
ISSN 2186-7437

NII Shonan Meeting Report

No. 2015-4

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Low level code analysis
and applications to computer security

Jean-Yves Marion, Akira Mori, Mizuhito Ogawa

March 2–5, 2015



Low level code analysis

and applications to computer security

Organizers:

Jean-Yves Marion Akira Mori Mizuhito Ogawa
(LORIA) (AIST) (JAIST)

March 2–5, 2015

Description of the meeting

Software security is one of the very major issues of modern societies, since
insecure systems can affect people (phishing, unauthorized payment, etc.), or-
ganizations (critical information leakage) and even states (cyber attacks). In
regard to software security, a crucial problem is to have methods and to devise
tools to analyze low level code for at least three reasons. First, low level codes
are usually the one that is effectively run on a computer system. Low level
code is usually obtained by a compilation chain where some parts of the chain
maybe insecure. As a result it is necessary to guarantee low level code correction
ensuring that programs run by the system cannot be attacked. Second, a lot
of applications are available on Internet as binary codes. Those binary codes
are quite obfuscated either to protect the intellectual property or because there
are malicious software (malware). Therefore, it is necessary to have tools to
analyze binary codes in order to detect malware and prevent an attack. It may
look surprising that such important issues are so poorly addressed by current
state-of-the-technology tools, while formal methods in general and automatic
program verification in particular have made tremendous progress in the past
decade, resulting in many impressive industrial applications, and demonstrat-
ing their strength both in bug finding and safety validation. There are two
key problems here. First, security needs are more difficult to characterize (in
terms amenable to automatic analysis) than safety needs. Security requirements
change depending on the social context, and malicious behavior is not easy to
define. For instance, malware often uses windows system calls for malicious
behavior, but standard programs also use such capability. To clarify, not only
theoretical observation form academia, but also empirical study in industry will
be required. Second, security analyses must often be performed at the level
of binary executables. Malicious behavior is often based on very fine low level
details, which are invisible on the source code (e.g. memory layout, exception
handling details, ambiguity in program semantics, bug in compilation), and mal-
ware are only available as executable files. This is a key difficulty, as most formal
methods have been designed for high-level models or languages, and they rely
on hypotheses that no longer hold at the executable code level. For instance,

1



even (static) disassembly is not possible for recent advanced polymorphic virus,
like self-decryption. Thus, model generation of binary executable is already a
challenging. The goal of the proposed meeting is to explore all aspects from
theory to practice of low level code analysis, including communication between
industry and academia. The main outcome of this meeting will be to trigger
new interactions and enrich the various approaches. For instance,

• Security threat in practice. e.g., vulnerability, overflow attacks on x86 /
Android.

• Malware and botnet.

• Static analysis of low level codes.

• Obfuscated programs, e.g., self-modifying code, packers, and obfuscation
techniques.

• Low level code semantics.

• Model generation. e.g., control flow graph reconstruction, disassembly.

• CEGAR (Counter example guided abstraction refinement) and loop in-
variant generation.

• Testing and virtual binary emulation, dynamic analysis.

• Backend reasoning tools. e.g., SMT (SAT modulo theory), Model checkers.

By interacting industry and academia, and among different areas in academia,
we will start to tackle the two key problems.

• Analyzing security needs. Learn concrete examples from industrial ex-
periences, and manual pattern analysis of malware behavior in malware
database. They would lead clear formal definitions of target properties.

• Binary executable analysis. Exchanging ideas of state-of-the-art research
on binary executable analysis, and look for collaboration opportunity.

2



Program

March 1st (Sun) Arrival

18:00-21:00 Reception

March 2nd (Mon)

9:45-10:00 Opening

10:00-10:45 (1) Arun Lakhotia (University of Louisiana at Lafayette), VirusBattle:
Automated Malware Analysis in the Large.

10:45-11:30 (2) Guillaume Bonfante (LORIA, Universite de Lorraine), On malwares
chat on the web.

13:30-14:15 (3) Jean-Yves Marion (LORIA, Universite de Lorraine) Disassembly of
X86 and related questions.

14:15-15:00 (4) Sebastien Bardin (CEA LIST), Binary-level analysis: from safety to
security

15:30-16:15 (5) Todd McDonald (University of South Alabama), Developing an exten-
sible deobfuscation framework.

March 3rd (Tue)

9:30-10:15 (6) Akira Mori (AIST), Methods for whole program analysis of binary
code.

10:15-11:00 (7) Quan Thanh Tho (VNU-HCMC, HCMUT), Our group in HCMUT
(Those who are working on malware)

11:00-11:45 (8) Nguyen Minh Hai (VNU-HCMC, HCMUT), Pushdown Model Gener-
ation for Malware Deobfuscation

13:30-14:15 (9) Sandrine Blazy (University of Rennes) Towards a formally verified
obfuscating compiler

14:15-15:00 (10) Julian Kranz (Technische Universitat Muchen), IR processing using
GDSL

15:30-16:15 (11) Frederic Besson (University of Rennes), Semantics for low level code
: From C to binary (and back)

16:15-17:00 (12) Tachio Terauchi (JAIST), Information Flow Analysis and Applica-
tions to Computer Security

3



March 4th (Wed)

9:30-10:30 (13) Thomas Dullien and Tim Kornau (Google), Analysis of binaries at
Google: The unreasonable success of nonsemantic methods

10:30-11:15 (14) Roberto Giacobazzi (University of Verona), Abstract symbolic au-
tomata: Mixed syntactic/semantic similarity analysis of executables

11:15-11:45 (15) Mizuhito Ogawa (JAIST), Constant propagation for Binary CFG
rebuilt

11:45-11:50 Closing

13:00-21:00 Excursion and Banquet

March 5th (Thu) Departure

Abstract

1. Arun Lakhotia (University of Louisiana at Lafayette), VirusBattle: Auto-
mated Malware Analysis in the Large.

While the growth in unique malware, as defined by their hashes, is grow-
ing exponentially, it is apparent that without similar growth in malware
authors the diversity must be machine generated. The large volume of
malware must then contain evidence that connects them. To extract the
information one needs an ability to analyze very large collection of mal-
ware. In the Software Research Lab, we have been exploring methods of
extracting information from malware by peeking through their obfusca-
tions. The research has led to the development of VirusBattle, a system
that automatically unpacks malware, performs semantic analysis of dis-
assembled malware to create semantic hashes, and builds a repository of
malware indexed using a variety of hashes. The system is highly scalable
and highly parallelizable. In a lab environment, with a cluster of three
VMs with shared 32 cores, the system can process over 1,000 malware
samples in an hour. The information extracted from malware can be used
to make a variety of queries. For instance, one can search for similar
malware in a collection, or search for similar procedures, or even similar
code blocks. The system also provides other finer level details that may
be useful for developing other analyses. VirusBattle is available as a free
web-service from api.virusbattle.com.

2. Guillaume Bonfante (LORIA, Universite de Lorraine), On malwares chat
on the web.

The fact that new malware appear every day demands a strong response
from anti-malware forces. One way to do it is to observe communications
between the malware and its Command and Control. Indeed, it is usually
a mandatory task of malware, and thus a weakness. We propose a new
approach based on dynamic analysis and finite state automata.

4



3. Jean-Yves Marion (LORIA, Universite de Lorraine) Disassembly of X86
and related questions.

This talk introduces brief overview of High-security lab at LORIA, and our
tool for x86 disassembly, intending malware. Our tool combines dynamic
trace analysis (based on Intel PIN) and static analysis at detected condi-
tional branches, and focuses on decomposing binary into waves, which is
effective to analyze packer behavior. Experimental results are also shown.

4. Sebastien Bardin (CEA LIST), Binary-level analysis: from safety to secu-
rity

We present some recent on-going work on the BINSEC platform, an open-
source platform developed within the BINSEC project (French research
project gathering CEA, INRIA, LORIA, University of Grenoble and Air-
bus Group) dedicated to binary-level security analysis. We focus the pre-
sentation on two points. First, while most semantic binary-level analyses
rely on a flat memory model, we reuse the ”low level region” semantics
developed by Besson, Blazy and Wilke for low level C programs. Ex-
perimental results show that the low level region semantics can indeed
represent many legitimate binary-level behaviours, while still providing a
clean region-based memory model. Second, we describe the simplification
mechanisms integrated into the platform in order to reduce the size of the
produced IR. Compared to other proposals, our simplifications are done at
the function-level (rather than block-level) and they are interprocedural
(yet efficient, through automatic function summarization). Experimental
results shows that our simplification stage does remove most of the com-
putations on flags and temporary variables introduced at the translation
stage, yielding a smaller and simpler IR to analyze.

5. Todd McDonald (University of South Alabama), Developing an extensible
deobfuscation framework.

Obfuscation tools, methods, and techniques for low and high level code are
well developed, finding implementations in both commercial products and
research/open source projects. Malware writers use these tools at their
disposal as well to frustrate analysis or detection of their software. Apart
from commercial or open source disassemblers and decompilers, deobfus-
cation tools tend to be more of an art than science in terms of maturity.
We consider the software engineering and pedagogic aspects of developing
a framework for obfuscated code analysis from the ground up, considering
not only the expertise and skills required of students with various levels of
reverse engineering background, but the technical complexities of creating
a framework that can be built, extended, and updated with new research
techniques while leveraging current results from the research community.

6. Akira Mori (AIST), Methods for whole program analysis of binary code.

We show our tool development for a whole binary code analysis on IA-32.
It consists of both static and dynamic analysis. We apply typical static
analyses based on SSA, and symbolic evaluation to decide the destinations
of indirect jumps. Static analyses are designed to be context sensitive, in
the sense 1-CFA (tagged copy). We also extend SSA to so-called fibered

5



SSA by adding hyper edges of projection functions. Some demos are also
shown.

7. Quan Thanh Tho (VNU-HCMC, HCMUT), Our group in HCMUT (Those
who are working on malware)

Among various approaches for binary analysis, BE-PUM (Binary Emula-
tion for PUshdown Model Generation) is the sole tool supports producing
pushdown model. It is achieved by combining concolic approach which
pushdown model. In one hand, concolic performs under-approximation
when processing complicated instructions. In the other hand, pushdown
model precisely simulates the operational environment of an executed pro-
gram. As compared to similar emerging tools, BE-PUM introduces visible
difference when generating control flow graph (CFG); especially when en-
countering indirect jumps. Moreover, pushdown model allows BE-PUM
to handle self-modification code, a technique widely used by sophisticated
viruses.

8. Nguyen Minh Hai (Industrial University of HCMC), Pushdown Model
Generation for Malware Deobfuscation

Further the previous talk on BE-PUM, in this talk we discuss pushdown
model generation for malware deobfuscation. Nowadays, malware usually
obfuscates itself to hide their real harmful intentions and behaviors. Such
techniques pose a real challenge for anti-virus tools since the obfuscated
malicious actions are difficult to be captured using the typical approaches.
By generating the pushdown model from the original code using BE-PUM,
we successfully handle some popular obfuscations techniques, including
indirect jumps, encryption, and exceptions. Real virus samples using those
techniques and close observation of how BE-PUM processes them will be
also given in details.

9. Sandrine Blazy (University of Rennes) Towards a formally verified obfus-
cating compiler

We have been working on CompSert, which is a modestly optimized C
compiler with proofs in a proof assistant Coq. Thus, it will not intro-
duce during compile time. In this talk, we investigate introduction of
obfuscations at C source code level, such as opaque predicates, integer
encoding, variable renaming/encoding, and control flow flattering. Their
preservation of semantics is verified in the certified compiler framework
CompSert.

10. Julian Kranz (Technische Universitat Muchen), IR processing using GDSL

Analyzing binary code begins with the interpretation of a low level binary
stream. To this end, the machine instructions are decoded and translated
into an intermediate representation (IR) that serves as an input to an
analyzer. We present our functional language GDSL that is geared to-
wards the simple and effective specification of instruction decoders and
semantic translators. The GDSL toolkit ships with front-ends for various
architectures that translate machine code into the minimalistic IR called
RReil. We show that applying a few classic program optimizations to this
IR leads to a considerable size reduction and, thereby, allows for a faster

6



analysis. Moreover, fusing several IR statements also recovers parts of the
original high-level computation and, as a consequence, allows for a simpler
analyzer.

11. Frederic Besson (University of Rennes), Semantics for low level code :
From C to binary (and back)

Formal semantics of low level code is a difficult problem, since it relates
compiler / CPU implementation details and complex memory models.
There are several recent works focusing on C-semantics. We have been
working on CompSert, which is a modestly optimized C compiler with
proofs in a proof assistant Coq. Thus, it will not introduce during compile
time. In this talk, we investigate the formal semantics of assembler by
converting (and back) C semantics by the certified framework CompSert.

12. Tachio Terauchi (JAIST), Information Flow Analysis and Applications to
Computer Security

Information flow analysis and its applications to computer security I will
give a brief overview of my past work on quantitative information flow. I
will also give a brief overview on a work on tamper resilience against side
channel attacks.

13. Thomas Dullien and Tim Kornau (Google), Analysis of binaries at Google:
The unreasonable success of nonsemantic methods

Google performs analysis of executable code for many different purposes
- from the analysis of closed-source components for security flaws to au-
tomated analysis of executables. This presentation will discuss our expe-
riences in performing binary analysis at Google with particular focus on
the almost unreasonable success that we had in applying non-semantic and
statistical methods to the problem. Frederick Jelinek famously quipped
about language processing that ”every time I fire a linguist, the perfor-
mance of my speech recognizer goes up” - indicating that a pragmatic
approach to improving performance sometimes requires resorting to sta-
tistical methods, especially when data is abundant.

14. Roberto Giacobazzi (University of Verona), Abstract symbolic automata:
Mixed syntactic/semantic similarity analysis of executables

The use of mixed syntactic/semantic representation of code in similarity
analysis is becoming a good practice because pure semantic similarity is
too complex and often undecidable while pure syntactic similarities are
often imprecise and prone to false negatives due to code obfuscation tech-
niques. We introduce a model for mixed syntactic/semantic approxima-
tion of programs based on symbolic finite automata (SFA). The edges of
SFA are labeled by predicates whose semantics specifies the denotations
that are allowed by the edge. We introduce the notion of abstract sym-
bolic finite automaton (ASFA) where approximation is made by abstract
interpretation of symbolic finite automata, acting both at syntactic (pred-
icate) and semantic (denotation) level. We investigate in the details how
the syntactic and semantic abstractions of SFA relate to each other and
contribute to the determination of the recognized language. Then we in-
troduce a family of transformations for simplifying ASFA. We apply this

7



model to prove properties of commonly used tools for similarity analysis
of binary executables. Following the structure of their control flow graphs,
disassembled binary executables are represented as (concrete) SFA, where
states are program points and predicates represent the (possibly infinite)
I/O semantics of each basic block in a constraint form. Known tools for
binary code analysis are viewed as specific choices of symbolic and seman-
tic abstractions in our framework, making symbolic finite automata and
their abstract interpretations a unifying model for comparing and reason-
ing about soundness and completeness of analyses of low level code.

15. Mizuhito Ogawa (JAIST), Constant propagation for Binary CFG rebuilt

BE-PUM, which reconstructs a CFG from obfuscated binary, is based on
dynamic symbolic execution. A common problem on symbolic execution
is loop handling, and unlimited unfolding leads non-termination of CFG
rebuilt. Its ultimate solution is loop invariant generation, which is usually
a hard problem. As a practical solution, we apply constant propagation
for the loop unrolling control. The idea comes from observation on a typ-
ical reason of failure to find the loop exit by dynamic symbolic execution.
When a loop counter is set to a constant, dynamic symbolic execution can-
not find a satisfiable instance leading to the loop exit except for unfolding
the loop until the constant matches to the exit condition. If we know the
loop counter is a constant, it is safe to unfold as long as the original binary
terminates. We also report very preliminary experiments.

8



Participants list

There are 19 participants from 8 countries. Detailed classification is, France
5, Japan 4, USA 3, Switzerland / Vietnam 2, Germany / Italy / Malaysia
1. They are mostly from academia, and 3 from industry, including Google.
Unfortunately, we missed participants from China, due to the budget problems.
Although the number is not very high, the atmosphere has been kept intimate.
We think the number was quite adequate.

• Sebastien Bardin (CEA LIST, France)

• Frederic Besson (Inria, France)

• Sandrine Blazy (University Rennes - Inria, France)

• Guillaume Bonfante (LORIA - Universite de Lorraine, France)

• Thomas Dullien (Google, Switzerland)

• Roberto Giacobazzi (University of Verona, Italy)

• Nguyen Minh Hai (Industrial University of Ho Chi Minh City, Vietnam)

• Tomonori Izumida (AIST, Japan)

• Tim Kornau-von Bock und Polach (Google, Switzerland)

• Julian Kranz (Technische Universitat Munchen, Germany)

• Arun Lakhotia (University of Louisiana at Lafayette, USA)

• Jean-Yves Marion (LORIA - Lorraine University, France; Organizer)

• Jeffrey Todd McDonald (University of South Alabama, USA)

• Akira Mori (National Institute of Advanced Industrial Science and Tech-
nology, Japan; Organizer)

• Mizuhito Ogawa (Japan Advanced Institute of Science and Technology,
Japan; Organizer)

• Tachio Terauchi (Japan Advanced Institute of Science and Technology,
Japan)

• Quan Thanh Tho (Ho Chi Minh University of Technology, Vietnam)

• Sarah Zennou (Airbus Group Innovations, USA)

• Abdullah Mohad Zin (Universiti Kebangsaan Malaysia, Malaysia)

9


