
ISSN 2186-7437

NII Shonan Meeting Report

No. 2012-11

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

The NII Shonan Configurable Computing
Workshop

Peter Athanas
Brad Hutchings

Kentaro Sano

November 12–15, 2012

The NII Shonan Configurable Computing

Workshop

Organizers:
Peter Athanas (Virginia Tech, USA)

Brad Hutchings (Brigham Young University, USA)
Kentaro Sano (Tohoku University, Japan)

November 12–15, 2012

1 Overview of the workshop

Description of the Workshop:

Configurable computing is an emerging technology proving to be capable of providing high com-
putational performance on a diversity of applications, including 1-D and 2-D signal processing,
simulation acceleration, computer graphics, and high-performance computing. High performance
is achieved by rapidly reconfiguring the functionality and interconnectivity of the computing re-
sources to match the computational requirements of specific applications. Rapid reconfiguration
provides the illusion of having a much larger (virtual) hardware platform. With this approach,
specific application properties, such as parallelism, execution profile, and data resolution can be
exploited by creating custom operators, pipelines, and interconnection pathways.

In recent years a rapidly growing interest in using reconfigurable computing architectures
for realizing and developing application-specific computer systems has been observed. The ad-
vances in reconfigurable technologies, in algorithms for implementation approaches and in auto-
matic mapping methods of algorithms into hardware and processor spaces form a new computing
paradigm of computing and programming, e.g. ”Computing in Space AND in Time”. This
requires different and novel approaches in engineering for developing reconfigurable systems and
implementing complex algorithms, including theory, architecture structures, algorithms, design
systems and industrial applications that demonstrate the benefits of this promising way of com-
puting. The fast pace of development is not leaving industry enough time to develop the necessary
theoretical foundation that underpins CAD tools, OS, designs, architectures and circuit technolo-
gies. Traditional hardware and software design processes and the tools to support them are not
adequate for the design of run time reconfigurable systems. Therefore, the plan for this seminar
is to focus on the issues relevant to the development of support for run-time reconfigurable sys-
tems that can be attractive to industry. A special focus will be given to dynamically run-time
reconfigurable (RTR) solutions, since system adaptation and the advantages of this technology
are highly visible.

Additional topics in this area of research include productivity and observability. Programmable
logic devices continue to nearly double in size with each new generation. Although computational
power used to grow at this same rate, this is no longer true. As such, compilation times for pro-
grammable technologies are getting longer, not shorter. Lengthy compilation time is one of the
main drawbacks to this technology and it continues to limit its applicability to many problems. It

1

is very difficult to debug complex programs when compile times are measured in hours. Current
devices continue to lack sufficient debugging capabilities. Programmers must wait for another
lengthy compile each time they need to look at a new set of signals. Because of a general lack
of observability simulation continues to be the debugging tool of choice even though it is at least
1,000,000 times slower than execution on a programmable chip.

The seminar covers: (1) architectures and techniques that support dynamic reconfiguration,
productivity and debug, (2) circuit technologies, (3) system architectures, (4) physical CAD tools,
(5) tools to aid in the design of RTR systems, domain-specific systems and related compilers and
new (6) application domains, particularly those that can effectively exploit dynamically recon-
figurable architectures. We are also interested in (7) novel approaches that enhance productivity
and (8) improve observability in ways that aid in debug and verification and that hold the promise
to dramatically reduce time-to-market for commercial endeavors. In addition, now that Config-
urable System-on-Chip devices are beginning to appear, we are interested in attracting research
that (9) develops tools and design strategies to exploit the novel aspects of these devices and that
can continue to reduce overall development time.

For this forum, we invited experts from these various research areas to present their work
and opinions. In particular, we encouraged these experts to candidly describe those key research
problems that, until solved, continue to hinder advancement. The outcome of this workshop
should identify key problems along with proposed technical approaches to attack these problems.
We believe that researchers who attended this workshop would be able to not only help solve these
problems but would also help to advertise the importance of these problems to the larger research
community. The seminar that we held was an excellent opportunity to discuss the results from
the mentioned projects as well as research areas with researchers from Japan, Europe, United
States, Canada, Asia, and Australia.

Interdisciplinary Seminar:

Researchers and practicing engineers alike need to be able to operate in interdisciplinary environ-
ments. Not only have boundaries largely disappeared between Computer Science and Electrical
Engineering, for example, but we also see that the boundaries between computing and many other
fields such as computational biology, chemistry, etc., are continuing to soften. Actual surveys in
the EU Project MORPHEUS describe the increased request of the industry for multidisciplinary
skilled engineers. The summary of the feedback can be reported like this: software engineers need
to understand new hardware paradigms (reconfigurable computing) and hardware engineers need
to understand that software defines the product at the end. Supporting this trend, new work-
shops like the International Workshop on Reconfigurable Computing Education (RC-Education,
http://www.fpl.uni-kl.de/RCeducation08/) and the AETHER - MORPHEUS Workshop - Au-
tumn School (AMWAS, http://www.alari.ch/ AMWAS08/) were established in order to bring
together people from different research areas. But there is more activity required to bridge these
gaps. Apart from the example described above, interdisciplinary skills needs to be introduced
also for physicists, chip designers and hardware architecture specialists in order to master the
challenges coming up with future complex electronic systems. This seminar brought together
researchers from industry and academics with an excellent reputation and the required wide base
of disciplines which targets all areas of interest for future reconfigurable architectures.

2

2 Overview of Talks

Can Coarse Grained Reconfigurable Architecture (CGRA) survive?

Hideharu AMANO, Keio University, Japan

Recently, a lot of projects for CGRA were canceled especially in Japan. CGRAs are compet-
itive with SIMD architectures including GPU. Although current CGRAs are advantageous from
the viewpoint of energy consumption, the performance is much lower. This talk tries to find the
way that CGRAs can survive as an acclererator in future SoCs or SiPs.

Disconnection between academic research priorities and industry needs

Neil BERGMANN, University of Queensland, Australia

Most research in configurable computing fails to make a significant impact into the commercial
domain of FPGA-based system design. After more than 20 years of research into dynamic partial
reconfiguration, there are still no mainstream commercial applications of the technology, at least
that I am aware of. This is not a reflection on the technical quality of DPR research ? some of the
brightest technical researchers have developed sophisticated frameworks which have simplified the
task of building DPR systems. With such a depth and volume of research, if there was a simple
method for designing such systems, and a“ killer app ’that could make use of this method,
then I think we would have found them. Large reconfiguration times and file sizes, and complex
CAD tools might explain why DPR is not commercially widespread, but it does not seem to be
enough to explain why it is non-existent in real products.

Today, one needs to question whether even more effort to make DPR simpler/faster/smarter
is providing an answer to a problem that commercially nobody is asking. One can make similar
observations about FPGA-based supercomputing. Despite decades of research on building highly
parallel, general-purpose, stream-based application accelerators, and some impressive speedups,
there does not seem to be widespread use of the technology except by configurable-computing
researchers, and then mostly the outcome is research papers. The situation is a little better than in
DPR ? There are commercial vendors of FPGA accelerator boards, but the applications (I believe)
tend to be single-use embedded products requiring massive computation (cryptography, software-
defined radio, radar processing). The best recent attempt to build a general, programmable
FPGA supercomputer (Maxwell, in Edinburgh) has run its course, with only limited use. On
the other hand, FPGAs are becoming ubiquitous in high-end electronic design, and designers
still struggle with adequate tools and frameworks to design, build and test hardware/software
systems. To me, this is where there is still substantial, commercially relevant research to be
done. Here ’s some questions still to be answered to enable mixed hardware/software design to
be easy:-

1. What are appropriate abstractions for cooperating hardware and software? (processes,
tasks, VMs, instructions, stream-based tasks).

2. What are appropriate interprocess communications methods for hardware/software ? (pipes,
messages, postboxes, shared memory, MPI…) How to automate these interfaces?

3. How to describe HW/SW systems using some generic framework before making partitioning
decisions (C-code, System-C, Petri-nets, state diagrams, …)

4. How to make these frameworks accessible to students and engineers? Tools, boards, text-
books, lecture notes.

3

Advancing Reconfigurable Computing Requires a System-Level Per-
spective

Paul CHOW, University of Toronto, Canada

Reconfigurable computing technology is struggling to gain acceptance in the broader com-
puting community. The main reason is that the tools used to design applications are not easily
accessible to the application experts that are developing the applications. Researchers have been
working on tools for about 20 years and the tools are still difficult to use. Why is this the case?

There is a large impedance mismatch at the architecture/hardware and tools boundary. Re-
searchers need to take a system-level approach to the problem. The tools and the architecture
are all parts of the problem and they will be parts of the solution. Completely new approaches
to developing better tools and architectures must be taken.

A good example of the benefits of taking new approaches is the development of RISC Ar-
chitectures, which has led to the significant computing performance we have available today.
What is often forgotten, because of the term RISC, is that the reduced instruction set is not the
reason for the performance gains. Instead, dramatic performance gains were made as a result
of a system-level analysis of how the architecture, software, hardware and implementation tech-
nologies available interacted and affected performance. The understanding how to leverage the
strengths of each aspect of the system and make the best trade offs across the system has taken
us to the computing performance achievable today.

Current reconfigurable computing research is in an architectural rut. We have been trying to
build reconfigurable computing systems on top of a fabric that was designed to represent gates
and interconnect. While this fine-grain technology can be used to build any circuit, it is extremely
low-level and therefore results in the difficulties we currently experience: one must be a hardware
designer to use it and the tools take a long time, neither of which is conducive to a computing
environment.

Can we take another approach to discover a more suitable architecture for Reconfigurable
Computing? Might this lead to a new computer architecture? Will it still be called Reconfigurable
Computing? Can we break free of the von Neumann architecture that has brought us to where
we are today, but is now showing its limitations?

The RISC revolution started with the following questions and observations: What are com-
pilers capable of doing and how should the hardware complement that? What can the technology
provide in terms of hardware? Compilers work best when they can generate fundamental opera-
tions where the optimizations are straightforward and the data operations can be managed with
good register allocation. Simple instructions can be pipelined and use less gates. Pipelines make
it possible to increase clock frequencies. Less gates leaves more room for caches. Decisions about
features are made by quantitative analysis.

Note that the early FPGA architecture studies and VPR research at the University of Toronto
were motivated by the above strategy.

Can we apply the same strategy for Reconfigurable Computing? What are the appropriate
questions and observations that can set Reconfigurable Computing research down a new and
fruitful path? To gather data that can be used to inform our decisions, it would be helpful to
have an “input” language. For RISC processor design, the language was principally C. Or, do
we start with the capabilities of high-level synthesis (HLS) as the starting point, much like we
started with optimizing compilers for RISC architectures? Is HLS mature enough to define an
architecture? If so, what does HLS do well, and does that suggest the architecture that will be
an efficient target for HLS? Any discussion must include the HLS experts.

The system-level perspective for Reconfigurable Computing is a much larger problem than it
was for RISC Computing. We must find a way to make the problem easier to understand and

4

attack.
There have been very few fundamental leaps in computer architecture. The last was RISC

technology. Making Reconfigurable Computing work will be the next great achievement in com-
puter architecture.

Towards high level design tools

Rene CUMPLIDO, INAOE,Mexico

The design complexity of current digital hardware systems has grown at the same pace as
the scale of integration of modern integrated circuits and the demand of functionality. This
complexity gave rise to different design approaches at different levels of abstractions, which has
resulted in a large number of methodologies and tools that were designed to exploit specific
characteristics of available technologies. Current design processes are not straightforward; design
engineers deal with the problem of having to create processing systems using a large variety of
tools and methodologies.

Recently, there have been some efforts to develop design methodologies that describe the
functionality of digital hardware systems using languages and tools similar to the ones employed
to build software systems. The aim is to reduce complexity during the design of digital hardware
systems by means of high level tools that are based on UML-like modeling techniques. It is too
early to say if these methodologies and tools will achieve their goal of“standardizing”the design
of custom processing systems, but as a community we would greatly benefit as it would allow
complete design space exploration in far less time than current approaches.

It’s been said before: Future design methods need AI, and AI could
learn from us

Oliver DIESSEL, University of New South Wales,Australia

A current technology trend sees ever more switches being integrated on-chip. Consequently,
we will see ever-tighter on-chip integration of reconfigurable logic, processors, networks and mem-
ory. The number of custom design starts will continue to diminish as fewer, more generic, yet
customizable platforms remain. The devices of the future will be distinguished by the relative
amounts of undifferentiated resources and customized hard IP provided.

To effectively utilize such devices, more effective programming models and CAD tools are
needed. Far from being in a rut, our community faces a decisive challenge to create methodologies
that will allow systems to be engineered from the devices of the future. The solutions will need
to be efficient, powerful, energy aware, flexible, robust, scalable, and cheap. My guess is that we
will need to bring Artificial Intelligence to bear on solving this problem. And if we do so, we
might help to advance AI.

Using Reconfigurable Architecture as a Universal Computing Engine

Tetsuo HIRONAKA, Hiroshima City University, Japan

Using a reconfigurable architecture as a universal computing engine is a big challenge. To
reach the goal for these challenge two points must be achieved.

First point is to introduce a good parallel programming model. Reconfigurable Computing
will succeed only when unnatural sequential programming’s are thrown away and switched to the

5

natural parallel programming model. To achieve this, we need to push more power in software
engineering for parallel programming.

The second point is to have a good method to evaluate the performance of a reconfigurable
architecture. Because a well written parallel program that extracts application’s parallelism
highly, the amount of parallel hardware you have scale up the performance you can achieve. So
just comparing absolute performance is not academic. The performance of the Reconfigurable
architecture must be evaluated by the efficiency of hardware usage and scalability. However,
to evaluate the efficiency of hardware, we need a clear method to evaluate the amount of the
hardware used to achieve the performance. Which method is comprehensible enough to be used
for comparing difference architectures, including non-reconfigurable one. When the reconfigurable
architecture succeeds to triumph over the efficiency of the non-reconfigurable ones, it will become
the true next-generation computer.

Perspectives on the use of Hard-CPUs together with FPGAs

Andreas KOCH, Technische Universitat Darmstadt, Germany

In recent years, the use of CPUs integrated with FPGAs has been a topic of interest both
for academic study and industrial use. After some early commercial devices such as Altera
Excalibur and Xilinx Virtex II Pro, intervening generations have not supported on-chip hard
processors (e.g., Xilinx Virtex 6 and 7, Altera Arria/Cyclone up to IV). These devices relied
on soft-core processors instead, achieving improved flexibility, but requiring more silicon area
and power due to the use configurable resources. Only recently have devices with integrated
hard-CPUs appeared again (Xilinx Zynq series, Altera Arria/Cyclone V). In my contribution, I
present three examples for the use of reconfigurable devices and examine their impact on the use
of FPGA-integrated hard CPUs.

The first example is HaLoMote, a wireless sensor node optimized for very low-power operation
(possibly supplied by energy harvesting). In contrast to many other approaches employing pure-
software solutions running on ultra-low-power processors such as the TI MSP430, the key applica-
tion of the HaLoMote is structural health monitoring (SHM) of bridges or other large structures,
where the distributed algorithms require sufficient compute capacity even in the nodes. Here, a
processor such as the MSP430 is simply not able to provide the required peak compute perfor-
mance. As a solution, we have employed a low-power 8b 8051-compatible processor on the radio
chip to handle just the very simple communication protocol, but provide the compute capacity
by a low-power Actel IGLOO FPGA that supports active power management. It is mostly left in
a deep-sleep mode where it requires just microwatts to maintain state, and only awakens when a
structure vibration event of sufficient magnitude occurs. Then, a non-trivial analysis algorithm is
very quickly executed in dedicated hardware to determine whether the event is sufficiently impor-
tant to merit a (energy intensive) radio transmission for further processing. By using dedicated
hardware, the FPGA can very quickly return to sleep again and achieves a significantly better
energy balance than waking up a more powerful processor, but which would still be slower than
dedicated hardware (e.g., a low-power TI C55 DSP). It it were possible to have such a low-power
core present on the FPGA chip with separate power management, the energy balance of the sys-
tem would improve significantly, as the external processor actually requires most of the system
power when the radio is quiet and the FPGA is sleeping. An embedded soft-core would not help
us, since the radio protocols need to run continuously (if at a low rate) and would prevent the
entire FPGA from powering down (it is not possible to selectively power-down just parts of the
device).

The second example is an architecture for general-purpose reconfigurable embedded com-
puting. Here, a mix between a full-capability operating system (embedded Linux, in our case)

6

running on a sufficiently capable processor, and a larger reconfigurable compute capacity is re-
quired. Our ACE-M5 architecture achieves this by relying on a Xilinx Virtex 5 FX device. The
embedded PowerPC 440 cores can easily handle all system management tasks. Furthermore,
due to the on-chip nature of both the processor(s) and the reconfigurable area, both units can
be integrated tightly for high bandwidth and low-latency signaling. For example, even with
full-scale Linux running, an accelerator computing on the reconfigurable area has access to 89%
of the bandwidth to shared memory, and accelerator-to-CPU signaling requires less than 10us.
This allows demanding real-time applications (e.g., robotics and image processing) far exceeding
the capabilities of much more powerful embedded processors. While soft-core processors such as
the Xilinx MicroBlaze CPU could have been used here (energy and area efficiency was only a
secondary target), they would been significantly slower than the 2x super-scalar PowerPC cores.

The final example considers a high-performance computing architecture. The Convey HC-1ex
machine combines a quad-core Xeon CPU clocked at 2+ GHz with a reconfigurable subsystem
consisting of four large FPGAs and a high-bandwidth (80 GB/s) memory system. Both units
communicate over the Intel Front-Side Bus (FSB) which supports shared cache coherent virtual
memory. For selected bioinformatics applications, it has achieved speedups of 50x over two-
socket x86 servers. However, despite the apparent power of the architecture, two limitations
affect its performance in practice: Due to the use of FSB, which has been deprecated by Intel
since 2008, the processor models supported are no longer competitive with current-generation
CPUs (that now use QuickPath Interconnect, QPI), and can thus actually cause slow-downs over
other machines that execute software-only, but on current, much faster processors. Second, while
the machine does support transparently shared use of memory attached to the CPU and the
reconfigurable subsystem, the FSB with its bandwidth of just 8 GB/s and access latencies in the
hundreds of nanoseconds actually becomes a bottleneck. Only by carefully copying (aided with
hardware support in the machine) data between the two memory systems to the currently active
compute element can this slow-down be avoided.

- From the preceding examples, it should be obvious that the combination of a CPU and
reconfigurable processing can be very useful, even for wildly different application fields. As shown
by the middle example, the tight on-chip integration of reconfigurable and software-programmable
computing allowed efficiency gains that were not possible in either of the discrete approaches.
Both in the first and third examples, having discrete CPUs and FPGAs led to a loss in efficiency.
For the first case, the integration of a small low-performance low-power CPU with the FPGA,
supporting fine-grained power management, would have led to higher board density, improved
bandwidth/latency in communications, and better power consumption. For the third case, a
tighter integration would have avoided the bottlenecks that appear even when linking the two
elements with a relatively high-performance bus such as FSB.

On the flip-side, a tighter integration between CPUs and FPGAs also carries some very
practical problems: As shown above, different application fields also impose wildly different
requirements on their CPUs. For handling the wireless network protocols, even the slow 8051 core
was already over-designed. However, in the HPC area, the 2+ GHz quad core could sometimes not
keep up with the performance of the reconfigurable subsystem, and consequently led to decreased
speedups. Thus, it is highly desirable to always pick the most suitable CPU / FPGA combination
for the specific use-case. To actually fabricate and inventory a sufficient breadth of FPGA / CPU
combinations will prove quite challenging, however. To some extent, these difficulties might be
addressed by fabricating CPUs and FPGAs on separate dies and mixing-and-matching them
using 2.5-D and 3-D stacking technology as required just before packaging.

7

Partial Reconfiguration is Ready for Takeoff

Dirk KOCH, University of Oslo, Norway

For more than two decades, run-time reconfiguration of FPGAs was preliminary an academic
niche but there is currently a strong trend that this technology will make its way into com-
mercial products. For example, the 100ms setup time for PCIe can only be reached by using
bootstrapping on large FPGAs. Here, the PCIe related logic will be configured in a time critical
initial phase followed by the rest of the system in a second partial reconfiguration phase. Partial
reconfiguration has also several opportunities for general purpose computing. For instance, like
run-time libraries are commonly used in the software world, partial reconfiguration can be used
to implement a similar concept in hardware by dynamically linking modules into a system with
the help of partial reconfiguration.

The trend towards partial run-time reconfiguration can also be observed inside the FPGAs
themselves, because all recent devices of the two major SRAM-based FPGAs are now fully
supporting partial reconfiguration - and this holds for both, the high-end and the low cost devices.

The support for partial reconfiguration has not only improved on the hardware side, also
design tools have significantly improved. This includes FPGA vendor tools such as PlanAhead,
which provide basic functionality to implement reconfigurable systems, but also academic tools
such as OpenPR or GoAhead. The latter, for example, features module relocation and allows
implementing partial modules completely independent to any other part of the system.

Finally, the progress in silicon industry seams to continue and device capacity will soon ex-
ceed an order of magnitude more than what we see today. This will need new technologies which
are strongly related to partial reconfiguration, such as FPGA virtualization or component-based
design. Here, complex systems will be rapidly composed upon fully physically implemented mod-
ules (including place and route), which is basically the static version of partial reconfiguration.
Today, partial reconfiguration is not flying, but the mentioned trends is giving it the right thrust.

Foundations of Reconfigurable Computing

Wayne LUK, Imperial College,London, United Kingdom

Reconfigurable Computing can be regarded as a synergistic combination of two disciplines:
Reconfigurable Technology and Custom Computing. Custom Computing provides the abstrac-
tions for optimizing computations in space and in time to meet given requirements; Reconfigurable
Technology provides the physical means for realizing such abstractions effectively.

While there has been much research in Reconfigurable Technology and in application studies
of Custom Computing, the scientific foundations of these disciplines are perhaps less obvious:

1. What are the guiding principles of Reconfigurable Computing that will stand the test of
time? What are the origins of such principles, and how can they be exploited?

2. What are the limits of capabilities of Reconfigurable Computing? How would such limits
be addressed, by Reconfigurable Technology and by Custom Computing?

3. How would Reconfigurable Computing be remembered in fifty years’ time?

There is no doubt that Reconfigurable Computing is exciting. Addressing questions like the
above ones would provide insight to the origins of such excitement, which would also help finding
fundamental solutions to practical issues, such as:

8

1. How to make the best use of available devices, systems and tools by improving design
efficiency and designer productivity?

2. How to explore novel devices, systems and tools that achieve given requirements in design
efficiency and designer productivity?

3. What new theories and algorithms would be needed to support the above?

Functional and constraint programming in combination with machine
learning to increase productivity and performance

Nele MENTENS, Katholieke Universiteit Leuven, Belgium

Electronic Design Automation (EDA) plays a central role in bridging the productivity gap
for designing complex electronic systems. Most existing tools generate hardware and embedded
software that satisfy the required functional specifications. However, for many applications,
it is also important that non-functional requirements are met, such as performance, resource
utilization and power consumption, either in a strict way (e.g. a maximum surface is given) or in
a tradeoff manner (e.g. low power consumption is more important than high performance). The
concept is generic, but to obtain a competitive solution, application-specific low-level components
are needed.

We propose to use functional programming to provide high-level descriptions of the compo-
nents in the application-specific libraries and to easily integrate the generation of hardware and
software and the use of back-end synthesis and compilation tools. Further, we propose to use
constraint programming to take into account the non-functional requirements. In order to ex-
plore the design space in a smart manner, search algorithms and machine learning are applied to
narrow down the useful part of the design space early in the generation process.

Can FPGAs and/or reconfigurable devices be a common platform for
high-performance computing?

Kentaro SANO, Tohoku University, Japan

FPGAs/Reconfigurable devices can be common platform of high-performance computing but
they have to satisfy the three conditions related to device, applications, and programming, re-
spectively. In general, device influences sustained performance (P), power consumption (W), cost
(C). Super-computing prefers devices for better P, P/W, and P/C. Looking at present devices,
FPGAs can achieve comparable P or better P/W in comparison with those of such accelerators
as GPUs and Intel MICs, while they depend on applications. On the other hand, the accelerators
provide much better P/C than FPGAs. However, the end of technology scaling and the dark
silicon problem can be a tailwind for FPGAs.

Applications give operation (floating-point, fixed-point, integer, logical one), parallelism (spa-
tial/coarse or temporal/fine), and performance characteristic (memory-bound or compute-bound)
for computation. Today’s super-computing mainly demands computation with floating-point
operations, spatial/coarse parallelism, and memory-bound performance, and therefore present
processors and accelerators are designed for them except memory-bound performance. For such
computation, FPGAs also have comparable sustained performance, while they are not drastically
good. However, flexible FPGAs are much better at non floating-point, temporal/fine-parallel and
memory-bound performance than processors and accelerators. Some super-computing applica-
tions have such characteristics. Further advancement of FPGAs could give them more advantages
for computing.

9

The biggest problem is an interface of programming for FPGAs to become a platform of super-
computing. In standard super-computing, users directly write and change a code for computation,
which is written in traditional languages (C or FORTRAN). Recently their extension (OpenMP,
OpenCL, MPI) is also necessary for super-computing. Since these languages and extensions
are common interfaces of super-computing, FPGAs also have to fit them. Recently, FPGAs
already made a success for embedded super-computing as Maxeler’s story shows, where users do
not program codes, but just use softwares that are already programmed. For standard super-
computing on FPGAs, we need seamless tool-chain or compiler for traditional languages, and
acceptable compilation time in addition to efficiency bringing sufficient performance to FPGAs.

To meet these conditions, I think that the key is abstraction layer which lies between recon-
figurable devices (FPGAs) and software. We should define programmable hardware layer, which
can be based on application-domain architectures, such as architectures for each of OpenCL,
OpenACC, OpenMP, MPI, etc. Open question is: How efficient is this approach for exploiting
the performance? and How we efficiently provide compilers to these architectures?

Programmable Architecture for Pattern Matching

Tsutomu SASAO, Kyushu Institute of Technology, Japan

Sasao invented a new architecture for pattern matching, that works great for limited appli-
cations. Some of results were presented at ICCAD 2008, DATE2012, ASPDAC2012, ARC2012,
and the book ”Memory-Based Logic Synthesis,” Springer 2011. Applications to IPV6 router will
be presented at ARC2013. Sasao is now improving the optimization algorithm.

Questions and answers are as follows: Q) Do we need fundamentally new architecture? A)
Yes. We need it. To continue to progress, to write papers, and to get research grant, we need
fundamentally new architecture.

Bringing Reconfigurable Computing to the Mainstream

Hayden SO, University of Hong Kong, China

Despite years of demonstrated success in accelerating application across many demanding
domains, reconfigurable computing remains a niche that has limited reception in the mainstream
computing arena. There are two areas that deserve particular attention from the community in
order to bring reconfigurable computing to the mainstream: (1) improving design productivity
and (2) integrate with the mainstream computer architecture.

Design productivity is a difficult to define quantity. It can generally be thought as the time
required to complete a design-test-debug iteration for application development. The shorter time
each step takes, the more iteration may be completed per day, and the more likely that a de-
liverable design can be developed faster. To that end, the conventional software development
methodology is well-established after decades of evolution. Today, compilation of even the most
complex software application is swift; the runtime operating system is well designed, and there
are plenty of debugging tools and methodology for testing the resulting system. On the other
hand, there remains very little established industrial standard on application development for
reconfigurable computers. Most system relies on low-level hardware design methodology that
was originally designed for VLSI designs. Also, compiling such designs may take hours to days,
limiting the number of compile-debug cycle to close to one per day. Then, operating system
support for non-conventional computation model remains limited. Finally, debugging tools for
reconfigurable computers are generally lacking. Without a high-productivity design methodol-
ogy, it is difficult to attract novel users to appreciate the benefits of reconfigurable computers.

10

Application designers who demand the highest performance may instead turn to other forms of
compute accelerators, such as the use of GPU for the better development environment.

Apart from improving design productivity, it is also important to integrate reconfigurable
computers to the mainstream computer architecture. Most research projects on reconfigurable
computers, while achieving superior performance under a lab environment, rely on non-compatible
interfaces and techniques that are difficult to apply to other scenarios. As such, the results from
one research group can rarely be reused in another setting, forcing many researchers to “rein-
vent the wheel” over and over. In order for reconfigurable computers to become mainstream,
more efforts must be devoted to integrating such non-conventional computer model with the
mainstream computer architecture. Finally, for sake of standardization and improving backward
compatibility, it is imperative for the industry and the academia to pay more attention to de-
veloping abstraction layers for reconfigurable computers, similar to the ISA layer of standard
computers.

Requirement of a standard programming model for reconfigurable pro-
cessors

Kazuya TANIGAWA, Hiroshima City University, Japan

A standard programming model for CPUs has been developed, and hence, any high-level
language and CPU configuration can be chosen. For example, a program written in a high-level
language is executable on various CPUs. Moreover, various high-level languages are available
for developing a program that is executable on a target CPU. To develop such an environment,
CPUs and high-level languages need to be developed based on a standard programming model.

However, there is no standard programming model for Field Programmable Gate Arrays
(FPGAs) or reconfigurable processors, and hence, in many cases, it is difficult to port a program
written for a reconfigurable processor to other reconfigurable processors (here, a program consti-
tutes circuit information executable on a target reconfigurable processor). Modifying a program
according to the target reconfigurable processor and high-level language is problematic.

Therefore, in my opinion, a standard programming model for reconfigurable processors is
required for the widespread use of such processors.

Creating Heterogeneous Design Tools; the missing link

John WATSON, Data IO Corporation, USA

Our goal should be that all hardware architectures are adaptable to match their applications;
first at the application level, then at the applet/subroutine level, and then at the algorithm level.
In moving down each of these, the reconfiguration times get smaller and happen more often, until
in the end, the hardware is constantly being adapted ”in real time” with the software program
becoming more of a hardware scheduler as ”software processes” are called into action. These
types of ideas have not caught on for two reasons, a) the lack of industrial understanding of data
flow/data driven parallel processing efficiency and b) Moore’s law, whose historic price drops
have masked the need for efficiency. Since low cost is the market driver for technology, as long
as Moore’s Law could schedule cost decreases no one looked for a better solution; resulting in
our current architectural and processing rut. Hence, our industry traded low cost and software
”ease of use” for everything else. The focus became the short term solution and not necessarily
the right solution. We must get back on the right track and that won’t happen via Wall Street,
Venture Capitalists or Silicon Valley.

I feel two things are needed:

11

1. Universities, community colleges and high schools that teach HW and SW efficiency.
Students need to realize that parallel is the natural way of everyday life, and that serial
processor structures are artificial, unnatural and the old way of thinking. All of the emerg-
ing fields; big data, cloud computing, informatics, biotech, robotics, autonomous vehicles,
mobile, etc. are worlds in which parallel is the dominant theme?

2. A Moore’s Law equivalent for FPGA/RC design productivity tools.
FPGAs ICs are ”designed” while processor ICs are ”programmed”. The line between de-
sign and program needs to be removed; the line between ”IP” and ”applications”, between
”PAR” and ”compiler”, ”timing closure” and ”cycle count”, ”design verification” and ”ap-
plication testing,” etc. Furthermore, FPGA/RC/heterogeneous design tools must scale
across all applications and IC architectures, work across time and space, compile quickly
and provide a quantum leap in design reuse. A fab process shrink and the next larger wafer
size work across all CMOS chips. Where is the design tool equivalent? We should discuss
how to do this.

The battle to eradicate Fortran and Cobol as dominant languages took a decade. But the
move from those old languages enabled the first minicomputers, then PCs and then the mobile
market. Without moving away from those languages none of this would have been possible.

12

3 Discussion on a Grand Challenge Vision for Computing

The objective of this discussion was to determine if there was a foundation for establishing a
community-wide vision for configurable computing. The participants structured the discussion
progressing from the basic understanding of contemporary issues to a plan for future action.

The first topic was an assessment on the current state of the computing world. The partici-
pants noted that there are many disparate uses for computing, many different architectures, and
many scales of operation such as:

1. multi-core embedded processors
2. sensor networks
3. mobile computing
4. desktop computing
5. cloud computing
6. high performance computing
7. Internet infrastructure

From this point, the participants discussed what are the common links, and the distinguishing
links. These were identified as follows:

1. all do computing
2. parallel computing
3. heading towards heterogeneous computing elements, if not already
4. power/energy issues
5. communications issues
6. data
7. memory
8. I/O

The issue examined was that the broad spectrum of computing systems all look the same at this
level, yet each community has it’s own approach to solving problems. There are inefficiencies as
each struggles with similar problems independently.

The participants then examined the computing fundamentals as a basis for finding common
threads between the communities:

1. control
2. dataflow
3. computation
4. inter-{process, thread, processor, node} communication
5. I/O

All of these use the realm of “scale” differently. For example, solutions at a smaller scale may be
totally irrelevant to those working at a much broader, higher scale. This is something that we
must all deal with.

The participants then discussed where this technology is taking us. There are many notable
advances that need consideration. In the long run, one must consider the possibilities well beyond
CMOS when the possibility of molecular/nano computing is realized. The discussion centered on
if the fundamentals of computing concepts would change.

The session concluded with a discussion on what is needed for the community. This was a
lengthy discussion that focused on the following topics:

13

1. a common (unifying?) architecture model
2. build DSL’s on top of this
3. tools that take the application as an input constraint
4. optimize inter-{process,thread,processor,node} communication according to whether it is a

sensor network or a million-node HPC system
5. optimize power use accordingly
6. provide scalability and portability through the spectrum of targets
7. common design flow and debugging framework
8. must account for heterogeneity

The participants then concluded with a plan to create a roadmap document with the support
of the configurable computing community as a whole.

14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

