
ISSN 2186-7437

NII Shonan Meeting Report

No. 2013-3

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

The Java Modeling Language (JML)

Gary T. Leavens
University of Central Florida, Orlando, FL, USA

Peter H. Schmitt
Karlsruhe Institute of Technology, Karlsruhe, Germany

Jooyong Yi
National University of Singapore, Singapore

May 13–16, 2013



The Java Modeling Language (JML)

Organizers:
Gary T. Leavens, (University of Central Florida, Orlando, FL, USA)

Peter H. Schmitt (Karlsruhe Institute of Technology, Karlsruhe, Germany)
Jooyong Yi (National University of Singapore, Singapore)

May 13–16, 2013

Topic of the Meeting

Program verification has been a topic of research interest far into the history of
computing science. Today, it is still a key research focus, see e.g., Hoare’s Veri-
fied Compiler Grand Challenge and the Verified Software Initiative, whose flag-
ship activities are the series of VSTTE workshops (Verified Software: Theory,
Tools, and Experiments) and the launch of a series of verification competitions.
A main facet in this effort is the ability to formally express properties that must
be verified. Building on a long line of work in formal methods for reasoning
about behavioral specifications of programs, several recent languages balance
the desire for completeness and the pragmatics of checkability. In the context of
the object-oriented programming paradigm, the Java Modeling Language (JML)
is the most widely-adopted specification language in the Java formal methods
research community.

The Java Modeling Language (JML) is a formal, behavioral specification
language for Java. It describes detailed designs of Java classes and interfaces
using pre- and postconditions, invariants, and several more advanced features.
JML is used as a common language for many research projects and tools, includ-
ing a runtime assertion checker (jmlc), tools to help unit testing (jmlunit), an
extended static checker (ESC/Java), and several formal verification tools (e.g.,
LOOP, JACK, KRAKATOA, Jive, and KeY). JML is seeing some use in indus-
try, particularly for financial applications on Java smart cards and for verifying
some security properties of a computer-based voting system.

Since JML is widely understood in the formal methods research commu-
nity, it provides a shared notation for communicating and comparing many
advances, both theoretical and practical, and it serves as a launching pad for
research on advanced specification language features and tools. Researchers are
using JML to study or express results for a wide variety of problems; these
problems include verification logics, side effects (including frame axioms and
modifies clauses), invariants, behavioral subtyping, null pointer dereferences,
interfacing with theorem provers, information hiding, specifying call sequences
in frameworks, multithreading, compilation, resource usage, and security. In
addition to the tools mentioned above, JML is also used to express, compare, or
study tools for checking specifications, unit testing, and specification inference.
JML is used to state research problems for formal specification languages and
for general discussions of specification language design. JML has also inspired
at least three other similar specification languages, Spec#, BML, and Pipa, and
has influenced the design and tools for Eiffel. Representatives of these communi-
ties are included in the invitation list. JML tools are used in the implementation
of at least two other specification languages: ConGu and Circus. At present,
there are at least 19 research groups around the world that are cooperating on

1



JML-related research. These groups, and others, have published over 200 papers
directly related to JML (see http://www.jmlspecs.org/papers.shtml).

2



Participants

1. Bernhard Beckert, Karlsruhe Institute of Technology, Karlsruhe, Germany

2. Stefan Blom, University of Twente, Enschede, The Netherlands

3. Daniel Bruns, Karlsruhe Institute of Technology, Karlsruhe, Germany

4. Richard Bubel, Technische Universität Darmstadt, Darmstadt, Germany

5. Néstor Cataño, The University of Madeira, Funchal, Portugal

6. Patrice Chalin, Kansas State University, Manhattan, KS, USA

7. David Cok, GrammaTech, Ithaca, NY, USA

8. Werner Dietl, University of Washington, Seattle, WA, USA

9. Reiner Hähnle, Technische Universität Darmstadt, Darmstadt, Germany

10. Marieke Huisman, University of Twente, Enschede, The Netherlands

11. Gary T. Leavens, University of Central Florida, Orlando, FL, USA

12. K. Rustan M. Leino, Microsoft Research, Redmond, WA, USA

13. Wojciech Mostowski, University of Twente, Enschede, The Netherlands

14. David Naumann, Stevens Institute of Technology, Hoboken, NJ, USA

15. Robby, Kansas State University, Manhattan, KS, USA

16. Peter H. Schmitt, Karlsruhe Institute of Technology, Karlsruhe, Germany

17. Robert Wille, University of Bremen, Bremen, Germany

18. Jooyong Yi, National University of Singapore, Singapore

19. Daniel Zimmerman, University of Washington Tacoma, Tacoma, WA,
USA

3



Overview of Talks

JMLUnitNG: Present and Future

Daniel Zimmerman, University of Washington Tacoma, USA

JMLUnitNG is an automated test framework for JML-annotated Java code,
developed as an improvement over the original JMLUnit test framework, and has
been publicly available since 2010. It has several advantages over the original
JMLUnit, including much improved memory efficiency, the ability to run far
more tests without requiring users to edit source code, and the ability to work
with Java code written using language features introduced in Java 1.5 and later.

This talk describes and demonstrates the current status and capabilities of
the JMLUnitNG tool, and introduces new features and improvements planned
for future versions of the tool; the latter include a graphical interface and IDE
plug-in, better test generation techniques, better feedback for users, and a public
source code release.

The EventB2Java Tool for Generating JML-Specified Java
Implementations of Event-B Models

Néstor Cataño, The University of Madeira, Portugal

I presented the EventB2Java tool that produces JML-specified Java imple-
mentations of Event-B models. We implemented EventB2Java as a plug-in of
the Rodin platform. I have validated EventB2Java by generating Java code
for several Event-B models, including a moderately complex model for social
networking, and an EventB model of the Binary Search algorithm.

Verification of JML Expressions Using UML/OCL-based
Approaches

Robert Wille, University of Bremen, Germany

At first glance, the Java Modeling Language (JML) and the Object Con-
straint Language (OCL) share many similarities. However, thus far, solutions
for testing and verification of the corresponding specifications have been devel-
oped independently of each other. In the talk, we discussed possible ways to
exploit the knowledge and the solutions of the respective research areas. We
proposed an initial scheme for the mapping of JML to UML/OCL specifications.
The proposed mapping is conducted in two steps:

First the Java code is translated into a UML class diagram representing the
structure of the program.

Afterwards the JML constraints are mapped to the corresponding OCL ex-
pressions forming restrictions and constraints on the program.

Initial case studies showed how, using this scheme, JML specifications can be
verified using UML/OCL verification approaches.

4



Demo of the KeYSystem

Peter H. Schmitt, Karlsruhe Institute of Technology, Germany

Using a small example, comprising three methods, this demonstration pro-
vided a detailed walk through the various artefacts used in the program verifi-
cation process of the KeY system:

• JML annotated Java source file,

• proof obligation browser,

• proof obligations formalized in Dynamic Logic
(this is the internal logic of the KeYsystem)

• first-order proof obligations

JML was – obviously – assumed to be known to the audience. Short one-
slide introductions to Dynamic Logic, sequents, and sequent calculus rules were
provided along, and in addition the formal representation of proof rules was
shown, called taclets in the KeY vernacular.

The example verification task included the use of the abstract data type of
finite sequences and the notation of permutation of finite sequences. A glimpse
into the taclet axiomatization of this data types was given.

OpenJML: Status and Challenges

David Cok, GrammaTech, Ithaca, NY, USA

OpenJML is a set of tools supporting the Java Modeling Language (JML) for
Java 1.7. Though the implementation is not complete, OpenJML supports the
basic level 0 features of JML and many higher level features. The overall goal of
OpenJML is to provide an encoding of Java and JML into logical assertions in
SMTLIBv2 format that can be submitted to off-the-shelf SMT solvers for valida-
tion or refutation. By this means, the JML community can explore a number of
research avenues: the utility of novel specification language features; the effect
of styles of writing annotations on verification success; the effect of language en-
coding (into SMT) on verification success; the abilities (and room for growth) of
SMT solvers as applied to software verification. The OpenJML tool set includes
both a command-line tool and an Eclipse plug-in; the GUI implementation and
the overall user-facing feature set is intended to make verification-style formal
methods accessible in educational settings, and the author invites collaboration
to ensure the tool has the features needed for use in the classroom in the fall
of 2013. In particular, the tool provides warning reports and counterexample
information in the context of Java source code, much as a developer might use
any IDE. OpenJML is intended to replace ESC/Java2, which only supports Java
1.4, by leveraging an existing and active Java compiler: the tool is built on the
OpenJDK compiler toolset for Java, so that it can readily incorporate bug fixes
and new features as Java develops.

5



Ghost Code and Algorithmic Specification in the Java Mod-
eling Language

Bernhard Beckert, Karlsruhe Institute of Technology, Germany

The standard approach to specification with JML is to declaratively describe
the states that Java programs reach using pre-/post-condition pairs and invari-
ants. But in many cases, it is also important to be able to describe the behaviour
of Java programs algorithmically by defining an abstract program or automaton
and stating what the relation between the abstract program and the concrete
Java program is. Currently, the way to do this with JML is to use model fields
and ghost code. In my talk, I propose additional features for JML that give
more support for abstract algorithmic specifications.

One useful extension are abstract data types. Another one is an operator
choose that allows to write non-deterministic ghost code, where the source of
non-determinism is made explicit in the code instead of being hidden in the
definition of model fields. It should then also be allowed in JML to define ghost
methods that are non-deterministic and are allowed to (only) change ghost state.

To describe the relation between (abstract) ghost methods and concrete Java
code, I propose to introduce the modal operators [] (box) and <> (diamond)
known from dynamic logic to JML. This would, for example, allow to write

invariant

\forall int res; ( <concreteM()> \result == res ==>

<abstractM()> \result == res

)

to express that concreteM() refines abstractM().
To illustrate the usefulness of these extensions, I present the specification of

a Java program implementing the Single Transferable Vote election scheme.

Generics: an Annotation Preserving Type Erasure

Stefan Blom, University of Twente, The Netherlands

In this talk, we present ongoing work which aims to verify Java programs
that use generics and have been specified by transforming them into a specified
Java program without generics and then verifying that simplified program.

This transformation will be used in the VerCors toolset to verify concur-
rent Java programs and libraries that have been specified using JML extended
with separation logic. Among them java.util.concurrent, the Java concur-
rency package. The VerCors toolset works by translating specified Java pro-
gram into Chalice programs. The latter does not support generics, so we need
a transformation that erases generics. Another use of the transformation is as
a pre-processing step for using JML tools do not support generics.

The effect of erasure on the code of the program is essentially the same
transformation that a Java compiler uses. The transformation for specifications
is more difficult: generics annotations contain information about which objects
are instances of which classes. This information must be transformed into ad-
ditional (generics free) specifications because otherwise static checkers will no
longer be able to successfully verify the transformed program.

6



Reuse in JML by Specification Deltas
and Abstract Contracts

Reiner Hähnle, Technische Universität Darmstadt

Modern software tends to undergo frequent requirement changes and typi-
cally is deployed in many different scenarios. This poses significant challenges
to formal software verification, because it is not feasible to verify a software
product from scratch after each change. It is essential to perform verification
in a modular fashion instead. The goal must be to reuse not merely software
artifacts, but also specification and verification effort.

In our setting code reuse is realized by delta-oriented programming, an ap-
proach where a core program is gradually transformed by code ”deltas” each of
which corresponds to a product feature. The delta-oriented paradigm is then
extended to JML specifications and to verification proofs. As a next step to-
wards modular verification we transpose Liskov-Leavens’ behavioural subtyping
principle to the delta world. Finally, based on the resulting theory, we perform
a syntactic analysis of contract deltas that permits to automatically factor out
those parts of a verification proof that stays valid after applying a code delta.
This is achieved by a novel verification paradigm called “abstract verification”.
A few simple language concepts are sufficient to make JML support specification
and verification reuse.

For Programs and Proofs: Mo’ Specs and Mo’ Math

K. Rustan M. Leino, Microsoft Research, Redmond, USA

Behavioral program specifications can be given at different levels of details.
As we increasing our ambitions to write more detailed specifications, we need
more features in the specification language. These features include a conve-
nient and user-extensible repertoire of types (like mathematical integers, sets,
sequences, and inductive datatypes), ghost constructs (which look like ordinary
program constructs but are specification-only and are ignored by the compiler,
like ghost variables, ghost parameters, and ghost methods), and user-defined,
and often recursive, functions. When specifications become more involved, so do
proofs. Thus, to support proofs of more expressive specifications, proof systems
will need a combination of more automation and more user-defined proof guid-
ance. For example, such guidance can include user-supplied declarative proofs
or proof sketches.

In this presentation, I give a taste of how these considerations have played
out for the verification-aware programming language Dafny.

From JML to Spark and Back

Patrice Chalin, Kansas State University, USA

At the last JML meeting in Dagstuhl (2009), some of the key topics discussed
included: an adoption of strong validity for assertion semantics, the JML In-
termediate Representation (JIR), Java Contracts and possible use of JML 5

7



annotations, i.e., the Meta Data Facility (MDF), as the principle means of en-
coding JML specification constructs. Discussions of these topics was lead by
myself and Robby from K-State’s SAnToS Lab.

In terms of what is relevant to the JML community, SAnToS lab is currently
leading two main research thrusts: the Medical Device Coordination Framework
(MDCF) and the Sireum Kiasan symbolic execution tools. In the context of the
MDCF, use of Model Driven Engineering (MDE) techniques are being explored
through use of the Architectural Analysis and Design Language (AADL). A
SAnToS PhD student is leading the development and maturation of the Behav-
ioral Language for Embedded Systems with Software (BLESS). BLESS can be
thought of as a BISL for AADL. In the context of MDE we will also be exploring
code generation from BLESS annotated AADL models into SPARK annotated
ADA code. Version 1 of Kiasan, the SAnToS symbolic execution tool originally
supported JML and then SPARK. Since 2010, Robby has been leading a com-
plete rewrite of the Sireum core framework on which Kiasan is based. Thus
there has been a shift in BISL from JML to SPARK, the main reasons for this
are that SPARK is considerably simpler than JML and yet is actively used by
industry, particularly in (embedded) safety and security critical applications.

SAnToS is also involved in the language design team of the nextgen of
SPARK called SPARK 2014. This new edition of SPARK results from: the
advent of Ada 2012, lag in the development of Classic SPARK tooling, and
the success of the HI-LITE project lead by AdaCore, Altran-Praxis and IN-
RIA. Ada 2012, the latest standard of the Ada language introduces: aspects
(akin to Java 5 annotations, but allowing arbitrary syntax to be used in an-
notation expressions), native support for basic subprogram contracts (via the
Pre and Post aspects), type invariants, etc. HI-LITE project goals were to cre-
ate a new tool architecture where a compiler and verifier would be based on
the same front-end, and to explore the possible synergy of combining test and
proof. Why? Because unit testing is one of the most expensive parts of the
certification of airborne computerized systems. The latest edition of DO-178,
namely DO-178C, permits the use of formal methods to discharge some obli-
gations instead of testing. HI-LITE defined the Alfa language, a “safe” subset
of Ada 2012 with extra features useful for describing contracts and tests. Like
JML, Alfa assertion semantics is based on strong validity and supports arbitrary
precision numeric types. SPARK 2014 has been: inspired by Alfa but will retain
many of the classic SPARK features and yet will go far beyond the limitations
of Classic SPARK. SPARK 2014 development is a joint effort between AdaCore
and Altran-Praxis. In a consulting role, I have participated in the SPARK 2014
language design meetings, hoping to share some of JML’s growing pains so that
problems can be averted.

While some of the features of JML have influenced, and been adopted by,
Alfa (and hence the SPARK nextgen), the most important observation we can
make about SPARK nextgen, is that the availability of a key native feature like
Ada aspects will likely be very beneficial to SPARK. We believe that this would
be true of JML as well. Maybe it is time for a JSR proposing an extension to
the Java Meta Data Facility.

8



Explicating Symbolic Execution (xSymExe):
An Evidence-Based Verification Framework

Robby, Kansas State University, USA

Previous applications of symbolic execution (SymExe) have focused on bug-
finding and test-case generation. However, SymExe has the potential to signifi-
cantly improve usability and automation when applied to verification of software
contracts in safety-critical systems.

Due to the lack of support for processing software contracts and ad hoc ap-
proaches for introducing a variety of over/under-approximations and optimiza-
tions, most SymExe implementations (and many static analysis approaches)
cannot precisely characterize the verification status of contracts (e.g., indicat-
ing when contracts are truly verified or violated). Moreover, these tools do not
provide explicit justifications for their conclusions, and thus they are not aligned
with trends toward evidence-based verification and certification.

To provide a foundation for using SymExe for verification in the context of
high-assurance software development, we introduce the concept of Explicating
Symbolic Execution (xSymExe) that:

1. builds on a strong semantic foundation,

2. supports full verification of rich software contracts,

3. explicitly tracks where over/under-approximations are introduced or avoided,

4. precisely characterizes the verification status of each contractual claim,
and

5. associates each claim with explications for its reported verification status
– a detailed presentation of evidence that justifies each claim’s reported
verification status.

We provide an open source implementation of xSymExe in Bakar Kiasan – a
verification tool for the Spark subset of Ada designed for developing critical
applications, and we report on case studies in the use of Bakar Kiasan.

A Case Study in Formal Verification Using Multiple Ex-
plicit Heaps

Wojciech Mostowski, University of Twente, The Netherlands

In the context of the KeY program verifier and the associated Dynamic Logic
for Java we discuss the first instance of applying a generalised approach to the
treatment of memory heaps in verification. Namely, we allow verified programs
to simultaneously modify several different, but possibly location sharing, heaps.
In this paper we detail this approach using the Java Card atomic transactions
mechanism, the modelling of which requires two heaps to be considered simul-
taneously – the basic and the transaction backup heap. Other scenarios where
multiple heaps emerge are verification of real-time Java programs, verification
of distributed systems, modelling of multi-core systems, or modelling of per-
missions in concurrent reasoning that we currently investigate for KeY. On the

9



implementation side, we modified the KeY verifier to provide a general frame-
work for dealing with multiple heaps, and we used that framework to implement
the formalisation of Java Card atomic transactions. Commonly, a formal spec-
ification language, such as JML, hides the notion of the heap from the user. In
our approach the heap becomes a first class parameter (yet transparent in the
default verification scenarios) also on the level of specifications.

JML & Specifications Involving Abstract Domains
(Preliminary Ideas and Experiences)

Richard Bubel, TU Darmstadt, Germany

In the talk we presented our work in using JML as an intermediate ex-
change format between a static resource analyzer (COSTA) and a verification
tool (KeY) to achieve formally verified resource guarantees of Java programs.
In more detail: Program properties that are automatically inferred by static
analysis tools are generally not considered to be completely trustworthy, unless
the tool implementation or the results are formally verified. Here we focus on
the formal verification of resource guarantees inferred by automatic cost analy-
sis. Resource guarantees ensure that programs run within the indicated amount
of resources which may refer to memory consumption, to number of instruc-
tions executed, etc. In previous work we studied formal verification of inferred
resource guarantees that depend only on integer data. In realistic programs,
however, resource consumption is often bounded by the size of heap-allocated
data structures. Bounding their size requires to perform a number of structural
heap analyses. The contributions of our work are

1. to identify what exactly needs to be verified to guarantee sound analysis
of heap manipulating programs,

2. to use and extend JML such that the intermediate analyses results of
COSTA can be expressed as assertions and contracts in form of JML
annotations,

3. to provide a suitable extension of the program logic used for verification
to handle structural heap properties in the context of resource guarantees,

4. to improve the underlying theorem prover so that proof obligations can
be automatically discharged.

Exploring info Flow Extensions in a Project that Targets
Android Apps

David Naumann, Stevens Institute of Technology, USA

The first part of my talk was an overview of a project seeking tools and
techniques for cost-effective evaluation of the trustworthiness of mobile apps.
We focus on ‘enterprise scenarios’, involving mission-related apps and/or ac-
cess enterprise networks, where incentives and resources exists for substantive
evaluations. Our goals are to

10



1. find flexible and expressive ways to specify information flow requirements
for apps,

2. find effective ways to specify what is assumed about the Android platform
API, and

3. find practical static analysis and verification techniques to check security
of apps with respect to given policies and the platform API.

In our approach, policies have two parts.

(0) A baseline security policy is specified by conventional clearance-level labels
on channels; these are propagated through the app’s code by type inference,
which we plan to implement using the Checker Framework discussed at this
meeting.

(1) Downgrading policies are specified in terms of assertions and special re-
lational formulas, to express ‘what’ part of sensitive data is downgraded (e.g.,
aggregates, or encryptions) and ‘under what conditions’ downgrading is allowed
(e.g., after user authentication, or after key expiry). Checking of downgrading
policies requires conventional assertion checking, for which we are using Open-
JML, and relational checking which is being prototyped using Why3 and will
eventually be incorporated into a version of OpenJML with extensions to express
relational properties. Relational properties subsume information flow proper-
ties of a single program (noninterference), as well as equivalence or refinement
between programs expressed in terms of coupling relations.

In the second part of this talk I discussed unpublished work on reasoning
about relational properties, motivated by equivalence of data representations. I
gave a quick sketch of Relational Region Logic, in which dynamic frames are used
to express encapsulation boundaries, and a Reynolds-style ‘abstraction theorem’
appears as a proof rule for program linking. The rule serves to lift a simulation
between two ADT implementations to a simulation for a client context linked
to the two implementations. I also described how the two programs to be
related may be interwoven to facilitate modular verification using intermediate
relational assertions.

Proving Information Flow Security with JML and KeY

Daniel Bruns, Karlsruhe Institute of Technology, Germany

There have been static security enforcement techniques based on syntax or
types for a long time. While static checking of security type systems provides an
attractive and efficient means to enforce non-interference, it is often overly con-
servative in practice. The reason is that type-based techniques cannot take func-
tional properties into account. For example, a program like low = high * 0; is
secure, but to verify this one needs to reason about the functionality of *. Sim-
ilarly, to verify that if (high) {low = f1(low);} else {low = f2(low);}

is secure, one has to verify that f1() and f2() compute the same.
In contrast, functional program verification techniques tend to be very pre-

cise; they can handle the above examples. Many security properties can be
defined in this way; the most widely used is non-interference: If any two runs

11



start with the same public inputs, they must agree on the public outputs. In
other words, the secret inputs must not influence public outputs. It is an ap-
pealing feature of this methodology that the formalization is in most cases a
straightforward transcription of the informal definition. Another advantage is
the possibility to use existing program verification systems and theorem provers
to support verification of the specified properties.

We have extended JML method contracts with a separates clause. It spec-
ifies a set of locations V , such that the locations not in V do not interfere with
locations belonging to V . This means that an attacker which can observe one
of those sets of locations won’t be able to deduce more information through
the execution of the method than he or she already knew. This specification
can be further refined using declassification. A \declassify statement declares
an expression which value an attacker may additionally learn. The extension
of JML integrates seamlessly with functional JML specifications. This is im-
portant since a real precise calculation of information flow dependencies can
only be achieved with knowledge on the functional behavior of a program or
method. This also works the other way around: knowledge on information flow
dependencies does improve functional verification.

Logical information flow analysis has for the greatest part been investigated
for simple imperative programming languages. In an object-oriented context the
usual definition of low-equivalence of states requiring that the observed values
be equal in both states is too strong. Instead only primitive observed values are
required to be equal, the observed object values need only be related through a
partial isomorphism.

Session on JML in Academic Education

chaired by Marieke Huisman, University of Twente, The Netherlands

We discussed the possibility to integrate the use of JML in the bachelor
program. If we want to achieve something in this respect, we need: good tool
support, and good text material that introduces the use of annotations in a
natural way. We discussed where in the bachelor program this could be in-
tegrated. Some participants felt the concern that Java in itself is already too
complicated for many first year students (and thus, adding JML would add even
more complexity). Probably an algorithms and data structure course would be
the most appropriate place to integrate this into the program. Good tool sup-
port is currently under development (and will focus on educational use), and as
a next step, existing text book material should be collected, and combined and
extended into one good tutorial text.

Type Annotations, the Checker Framework, and JML

Werner Dietl, University of Washington, USA

I present my research project to combine pluggable type checking with be-
havioral interface specifications, in the context of the Checker Framework and
JML.

Java currently only supports annotations on declarations, for example, on
a class declaration. Type annotations extend Java to allow annotations on all

12



uses of types in source code. This allows the use of type annotations in Java
to implement pluggable type checking. I implemented type annotations in the
OpenJDK Java compiler and they will be included in the Java 8 release.

The Checker Framework uses type annotations to provide the infrastruc-
ture for pluggable type checkers. A few common type systems are included; for
example, the Nullness Checker allows the programmer to ensure null-pointer
exception freedom. In recent work, we extended the simple type system infras-
tructure with a general dataflow framework that supports the specification of
pre- and post-conditions of methods. Specialized annotations support particular
type systems to specify finer-grained conditions; e.g. in the Nullness Checker,
an annotation specifies that a certain field has to be non-null when a method is
called. Still, static type systems are conservative in nature and cannot express
all possible scenarios — leading to undesirable false positives.

Instead of tailor-making pre- and post-condition annotations for each plug-
gable type system, I propose integrating pluggable type checking with behavioral
interface specifications. The Checker Framework is used to enforce properties
that are expressible as type systems. JML specifications are used to refine these
type systems with fine-grained specifications. The runtime assertion checker
and static verification tools can rely on the guarantees provided by the type
systems and only need to check or verify the finer-grained properties not guar-
anteed by the type systems. Meta-annotations on the type qualifiers are used to
specify the translation between type system constructs and the corresponding
JML constructs.

By studying the formal relationship between pluggable type checking and
more expressive verification approaches, and by providing practical tools, I want
to enable developers to go from light-weight type systems to full verification
within a common framework. For more details about type annotations and the
Checker Framework see http://types.cs.washington.edu/.

On the Specification of the Past

Jooyong Yi, National University of Singapore, Singapore

Despite the promise of DBC (Design by Contract) and the advancements of
specifications and verifications, DBC has not been adopted to mainstream soft-
ware development practice yet. I believe that this is largely due the fact that
the current specification methods are not cost effective. Most programmers
are reluctant to write sophisticated specifications for each method (or function)
even at the promise of full verification. Meanwhile, not many programmers are
keen on writing simple contracts because intentions behind them can be rela-
tively easily checked (at least partially) by other means like traditional testing.
However, all of these do not mean that specifications are useless. To check
something, one first need to express the intentions. In this talk, I present two
directions of efforts that can increase the cost-effectiveness of specifications.

To make specifications cost-effective, one obvious way is to improve a speci-
fication language so that complicated properties can be expressed in an intuitive
and succinct manner. For example, I introduced with my colleagues a past ex-
pression as an alternative to the conventional old expression to do structural
comparison in a much more intuitive and succinct way.

13



Another way to improve the cost-effectiveness of specifications is to find a
new application domain other than the traditional program verification. For
example, I introduced with my colleagues at NUS a change contract that de-
scribes behavioral and structural changes across program versions. A change
contract is typically small because only changes are specified assuming that the
rest of behaviors are preserved. Nevertheless, having a change contract can
make a big impact on software maintenance because with the intentions spelled
out in a change contract, programmers can effectively deal with various software
maintenance problems such as wrong bug fixes, regression errors and test case
breakage.

Both of the above work were realized as extensions of JML. Also, runtime-
assertion checking support was implemented and tested in the OpenJML frame-
work.

Incorporating Region Logic and Separation Logic into JML
Framing

Gary T. Leavens, University of Central Florida, Orlando, FL, USA

Framing is important for languages such as JML to allow properties to be
carried across method calls when doing verification. JML already incorporates
an approach to framing, based on Leino’s data groups and the Universe type
system. However, in recent years, several new and powerful approaches to fram-
ing have arisen, including separation logic, region logic, and the dynamic frames
technique. In this talk we propose an extension to JML that incorporates prim-
itives necessary to support region logic and the dynamic frames technique di-
rectly. We also describe a translation from separation logic into this extension
and argue that general separation logic specifications can be translated without
change of meaning into this extended JML. Thus this extension would allow
different styles of specifying frames to be written in JML, but supported by a
common semantics in tools.

This represents joint work with Yuyan Bao and was supported in part by
the US NSF under grant CCF-0916715.

Conclusion

After introductions, Gary Leavens lead a discussion about the current state of
JML and what he called “JML’s Bright Future”. In staking this position, he
said that he believes that Java will be important for a long time and that by
working together all the participants in the JML project can lower costs for
users and maximize user benefits.

The advantage of JML is that it acts as glue for formal methods tools and
lets users apply many different tools to a single specified piece of code. He
characterized the mission of the JML effort as:

• To make formal methods for Java practical and useful, and

• To enhance our individual reputations and careers.

14



Gary enumerated several successes of the JML project since the first days in the
late 1990s, but emphasized that the successes were largely due to having useful
tools. He said that the ”way forward” for JML was through the OpenJML
platform, and urged all concerned to work towards the success of OpenJML.

In the final discussion session on the Future of JML, Gary Leavens started by
noting that JML is at life stage that Wynn’s paper (“Organizational Structure
of Open Source Projects: A Life Cycle Approach,” 7th Annual Conference of the
Southern Association for Information Systems, Georgia, 2003) calls “Decline or
Revival”. He committed himself to JML’s revival and urged the participants to
also help revive JML. He committed himself to working on the JML Language
definition and a JML textbook (a need pointed out in the education discussion).
He called for volunteers from the JML community to work on the following
topics:

• Maintain parts of web site Test OpenJML and provide bug reports

• Submit patches for bugs

• Provide (shell) scripts, packaging for OpenJML

He also urged the participants to get their students involved in:

• Testing and filing bug reports on OpenJML

• Submitting patches for bugs

And he urged the participants to volunteer to recruit such students, to coor-
dinate documentation about OpenJML, to cooperate with David Cok to carve
out pieces of OpenJML for the most promising volunteers (with a view towards
making them active developers), and to publicly reward and encourage volun-
teers.

On the whole the organizers and participants were very pleased and happy
with the workshop. Participants learned many new things and seemed to come
away from the workshop with a renewed sense of purpose and commitment to
the JML effort and the wish to schedule the next meeting of the JML community
not only after another 3 years, but – maybe – already in 2014.

15


