
ISSN 2186-7437

NII Shonan Meeting Report

No. 2014-7

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Staging and
High-Performance Computing

Theory and Practice

Oleg Kiselyov
Yukiyoshi Kameyama

Jeremy Siek

May 27–30, 2014



Staging and High-Performance Computing

Theory and Practice

Organizers:
Oleg Kiselyov (University of Tsukuba, Japan)

Yukiyoshi Kameyama (University of Tsukuba, Japan)
Jeremy Siek (Indiana University, USA)

May 27–30, 2014

We have conducted the follow-up to the meeting “Bridging the theory of
staged programming languages and the practice of high-performance comput-
ing” (Shonan Seminar 19), which took place in May 2012. In the first meeting,
researchers in staged programming languages were learning of the problems in
high-performance computing (HPC) from HPC experts. Since then, thanks in
part to Shonan Challenges put forward at that meeting, the theory and tools of
staged programming languages have progressed to the point where they could
already be useful in HPC practice. The present follow-up meeting has gauged
this readiness and set further milestones. It served as a forum for staged pro-
gramming researchers to present their progress and for HPC practitioners to
evaluate it, fostering the collaboration on real-life applications.

Generative programming, in particular, in the form of staging, is widely
recognized in HPC as the leading approach to resolve the conflict between high-
performance on one hand, and portability and maintainability on the other
hand. In its general form, staging is an implementation technique for efficient
domain-specific languages (DSL), letting HPC experts conveniently express their
domain-specific knowledge and optimization heuristics. However, the results
and tools of the current staging research are little used in the HPC community.
Partly this is because HPC practitioners are not aware of the progress in staging;
staging researchers are likewise unaware of what HPC practitioners really need.
The first Shonan meeting brought together HPC practitioners and programming
language (PL) researchers to break this awareness barrier. The meeting aimed
to solicit and discuss real-world applications of assured code generation in HPC
that would drive PL research in meta-programming.

The first Shonan meeting succeeded in its aim. It developed a set of bench-
marks, representative HPC examples, where staging could be of help in produc-
ing more maintainable code and letting domain experts perform modifications
at a higher-level of abstraction. This set was dubbed ‘Shonan Challenge’.

Shonan Challenge has greatly stimulated research and development of stag-
ing, resulting in extensible compilers based on staging (Rompf et al., POPL
2013) and the revival of MetaOCaml (ML 2013). The answers to Shonan Chal-
lenges have been presented in the overview paper (Aktemur et el., PEPM 2013),
in (Rompf et al., POPL 2013) and in a poster at APLAS 2012. Shonan Challenge
problems (specifically, the Hidden-Markov Model benchmark) were discussed at

1



the staging tutorials given in 2013 at the premier PL conferences PLDI, ECOOP,
and ICFP/CUFP.

The present follow-up meeting was intended as the place to report the
progress in staging back to the HPC practitioners who posed the challenges,
to evaluate how well the developed tools meet the needs of the HPC practice
already, and what is yet to be done.

As before, the workshop participants consisted of three groups of people: PL
theorists, HPC researchers, and PL-HPC intermediaries (that is, people who are
working with HPC professionals, translating insights from PL theory to HPC
practice). To promote the mutual understanding, we have planned for the work-
shop to have lots of time for discussion. We emphasized tutorial, brainstorming
and working-group sessions rather than mere conference-like presentations.

The following people have participated in the seminar, beside the organizers.

1. Baris Aktemur, Ozyegin University (Turkey)

2. Nada Amin, EPFL (Switzerland)

3. Kenichi Asai, Ochanomizu University (Japan)

4. Sven Bodo-Scholz, Heriot-Watt University (Scotland)

5. Zach DeVito, Stanford University (USA)

6. Lindsay Errington, Galois, Inc. (USA)

7. Robert Glück, University of Copenhagen (Denmark)

8. Tobias Grosser, INRIA & ENS (France)

9. Jun Inoue, ENS, Paris (France)

10. Frédéric Loulergue, University of Orléans (LIFO)

11. Takayuki Muranushi, Kyoto University (Japan)

12. Ryan RhodesNewton, Indiana University (USA)

13. Georg Ofenbeck, ETH Zürich (Switzerland)

14. Jonathan Ragan-Kelley, Computer Graphics Group, CSAIL, MIT (USA)

15. Tiark Rompf, Oracle Labs & EPFL (Switzerland)

16. Reiji Suda, University of Tokyo (Japan)

17. Daisuke Takahashi, University of Tsukuba (Japan)

18. Jeremy Yallop, OCaml Labs, Cambridge (UK)

2



Main Questions

The following questions were raised repeatedly during the seminar:

• What exactly is a DSL and its domain? Can we view staging as a DSL
for an optimizing compilation?

• How to debug DSLs? When a DSL program generates code that produces
an unexpected answer (e.g., because the user misunderstood the problem
or the DSL), what does one do? Run-time system bugs (esp. subtle
synchronization bugs) are especially challenging.

• How to spread the good news about metaprogramming throughout indus-
try and education? We need to distill and teach the design patterns and
document success stories.

Tangible Outcomes

The participants agreed to continue the development of Shonan challenges,
adding more challenges and solving them. We need a set of small problems
culminating in a grand challenge. Google Docs, associated with the Google
group created after the previous meeting, is a good place for the collaborative
development of Shonan Challenges.

We should make Shonan Challenges more well-known, especially in the HPC
community. A good first step is to write an article for ACM Queue.

Meeting Schedule

May 27 (Tuesday)

Theme: Introductions, background

• Self-introductions (until lunch)

• Daisuke Takahashi Performance Tuning for High Performance Computing
Applications (Overview of HPC)

• Baris Aktemur Shonan Challenges

• Yukiyoshi Kameyama An Innocent Solution to Shonan Challenge 2012

• Nada Amin Scala/LMS/Delight

• Tiark Romp Scala answer to Shonan challenges

• Final discussion

May 28 (Wednesday)

Theme: Control, interactivity, feedback

• Remaining three self-introductions

• Reiji Suda More challenges for HPC program generation

3



• Georg Ofenbeck Staging for Spiral: What is the gain?

• Sven Bodo-Scholz Embedding application knowledge for improved dynamic
adaptation

• Jeremy Siek (leading discussion)

– Jonathan Ragan-Kelley Halide: A language and compiler for image
processing pipelines

– Ryan Newton DSL embedding how do we know if its worth it?

• Oleg Kiselyov You can do it: Solving Shonan Challenge 1 in 7 easy steps

May 29 (Thursday)

Theme: more challenges

• Zach DeVito Terra

• Jonathan Ragan-Kelley 2D Stencil challenges

• Baris Aktemur Specializing Sparse Matrix-Vector Multiplication

• Takayuki Muranushi Code Generation Challenge for Staggered Mesh

• Discussion about Shonan Challenges

• Excursion and Banquet

May 30 (Friday)

Theme: Conclusions

• Robert Glück On the Mechanics of Program-Generator Generators

• Group discussion: New Shonan challenges. How to continue

Overview of Talks

Specializing Sparse Matrix-Vector Multiplication

Baris Aktemur, Ozyegin University, Turkey

Sparse matrix-vector multiplication (SpMV) is a kernel operation used in
many scientific computation domains. SpMV is amenable to optimization by
using generative programming to specialize the function based on the structure
and values of the sparse matrix. In this work we evaluate the performance gains
obtainable from specialized SpMV by generating code using several different
methods. We then discuss how to predict which code generation method will
give the best performance. We finally share our experiences regarding generating
high-performant SpMV code quickly.

4



On the Mechanics of a Program-Generator Generator

Robert Glück, University of Copenhagen, Denmark

We present principles and implementation behind a light-weight program-
generator generator based on partial evaluation techniques for a recursive flowchart
language.

Code Generation Challenge for Staggered Mesh

Takayuki Muranushi, Kyoto University, Japan

In ordered-mesh based solvers of partial differential equations, every dis-
cretized physical values lie on integer coordinates. Staggered mesh is where
rational-number coordinates such as half-integers are allowed. For example in
hydrodynamics simulations, gas density variables may lie in the center of the
cubic cells while gas flux variables may sit on the center of the cell surfaces.
Staggered meshes are sometimes consequences of higher-order differentiation,
and sometimes important for numerical stability or conservation laws. On the
other hand, staggered mesh algorithms require slightly different treatment for
different variables or different vector components. This poses challenge to ab-
straction, and the failure of abstraction often results in Fortran or C code where
x-component logic is copied and slightly modified for y-component and then z-
component, and so on.

In my talk I’ll illustrate this staggered mesh problem code by taking elastic
wave equations as an example.

DSL embedding - how do we know if it’s worth it?

Ryan Newton, Indiana University, USA

The embedded DSL approach has established benefits but also suffers from
problems that do not necessarily show up in code figures of academic papers:
e.g. terrible error messages and other limitations of syntax overloading. In
this talk I will argue against the the traditional cost-benefit analysis ascribed to
embedded/standalone DSL design decision. To illustrate, I will discuss three hy-
pothetical alternative front-ends to the Accelerate GPU DSL: Haskell-embedded
(the original), standalone with language subsetting, and Racket-embedded with
its own type system.

An Innocent Solution to Shonan Challenge 2012

Yukiyoshi Kameyama, University of Tsukuba, Japan

The first Shonan Challenge collects a set of problems for generating opti-
mized programs in the domain of high performance computing. Even though
several solutions have been already posted by programming-language experts,
it was not clear how a non-expert can solve the problems. In this talk I will
report a student’s solution to the Hidden Markov Model (HMM) problem, and
how he developed his solution to accommodate several optimizations. I also
briefly mention the evaluation of his solution and the lessons learned. This talk
is based on the work by Haruki Shimizu.

5



Embedding Application Knowledge for Improved Dynamic
Adaptation

Sven-Bodo Scholz, Heriot-Watt University, Scotland

Generating efficient code for a range of heterogeneous hardware from DSLs
is hard. Trying to achieve the same for Not-So-Domain-Specific-Languages is
even harder. This talk presents some of our latest ideas on how to provide
the compiler/ code generator with domain knowledge without modifying the
code generator at all. Instead, we use programmer-provided alternatives in
conjunction with dynamic adaptation to achieve overall efficiency. This is very
much work in progress; besides presenting the motivation and basics of the
approach it provides several open questions.

More challenges for HPC program generation

Reiji Suda, University of Tokyo, Japan

I introduce several optimizations (program transformations) that are fre-
quently used by HPC programmers. I present several questions for staging.

Performance Tuning for High Performance Computing Ap-
plications

Daisuke Takahashi, University of Tsukuba, Japan

• Performance development of supercomputers

• HPC Challenge (HPCC) Benchmark Suite

• It’s all bandwidth

• Performance tuning and program optimization methods

Staging for Spiral: What is the gain?

Georg Ofenbeck, ETH Zürich, Switzerland

Can we utilize modern program language features for the translation be-
tween DSLs, DSL rewrites? Can we also perform abstraction over low level
transformations and data layouts?

6


