ISSN 2186-7437

NIl Shonan Meeting Report

No. 2013-12

Software Analytics
Principles and Practices

Ahmed E. Hassan
Katsuro Inoue
Tao Xie
Dongmei Zhang

October 21-25, 2013

<O\ HEETEH
NIl SHONAN MEETING

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan



Software Analytics
Principles and Practices

Organizers:
Ahmed E. Hassan (Queen’s University/ BlackBerry)
Katsuro Inoue (Osaka University)
Tao Xie (University of Illinois at Urbana-Champaign)
Dongmei Zhang (Microsoft Research Asia)

October 21-25, 2013

A wealth of various data (e.g., source change history, test cases, and bug re-
ports) exists in the practice of software development. Further modern software
and services in operation produce rich data (e.g., operation logs, field crashes,
and support calls). Hidden in these unexplored data is rich and valuable infor-
mation about the quality of software and services and the dynamics of software
development. Companies (Microsoft, Google, Facebook, Cisco, Yahoo, IBM,
RIM, etc.) are increasingly adding analytics as an important role in their orga-
nizations, leveraging the wealth of various data produced around their software
or services.

Software analytics is concerned with the use of data-driven approaches to
obtain insightful and actionable information for completing various tasks around
software systems, software users, and software development process. Insightful
information is information that conveys meaningful and useful understanding
or knowledge. Actionable information is information upon which software prac-
titioners can come up with concrete solutions (better than existing solutions
if any) towards completing tasks. Typically such information cannot be easily
obtained by direct investigation on the raw data without the aid of analytic
technologies.

Especially recently the area of Big Data has emerged as a critical and strate-
gic focus by the society. Big data is everywhere now but it is still under-utilized
in the area of software engineering. However, leveraging big data is very rele-
vant in software engineering as software and services get larger and more inter-
connected, often being developed by a large number of engineers in distributed
fashions and being used by a huge number of users around the world. Soft-
ware analytics needs to be prepared for the upcoming decade’s exciting and yet
challenging problem of leveraging big data for software engineering tasks.

This meeting foster collaboration between industry and academia, bringing
academic researchers working on the principles and practice of software ana-
lytics together with researchers from industry. The aim is not only to act as a
forum for the exchange of ideas, but as a vehicle to stimulate, deepen and widen
partnership between academia and industry in software analytics internation-
ally. In the age of Big Data, this meeting also serves as the first step to plan



for the next decade of Big Data Analytics in Software Engineering, since it is
impossible for individual groups or companies to tackle this challenging problem
alone.

Software analytics is an ideal topic for this kind of interaction. It combines
challenging research problems with real practical importance for the software
industry, and the wider society that it serves. It presents an excellent and
wide-ranging set of open research questions to academics concerning, amongst
other things, analytic-algorithm design, data analysis, information visualization,
scalable computing, software-artifact analysis and mining, social factors, empir-
ical software engineering, measurement, process improvement, and technology
transfer and adoption. Software analytics is also of critical practical significance
to almost every organization involved in the production and use of software and
services. Answers to the currently open research questions in software analytics
can have a major impact upon industrial practice, with far-reaching implica-
tions for the development of the global economy. This combination of academic
challenge and industrial relevance makes software analytics a natural topic for
the proposed meeting.

In this meeting, we have brought together software-analytics researchers in
academia and industry. Our main focus was to exploit the synergy of these
communities and to provide a platform to forge new collaborations. Participants
were invited to present a few plenary talks and demos of new tools, beside
which the meeting has provided ample opportunities for small working groups
on themes suggested by the participants. We expect this meeting has resulted
in ample cross-fertilization between the different research areas and shown up
exciting directions for improving software-engineering practices via practical
software analytics.



Meeting Schedule

e Oct. 20th, Sunday Evening
— Welcome Reception
e Oct. 21st, Monday Morning

— Opening
— Self Introduction
— Short Presentations

e Oct. 21st, Monday Afternoon

— Keynote: “MetaMorphosis”, Michele Lanza
— Short Presentations

e Oct. 22nd, Tuesday Morning

— Short Presentations
— Software Engineering Researches in Japan, Yasutaka Kamei
— Software Engineering Researches in Brazil, Marco Gerosa

e Oct. 22nd, Tuesday Afternoon

— Breakout Sessions
* Impact to Practice
* Performance
* Dependability
* Analytics for Continuous Delivery

e Oct. 23rd, Wednesday Morning
— Keynote: “Software Provenance”, Michael Godfrey
— Presentations from Each Breakout Session

e Oct. 23rd, Wednesday Afternoon
— Excursion and Dinner in Kamakura

e Oct. 24th, Thursday Morning

— Breakout Sessions
* Mining App Stores
x Source Code Analysis
e Oct. 24th, Thursday Afternoon

— Breakout Sessions (Continued)
— Presentations from Each Breakout Session
— Fishbowl Panel

e Oct. 25th, Friday Morning

— Discussion on Definition and Future of Software Analytics
— Wrap up



Overview of Talks / Position Statements

On Rapid Releases and Software Testing
Bram Adams, Polytechnique Montréal

Large open and closed source organizations like Google, Facebook and Mozilla
are migrating their products towards rapid releases. While this allows faster
time-to-market and user feedback, it also implies less time for testing and bug
fixing. Since initial research results indeed show that rapid releases fix propor-
tionally less reported bugs than traditional releases, we investigated the changes
in software testing effort after moving to rapid releases. We analyzed the results
of 312,502 execution runs of the 1,547 mostly manual system-level test cases of
Mozilla Firefox from 2006 to 2012 (5 major traditional and 9 major rapid re-
leases), and triangulated our findings with a Mozilla QA engineer. We found
that in rapid releases, testing has a narrower scope that enables deeper inves-
tigation of the features and regressions with the highest risk, while traditional
releases run the whole test suite. Furthermore, rapid releases make it more dif-
ficult to build a large testing community, forcing Mozilla to increase contractor
resources in order to sustain testing for rapid releases.

Knowledge Engineering for Software Engineering

Yingnong Dang, Microsoft Research Asia

This talk briefed a few projects we conducted at the Software Analytics
group of Microsoft Research Asia on software engineering, including code clone
analysis, change understanding, and API usage mining. The synergy of these
projects is extracting knowledge from large-scale codebase and help boosting
software engineering productivity.

Using the Big Sky environment for software analytics (Demo)

Robert DeLine, Microsoft Research

Big Sky is a new integrated environment for large-scale data analysis being
developed at Microsoft Research. Big Sky is a collaborative web service that
allows data scientists to carry out entire workflows from raw data to final charts
and plots. The central metaphor is an indelible research notebook: every action
in Big Sky is immediately stored to preserve provenance and to allow repeatable
analyses. Big Sky also provides automation and visualization at every step to
keep the analyst productive and informed. I look forward to lots of feedback,
since the workshop participants are exactly our intended users.

Linux and git: mining how a distributed version control
system is used

Daniel M German, University of Victoria, Canada

Distributed Version Control systems (DVCs) are replacing centralized ver-
sion systems (CVCs). Our research is trying to uncover the way that DVCs



are being used, and how its use differs from CVCs. For the last 22 months we
have been mining Linux git repositories in an attempt to understand how they
use their DVCs (git). I describe the challenges of this mining, and provide an
overview of how linux uses DVCs.

Logical dependencies and others

Marco Aurelio Gerosa, University of Sdo Paulo, Brazil

I have presented some studies that we have been conducting in our group,
covering the following topics: a method for the identification of logical depen-
dencies, characteristics of the automated tests x code quality, design degrada-
tion, change prediction, and refactoring. I have also presented a short demo of
MetricMiner.

Avalilability of Modification Patterns for Identifying Main-
tenance Opportunities

Yoshiki Higo, Osaka University
In code repositories, there are multiple commits including the same modifica-
tion, each of which we call modification pattern. This talk discussed availability

of modification patterns for identifying maintenance opportunities such as per-
forming refactorings or finding latent bugs.

What Makes a Green Miner?
Abram Hindle, University of Alberta

This talk discussed recent results and the infrastructure behind Green Min-
ing on the Android platform.

Querying, Transforming, and Synchronizing Software Arti-
facts

Zhenjiang Hu, National Institute of Informatics

Bidirectional transformations provide a novel mechanism for synchronizing
and maintaining the consistency of information between input and output. This
talk shows how GRoundTram, a bidirectional graph transformation system, may

be useful for querying, transforming, and synchronizing software artifacts in
software development.

Automated Analysis of Load Testing Results
ZhenMing (Jack) Jiang, York University, Canada

Many software systems must be load tested to ensure that they can scale up
under high load while maintaining functional and non-functional requirements.



Current industrial practices for checking the results of a load test remain ad-
hoc, involving high-level manual checks. Few research efforts are devoted to
the automated analysis of load testing results, mainly due to the limited access
to large scale systems for use as case studies. Approaches for the automated
and systematic analysis of load tests are needed, as many services are being
offered online to an increasing number of users. I have talked about the general
methodology that we have developed over the years to assess the quality of a
system under load by mining the system behavior data (performance counters
and execution logs).

Making Defects Prediction More Pragmatic

Yasutaka Kamei, Kyushu University, Japan

The majority of quality assurance research focused on defect prediction mod-
els that identify defect-prone modules (i.e., files or packages). Although such
models can be useful in some contexts, they also have their drawbacks. I have
presented some defect prediction studies that we have conducted.

Automated Performance Analysis of Build Systems

Shane Mclntosh, Queen’s University, Canada

Software developers rely on a fast and correct build system to compile their
source code changes to produce modified deliverables for testing and deploy-
ment. Unfortunately, the scale and complexity of builds makes build perfor-
mance analysis necessary, yet difficult due to the absence of build performance
analysis tools. In this paper, we propose an approach that analyzes the build
dependency graph and the change history of a software system to pinpoint build
hotspots, i.e., source files that change frequently and take a long time to rebuild.
In conducting a case study on the GLib, PostgreSQL, Qt, and Ruby systems,
we observe that: (1) our approach identifies build hotspots that are more costly
than the files that: rebuild the slowest, change the most frequently, or have
the highest fan-in; (2) logistic regression models built using architectural and
code properties of source files can explain 50%-75% of these build hotspots; and
(3) build hotspots are more closely related to system architecture than to code
properties. Furthermore, we identify build hotspot anti-patterns and offer ad-
vice on how to avoid and address them. Our approach helps developers to focus
build performance optimization effort (e.g., refactoring) onto the files that will
yield the most performance gain.

Disruptive Events on Software Projects
Peter C Rigby, Concordia University, Montréal
I discussed events that disrupt software projects, how we can measure these

events, and how different projects mitigate the risk and damage associated with
disruption.



Leveraging Performance Counters and Execution Logs to
Diagnose Performance Issues

Mark D. Syer, Queen’s University, Canada

Load tests ensure that software systems are able to perform under the ex-
pected workloads. The current state of load test analysis requires significant
manual review of performance counters and execution logs, and a high degree
of system-specific expertise. In particular, memory-related issues (e.g., memory
leaks or spikes), which may degrade performance and cause crashes, are difficult
to diagnose. Performance analysts must correlate hundreds of megabytes or gi-
gabytes of performance counters (to understand resource usage) with execution
logs (to understand system behavior). However, little work has been done to
combine these two types of information to assist performance analysts in their
diagnosis. In this talk, I have presented an approach that combines performance
counters and execution logs to diagnose memory-related issues in load tests.

Software Text Analytics: Moving from Correlation Towards
Causation

Tao Xie, University of Illinois at Urbana-Champaign, USA

In recent years, using deep natural language process (NLP) techniques to
understand semantics of natural language (NL) software artifacts has emerged
in the software engineering and security communities. Such movement is be-
yond what traditional text mining techniques, which typically treat NL sen-
tences as a bag of words and then conduct statistical analysis on these words.
This talk presents some recent research efforts that we have conducted in de-
veloping/applying NLP techniques for discovering semantic information out of
NL software artifacts (https://sites.google.com/site/asergrp/projects/textse).
These efforts hold great promises for moving from correlation towards causa-
tion, exploring the long-standing issue of “correlation does not imply causation”,
commonly faced in software analytics.

Active Support for Clone Refactoring

Norihiro Yoshida, Nara Institute of Science and Technology

Clone refactoring (merging duplicate code) is a promising solution to improve
the maintainability of source code. This talk discussed research objectives and
directions towards the advancement of clone refactoring from the perspective of
active support.

Checking App Behavior Against App Descriptions
Andreas Zeller, Saarland University
How do we know a program does what it claims to do? After clustering

mined Android apps by their description topics, we identify outliers in each
cluster with respect to their API usage. A “weather” app that sends messages



thus becomes an anomaly; likewise, a “messaging” app would not be expected
to access the current location. Applied on a set of 22,000+ Android applica-
tions, our approach identified several anomalies, and classified known malware
accurately with high precision and recall.

145 Questions for Data Scientists in Software Engineering
Thomas Zimmermann, Microsoft Research
I have presented a catalog of 145 questions that software engineers would

like to ask data scientists. The catalog was created based on feedback from 810
Microsoft employees. This is joint work with Andrew Begel.



List of Participants

Bram Adams, Polytechnique Montréal

Yingnong Dang, Microsoft Research Asia

Robert Deline, Microsoft Research

Daniel German, University of Victoria

Marco Gerosa, University of Sao Paulo

Michael Godfrey, University of Waterloo

Ahmed Hassan, Queen’s University

Yoshiki Higo, Osaka University

Abram Hindle, University of Alberta

Zhenjiang Hu, National Institute of Informatics

Akinori Thara, Nara Institute of Science and Technology
Katsuro Inoue, Osaka University

Zhenming Jiang, York University

Yasutaka Kamei, Kyushu University

Sung Kim, Hong Kong University of Science and Technology
Takashi Kobayashi, Tokyo Institute of Technology
Michele Lanza, University of Lugano

Andrian Marcus, Wayne State University

Shane McIntosh, Queen’s University

Akito Monden, Nara Institute of Science and Technology
Masao Ohira, Wakayama University

Peter Rigby, Concordia University

Mark Syer, Queen’s University

Tao Xie, University of Illinois at Urbana-Champaign
Norihiro Yoshida, Nara Institute of Science and Technology
Andreas Zeller, Saarland University

Dongmei Zhang, Microsoft Research Asia

Thomas Zimmermann, Microsoft Research



