on refinement types and higher-order
model checking. Most of those verification techniques are, however, based on
first-order refinement types, hence unable to verify certain properties of func-
tions (such as the equality of two recursive functions and the monotonicity of
a function, which we call relational properties). To relax this limitation, we
introduce a restricted form of higher-order refinement types where refinement
predicates can refer to functions, and formalize a systematic program trans-
formation to reduce type checking/inference for higher-order refinement types

7



to that for first-order refinement types, so that the latter can be automatically
solved by using an existing software model checker. We also prove the soundness
of the transformation, and report on implementation and experiments.

Temporal Verification of Higher-Order Functional Programs

Tachio Terauchi, School of Information Science, Japan Advanced Institute of
Science and Technology

We present an automated approach to verifying arbitrary omega-regular
properties of higher-order functional programs. Previous automated methods
proposed for this class of programs could only handle safety properties or termi-
nation, and our approach is the rst to be able to verify arbitrary omega-regular
liveness properties.

Our approach is automata-theoretic, and extends our recent work on binary-
reachability-based approach to automated termination verication of higher-order
functional programs to fair termination published in ESOP 2014. In that work,
we have shown that checking disjunctive well-foundedness of (the transitive
closure of) the calling relation is sound and complete for termination. The
extension to fair termination is tricky, however, because the straightforward
extension that checks disjunctive well-foundedness of the fair calling relation
turns out to be unsound, as we shall show in the paper. Roughly, our solution
is to check fairness on the transition relation instead of the calling relation, and
propagate the information to determine when it is necessary and sufcient to
check for disjunctive well-foundedness on the calling relation. We prove that
our approach is sound and complete. We have implemented a prototype of
our approach, and confirmed that it is able to automatically verify liveness
properties of some non-trivial higher-order programs.

Negations in Refinement Intersection Type Systems

Takeshi Tsukada, University of Tokyo

Refinement intersection type systems are a basic tool for higher-order model
checking that is important from theoretical and practical points of views. In
general, a derivation gives a witness of derivability whereas there is no simple
witness of underivability of a given judgement. In this talk, we study a type
system that proves underivability of a judgement.

Given a type τ that refines a simple-type A, its negation ¬τ is defined as the
type for terms that do not have type τ , that means, 6` t : τ if and only if ` t : ¬τ
(for every t of simple type A). So the derivability of ` t : ¬τ is equivalent to the
underivability of ` t : τ . We show that the negation is a definable connective
for certain intersection type systems. Hence, for such a system, the set of types
is closed under all Boolean operations as the class of regular languages.

Model-Checking Program Equivalence in Interface Mid-
dleweight Java

Nikos Tzevelekos, Queen Mary University of London

Using game semantics, we investigate the problem of verifying contextual

8



equivalences in Interface Middleweight Java (IMJ), an imperative object calculus
in which program phrases are typed using interfaces. In particular, we show
how to determine the decidability status of problem instances (over a fixed type
signature) by examining the position of methods inside the term type and the
types of its free identifiers. Our results build upon the recent fully abstract game
semantics of IMJ. Decidability is proved by translation into visibly pushdown
register automata over infinite alphabets with fresh-input recognition, and the
procedure has been implemented into a new tool called Coneqct.

Relational Verification of Functional Programs via Induction-
based Horn Constraint Solving

Hiroshi Unno, University of Tsukuba

This talk presents an automated method for verification of higher-order func-
tional programs. The main advantage of the proposed method is that it can ver-
ify relational specifications (e.g., the equivalence, associativity, commutativity,
distributivity, monotonicity, idempotency, and non-interference) where multiple
function calls need to be analyzed simultaneously. As in previous work, our
method reduces verification problems into constraint solving problems of Horn
clauses with unknown predicate variables. To enable relational verification, we
propose a novel Horn constraint solving method based on inductive theorem
proving: the method reduces Horn constraint solving to validity checking of
first-order formulas with inductively-defined predicates, which are then checked
by induction on the derivation of the predicates. We here use an SMT solver
to automate inductive proofs. The use of Horn clauses, which have recently
been considered as a common intermediate language for verification, enables
our method to be applied to relational verification across programs in various
paradigms such as imperative, logic, concurrent, as well as functional ones.
Furthermore, our novel combination of Horn constraint solving and inductive
theorem proving extends the reach of induction-based verification from pure
total functions to impure partial procedures in various paradigms. We have
implemented a relational verification tool for the OCaml functional language
based on the proposed method and obtained promising results in preliminary
experiments.

The Diagonal Problem for Higher-Order Recursion Schemes
is Decidable

Igor Walukiewicz, CNRS, Bordeaux University

A non-deterministic recursion scheme recognizes a language of finite trees.
This very expressive model can simulate, among oth- ers, higher-order pushdown
automata with collapse. We show the decidability of the diagonal problem for
schemes. This result has several interesting consequences. In particular, it gives
an algorithm to compute the downward closure of languages of words recognized
by schemes. In turn, this has immediate application to separability problems
and reachability analysis of concurrent systems.

This is joint work with Lorenzo Clemente, Warsaw University; Pawel Parys,
Warsaw University; and Sylvain Salvati, INRIA Bordeaux.

9



The Complexity of Downward Closure Comparisons

Georg Zetzsche, Universite Paris Diderot

The downward closure of a language is the set of all (not necessarily con-
tiguous) subwords of its members. It is well-known that the downward closure
of every language is regular. One advantage of abstracting a language by its
downward closure is that then, equivalence and inclusion become decidable.

It has recently been shown by Hague, Kochems, and Ong that downward
closures are computable for higher-order pushdown automata. However, the
current method yields no upper bound on the complexity of such a compu-
tation. This talk will present recent results on complexity issues surrounding
downward closures. Aside from general algorithms and possible approaches to
obtain upper bounds in the case of HOPA, we will discuss a lower bound result
for the abovementioned equivalence and inclusion problem for HOPA.

10



List of Participants

• Pierre Clairambault, CNRS & ENS Lyon, France

• Amina Doumane PPS, Universit Paris Diderot, France

• Charles Grellois, Universit Paris Diderot & University of Dundee France

• Marco Gaboardi, University of Dundee, UK

• Matthew Hague Royal Holloway, University of London, UK

• Atsushi Igarashi, Kyoto University, Japan

• Jennifer Jochems, University of Oxford, UK

• Neil Jones DIKU, University of Copenhagen, Denmark

• Naoki Kobayashi, The University of Tokyo, Japan

• Martin Lange, University of Kassel, Germany

• Martin Lester, University of Oxford, UK

• Rupak Majumdar, MPI-SWS, Germany

• Yasuhiko Minamide, Tokyo Institute of Technology, Japan

• Andrzej Murawski, University of Warwick, UK

• Luke Ong, University of Oxford, UK

• Pawel Parys, University of Warsaw, Poland

• Steven Ramsay, University of Oxford, UK

• Jakob Rehof, Dortmund Technical University, Germany

• Sylvain Salvati, INRIA, France

• Ryosuke Sato, University of Tokyo, Japan

• Techie Terauchi, JAIST, Japan

• Peter Thiemann, Universität Freiburg, Germany

• Takeshi Tsukada, The University of Tokyo, Japan

• Nikos Tzevelekos, Queen Mary University of London, UK

• Hiroshi Unno, University of Tsukuba, Japan

• Igor Walukiewicz CNRS, Bordeaux, France

• Georg Zetzsche, LSV Cachan, Germany

11



Meeting Schedule

Check-in Day: March 13 (Sun)

• Welcome Banquet

Day1: March 14 (Mon)

9:00 - 9:45 Luke Ong

9:45 - 10:30 Takeshi Tsukada

10:30 - 11:00 Tea break

11:00 - 11:45 Charles Grellois

11:45 - 14:00 Lunch break

14:00 - 14:45 Neil Jones

14:45 - 15:30 Pierre Clairambault

15:30 - 16:00 Tea break

16:00 - 16:45 Amina Doumane

16:45 - 17:10 Ryosuke Sato

17:10 - 17:35 Yasuhiko Minamide

Day2: March 15 (Tue)

9:00 - 9:45 Naoki Kobayashi

9:45 - 10:30 Steven Ramsay

10:30 - 11:00 Tea break

11:00 - 11:45 Tachio Terauchi

11:45 - 14:00 Lunch break

14:00 - 14:45 Jakob Rehof

14:45 - 15:30 Sylvain Salvati

15:30 - 16:00 Tea break

16:00 - 16:45 Hiroshi Unno

16:45 - 17:30 Martin Lange

Day3: March 16 (Wed)

9:00 - 9:45 Georg Zetzsche

9:45 - 10:30 Matthew Hague

12



10:30 - 11:00 Tea break

11:00 - 11:45 Igor Walukiewicz

11:45 - 13:30 Lunch break

14:00 - Excursion

Day4: March 17 (Thu)

9:00 - 9:45 Pawel Parys

9:45 - 10:30 Nikos Tzevelekos

10:30 - 11:00 Tea break

11:00 - 11:45 Marco Gaboardi

11:45 - 12:15 Andrzej Murawski

13


