
ISSN 2186-7437

NII Shonan Meeting Report

No. 2016-5

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Architecture-Centric Modeling, Analysis,
and Verification of Cyber-Physical

Systems

Shin Nakajima
Jean-Pierre Talpin
Masumi Toyoshima

Huafeng Yu

March 21 - 24, 2016

Architecture-Centric Modeling, Analysis, and

Verification of Cyber-Physical Systems

Organizers:
Shin Nakajima (NII)

Jean-Pierre Talpin (INRIA)
Masumi Toyoshima (Denso Corporation)

Huafeng Yu (Toyota Info Technology Center)

March 21 - 24, 2016

The term cyber-physical system (CPS) was introduced by Helen Gill at the
NSF referring to the integration of computation and physical processes. In CPS,
embedded computers and networks monitor and control the physical processes,
usually with feedback loops where physical processes affect computations and
vice versa. The principal challenges in system design lie in this perpetual inter-
action of software, hardware and physics.

CPS safety is often critical for society in many applications such as trans-
portation (whether automotive, trains or airplanes), power distribution, medical
equipment and tele-medicine. Whether or not life is threatened, failures may
have huge economic impact. The development of reliable CPS has become a
critical issue for the industry and society. Safety and security requirements
must be satisfied by using strong validation tools. Achieving required levels of
safety, security and quality of service needs these properties of the system to be
formally proved before its deployment. In the past 15 years, development has
moved towards Model Driven Engineering (MDE). With MDE methodology,
requirements are gathered with use cases, then a model of the system is built
that satisfies the requirements. Several modeling formalisms have appeared in
the past ten years. The most successful are the executable models - models
that can be exercised, tested and validated. This approach can be used for both
software and hardware systems.

A common feature of CPS is the predominance of concurrency and paral-
lelism in models. Development of concurrent and parallel systems has tradi-
tionally been clearly split in two different families. The first family is based
on synchronous models, primarily targeting design of hardware circuits and/or
embedded and reactive systems that are often safety-critical. Esterel, Lustre,
Signal and SCADE are examples of existing technologies of that nature, and
in many places these have been connected with models of environments as re-
quired for CPS modeling. The second family addresses more loosely coupled
systems, where communication between distributed entities is asynchronous by
nature. Large systems are increasingly mixing both types of concurrency: they
are structured hierarchically and comprise multiple synchronous devices con-
nected by buses or networks that communicate asynchronously.

1

In an architectural model, a CPS is represented by a distributed system as
entities with well-defined interfaces, connections between ports on component
interfaces, and specifies component properties that can be used in analytical rea-
soning about the model. Models are hierarchically organized: each component
can contain another sub-system with its own set of components and connections
between them. An architecture description language for embedded systems, for
which timing and resource availability form an important part of requirements,
must in addition describe resources of the system platform, such as processors,
memories, communication links, etc. Several architectural modeling languages
for embedded systems have emerged in recent years, including the SAE AADL,
SysML, and UML MARTE.

An architectural specification serves several important purposes. First, it
breaks down a system model into manageable components to establish clear
interfaces between components. In this way, complexity becomes manageable
by hiding details that are not relevant at a given level of abstraction. Clear,
formally defined, component interfaces allow us to avoid integration problems
at the implementation phase. Connections between components, which specify
how components affect each other, help propagate the effects of a change in
one component to the linked components. More importantly, an architectural
model is a repository to share knowledge about the system being designed.
This knowledge can be represented as requirements, design artifacts, component
implementations, held together by a structural backbone. Such a repository
enables automatic generation of analytical models for different aspects of the
system, such as timing, reliability, security, performance, energy, etc.

Since all the models are generated from the same source, the consistency of
assumptions w.r.t. guarantees, of abstractions w.r.t. refinements, used for dif-
ferent analyses becomes easier, and can be properly ensured in a design method-
ology based on formal verification and synthesis methods, using notions such as
formally defined interfaces and contracts. In most cases, however, quantitative
reasoning in architecture modeling and CPS is predominantly parameterized by
the dimension of time. In each of the viewpoints, such as software, hardware, or
physical phenomena, that an architecture or CPS model refers to, time takes a
different form, namely continuous vs discrete, or event-based vs time-triggered.
It is therefore of primary importance to mitigate heterogeneous notions of time
to support quantitative reasoning in system design, either using a tentatively
unified model for it, or by formalizing abstraction/refinement relations from one
to another in order to mitigate heterogeneity.

Despite recent research activities in this area, to formally define or seman-
tically interpret architectural models, we observe a significant gap between the
state of the art and practical needs to handle evolving complex models. In
practice, most approaches cover a limited subset of the language and target a
small number of modeling patterns. A more general approach would most likely
require semantic interpretation (an abstraction or a refinement) of the source
architecture model by the target analytic tool, instead of hard-coding semantics
and patterns into the model generator.

The meeting focuses on discussions to answer the following questions.

• How to support modeling in the large, in different dimensions? The ar-
chitectural description should tie together system requirements, platform
requirements, highlight tradeoffs, etc. How to formalize these require-

2

ments and to assess them with respect to real-time?

• How to provide a better description of the semantics for an architecture
description language in a way that is both easier to understand by humans
and easier to interpret by a tool? Thus user-friendly semantics should be
soundly linked with existing verification tools. We also envision to enhance
the model with the certification credits provided by the validation.

• How to handle extension of the semantics to address new demanding archi-
tectures like multi-core, new network technologies, and their application
to large-scale systems?

• How to model complex architectural frameworks, such as synchronous or
time-triggered designs, RAVENSCAR-compliant systems? How to inter-
connect the architecture modeling of software-intensive embedded systems
to physical concerns like energy consumption, electro-magnetic compati-
bility?

• How to provide sound, cross-domains, timed/quantitative reasoning in
system design to integrate inherently heterogeneous component models ?

The meeting also discusses how the notion of CPS has been evolved to look at
a wide variety of software problems1. Some of them have been studied indepen-
dently so far. CPS shed light on the fact that these are closely related, which
complicates the problems more than before.

• Safety-critical time-sensitive systems

• Cyber security

• Autonomous / adaptive

• Engineering of resilient systems

• Smart integrated system (or IoT)

• Big Data

Furthermore, uncertainty or Known and Unknown must be one of the key as-
pects of CPS. The meeting opens much discussions on issues such as verifica-
tion@runtime and self-integrating systems, both of which are new approaches
to solving issues in the presence of a certain form of uncertainty.

1Thanks to Peter Feiler.

3

Meeting Schedule

• March 20th, Sunday Evening

– Welcome Reception

• March 21st, Monday Morning

– Opening

– Introduction to the Meeting (Jean-Pierre Talpin)

– Self Introduction (all participants)

– Model-based Architecture (John Koo, Naoyasu Ubayashi)

• March 21st, Monday Afternoon

– AADL, (Julien Delange, Thomas Noll, Alexey Khoroshilov)

– Integration (Peter Feiler, Bruce Lewis, John Rushby)

• March 22nd, Tuesday Morning

– Automotive (Masumi Toyoshima, Hafeng Yu)

– Testing Automotive Software (Toshiaki Aoki, Takashi Kitamura)

• March 22nd, Tuesday Afternoon

– Model-Checking (Jerome Hugues, Shin Nakajima)

– Components (Eugenio Villar, Vania Joloboff, Andreas Gerstaluer)

• March 23rd, Wednesday Morning

– Time (Dionizo de Niz, Gabor Karsai, Frederic Mallet, Jean-Pierre
Talpin)

• March 23rd, Wednesday Afternoon

– Excursion and Dinner in Kamakura

• March 24th, Thursday Morning

– Wrap-up Discussions (organized by Vania Joloboff)

– Closing Remarks (Jerome Hugues)

4

List of Participants

• Toshiaki Aoki, JAIST, Japan

• Julien Delange, SEI/CMU, USA

• Peter Feiler, SEI/CMU, USA

• Andreas Gerstlauer, Univ. Texas Austin, USA

• Jorgen Hansson, University of Skovde, Sweden

• Jerome Hugues, ISAE, France

• Vania Joloboff, LIAMA, China

• Gabor Karsai, Vanderbilt University, USA

• Alexey Khoroshilov, Russia

• Takashi Kitamura, AIST, Japan

• John Koo, ASTRI, Hong Kong

• Bruce Lewis, AMRDEC Research Lab., USA

• Frederic Mallet, Univ. Nice Sophia Antipolis, France

• Shin Nakajima, NII, Japan

• Dionizo de Niz, SEI/CMU, USA

• Thomas Noll, RWTH Aachen University, Germany

• John Rushby, Stanford Research Institute, USA

• Jean-Pierre Talpin, INRIA, France

• Masumi Toyoshima, Denso, Japan

• Naoyasu Ubayashi, Kyusyu University, Japan

• Eugenio Villar, University of Cantabria, Spain

• Huafeng Yu, Toyota ITC, USA

5

Collections of Abstracts

1. Model-Based Security Analysis : Julien Delange

2. The CPS Meeting of the Domains: Models, Analyses, and Assumptions :
Dionisio de Niz

3. Modular Programming and Reasoning for Dealing with Uncertainty in
CPS : Naoyasu Ubayashi

4. Architecture-based Comprehensive Timing Analysis for Distributed Cyber-
Physical Systems : Gabor Karsai

5. Correctness, Safety and Fault Tolerance in Aerospace Systems: The ESA
COMPASS Project : Thomas Noll

6. Modeling, Analysis, and Verification of Cyber-Physical Systems in the
Electronic Century : Eugenio Villar

7. From Virtual System Integration to Incremental Life-cycle Assurance :
Peter H. Feiler

8. Model-based Analysis of Energy Consumption Behavior : Shin Nakajima

9. Practical Application of Formal Methods to Automotive Systems : Toshi-
aki Aoki

10. Summary : Vania Joloboff

11. Specification and Prototyping of Cyber-Physical Networks-of-Systems :
Andreas Gerstlauer

12. Architectural Models For Self-Integrating Systems : John Rushby

13. Overview of the Architecture Centric Virtual Integration Process : Bruce
Lewis

14. Time, Events and Architectures : Jean-Pierre Talpin

15. MARTE/CCSL for Modeling (and Analysis ?) of Cyber-Physical Systems
: Frederic MALLET

16. MASIW an AADL-based Toolset for Modeling, Analysis and Verification
of Avionics : Alexey Khoroshilov

17. A Need for High-Level CPS Modeling and V&V : Masumi Toyoshima

18. Model-checking for Ravenscar systems : Jerome HUGUES

19. An architecture-centric design analysis and optimization framework for
automotive systems : Huafeng Yu

20. Model-Based Systems Engineering for System-Level Design of Cyber-Physical
Systems : T. John Koo

21. Testing specifications : Takashi Kitamura

6

Cyber-Physical (CPS) systems are now software-reliant and evolving at an incredi-
ble pace. With the emerging Internet of Things (IoT) ecosystem, these systems are now
interconnected to several networks and exposed to potential attackers. This increases
the attack surface and, the likelihood of a successful attack that would penetrate the
system. Until recently, many security efforts were focused on code analysis, but stud-
ies have shown that security is also a matter of good software architecture design and
practices. Software architects need to isolate components according to their security
domains and criticity using appropriate methods and techniques. In that context, we are
arguing that software designers needs a framework that will help them to (1) capture the
architecture with security concerns, (2) evaluate security requirements and policy en-
forcement and ultimately (3) automatically generate the security policy from validated
artifacts.

During our presentation we present our research efforts towards a model-based
framework for the design and analysis of secure systems. Our methods and tools lever-
age the AADL architecture modeling language and extend it with security information
in order to perform the different activities of the development process, including secu-
rity policy validation, implementation, and testing. Using the same model throughout
development improves the consistency of the development process by avoiding any
translation between different—and potentially inconsistent—representations. In ad-
dition, automating the generation of implementation and tests avoids the traditional
mistakes of manual code production, such as bugs and developers’ assumptions about
ambiguous requirements. Our presentation will also demonstrate the status of our cur-
rent efforts, introduce our tools and present the agenda of coming research efforts.

Acknowledgments

Copyright 2016 Carnegie Mellon University
DM-0003221

1

Model-based Security Analysis -- Julien Delange

Shin Nakajima

The	CPS	Meeting	of	the	Domains:	
Models,	Analyses,	and	Assumptions
Dionisio de Niz

dionisio@sei.cmu.edu

Software Engineering Institute | Carnegie Mellon University

The development of Cyber-Physical Systems (CPS) increasingly demands more and more analysis tools to

understand the complex interactions of software and physics. In the automotive industry, for instance,

Simulink and Matlab tools are common to analyze the behavior of the engine control systems. The

avionics industry takes advantage of other tools to analyze the systems from the aerodynamics,

mechanical stress, thermal, timing, and logical perspective to name a few. We called these CPS analyses.

CPS analyses emerge from different scientific domains that have taken advantage of abstractions to

eliminate details not relevant to the domain in order to make the analysis tractable. For instance, logical

analysis, like model checking, eliminates execution time and considers actions instantaneous. Similarly,

analyses make assumptions that, while known to domain experts, typically go poorly documented and

rely on humans to verify their validity. For instance, the original rate-monotonic scheduling analysis

assumes that a high-priority task will never suspend after it is activated. If it does a lower-priority task

may experience more frequent preemptions from the higher-priority task than the analysis considers.

Finally, assumptions from analyses from different domains may contradict each other. Unfortunately,

due to the independent evolution of these domains, experts in each domain may be unaware of each

other assumptions. For instance, a scheduling expert may want to adjust the frequency of the

processors to make the system schedulable, but this can change the voltage demand from the batteries,

which in turn can invalidate the thermal runaway analysis of the battery management system.

In this talk I will discuss one of the initial solutions to this problems in a scheme we name Analysis

Contracts. I will also discuss our current status and the challenges we have ahead of us.

mailto:dionisio@sei.cmu.edu

Modular Programming and Reasoning

for Dealing with Uncertainty in CPS

Naoyasu Ubayashi
Kyushu University, Japan

Embracing uncertainty in cyber-physical systems (CPS) is one of the cru-
cial research topics [2]. Garlan, D. claims that software engineering is founded
on a myth that the computational environment is predictable and in principle
fully specifiable [1]. He argues that we must embrace uncertainty within the
engineering discipline of software engineering. There are three types of software
development: Known Knowns, Known Unknowns, and Unknown Unknowns.
The Known Knowns-type corresponds to the development in which uncertainty
does not exist. Many studies on this type have been conducted in traditional
software engineering research. In the Known Unknowns-type, there are uncer-
tain issues in the process of software development. However, these issues are
known and shared among the stakeholders including developers and customers.
In the Unknown Unknowns-type, it is uncertain what is uncertain.

Modularity is one of the important principles in software engineering. Un-
fortunately, the state-of-the-art module mechanisms do not regard an uncertain
concern as a first-class pluggable software module. Modularity for Uncertainty
is one of the challenges to be tackled by the software engineering research com-
munity. If uncertainty can be dealt with modularly in terms of software archi-
tecture, we can add or delete uncertain concerns to/from code whenever these
concerns arise or are fixed to certain concerns.

We propose a new programming and reasoning style supporting Modularity
for Uncertainty. Without modular reasoning about uncertainty, a developer has
to rely on global reasoning to check whether some properties are satisfied even
if uncertain concerns are contained in architectural models or code.

References

[1] Garlan, D.: Software Engineering in an Uncertain World, In Proceedings of
FSE/SDP Workshop on Future of Software Engineering Research (FoSER
2010), pp.125-128, 2010.

[2] Perez-Palacin, D. and Mirandola, R.: Uncertainties in the Modeling of
Self-adaptive Systems: a Axonomy and an Example of Availability Evalu-
ation, In Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering (ICPE 2014). pp.3-14, 2014.

Architecture-based Comprehensive Timing Analysis for Distributed Cyber-Physical Systems

Gabor Karsai
Institute for Software-Integrated Systems
Vanderbilt University
Nashville, TN 37212, USA

Distributed cyber-physical systems (dCPS) are often operating in complex domains where a high degree
of dependability is required. Examples include the power grid, networks of satellites, the air traffic
control system, and financial trading systems. A crucial characteristics of these systems is that they must
satisfy strict timing requirements under all foreseeable operational scenarios and they have to be
resilient to faults in the physical system, in the computing and communication hardware and software,
and even to cyber-attacks. The problem is made worse by the need to continually improve and update
these systems, as more and more functionality is being implemented in software. The design time
analysis and verification of such systems is essential.

Experience shows that the theoretical foundations and the needs of pragmatic engineering of dCPS
converge to a component-based architecture for such systems where large-scale distributed real-time
embedded software applications are built from ‘components’ that follow a precisely-defined model of
computation. The model of computation here defines what a component is, how its operations are
executed, and how it interacts with other components. This model is supported by an underlying
component framework that implements the run-time support for scheduling and executing component
operations. However, this is insufficient for a distributed system where component interactions involve
the network with its own physical characteristics and networking protocols. In summary, for the timing
analysis of dCPS a comprehensive approach is needed that takes into consideration the software
components of the system and all of their interactions, some of which may involve a communication
network.

The talk will present an approach that has been implemented and experimentally validated. The
approach uses Colored Petri Net for modeling the timing and behavior of a distributed component-
based application and uses an extension of Network Calculus to model and analyze the behavior of the
communication network. The two analysis methods are integrated and the analysis models are
automatically generated from a concrete architecture model of software applications. The analysis is
able to answer questions related to the worst-case stimulus to response delays, potential deadlocks and
other timing violations in the system. The architecture model is also used to generate infrastructure
code for the application, which is then combined with the business logic code for the components
provided by developers and executed on a distributed platform. The instrumented platform provided
convincing evidence that the analytical results are valid for a specific implementation.

Correctness, Safety and Fault Tolerance in Aerospace Systems:
The ESA COMPASS Project

Thomas Noll

RWTH Aachen University, Germany
noll@cs.rwth-aachen.de

Abstract

Building modern aerospace systems is highly demanding. They should be extremely re-
liable, o↵ering service without failures for a very long time – typically years or decades.
The need for an integrated system-software co-engineering framework to support the de-
sign of such systems is therefore pressing. However, current tools and formalisms tend to
be tailored to specific analysis techniques and do not su�ciently cover the full spectrum
of required system aspects such as correctness, safety, dependability and performability.
Additionally, they often cannot properly handle the intertwining of hardware and software
operation. As such, current engineering practice lacks integration and coherence.

This talk gives an overview of the COMPASS project (http://compass.informatik.
rwth-aachen.de/) that was initiated by the European Space Agency to overcome this
problem, and that provides an integrated approach to system-software co-engineering of
on-board computer-based aerospace systems. It features both a tailored modelling lan-
guage and a toolset for supporting (semi-)automated validation activities. The language is
a variant of the standardised Architecture Analysis and Design Language, AADL, and its
Error Model Annex. Its major distinguishing aspects are the possibility to describe hard-
ware and software components and their nominal operation, hybrid (and timing) aspects,
as well as probabilistic faults and their propagation and recovery. Moreover, it supports
dynamic (i.e., on-the-fly) reconfiguration of components and inter-component connections.

Based on a formal semantics that gives a precise interpretation of AADL models, our
framework supports a coherent set of specification and analysis techniques such as system
simulation, model checking, safety and dependability analysis, and performance evalua-
tion. We show how these techniques can be applied to assess system-level correctness,
safety, dependability, and performability properties of on-board computer-based aerospace
systems. We also report on industrial case studies that have been carried out in the context
of aerospace systems.

mailto:noll@cs.rwth-aachen.de
http://compass.informatik.rwth-aachen.de/
http://compass.informatik.rwth-aachen.de/

Shonan�Meeting�073:�ArchitectureͲCentric�Modeling,�Analysis,�and�Verification�
Kanagawa,�Japan� 20Ͳ24�March,�2016�

� �

Modeling, Analysis, and Verification of Cyber-Physical Systems in
the Electronics Century

Eugenio Villar
University of Cantabria

Moore's�Law�has�dominated�the� (reͲ)evolution�of�electronics�during�the� last�quarter�of�the�XX�century.�All�
the�electronic�products�we�use� today�depend�directly�or� indirectly�on� the� increasing� integration�capability�
allowed�by�semiconductor�technology.�This�evolution�has�enabled�to�produce�new�electronic�products�with�
unexpected�capabilities�just�several�years�before�they�appear.�The�smartͲphone�and�the�tablet�are�examples�
of� such� products.� This� evolution� still� continues�with� smartͲwatches,� 3D� glasses,� drones,� etc.�Due� to� the�
pervasive�character�of�electronics,�electronic�components�are�becoming�fundamental�in�the�improvement�of�
many�nonͲelectronic�products�such�as�cars,�airplanes,�medical�equipment,�domestic�appliances,�etc.�So,�for�
example,�in�2030,�50%�of�the�value�of�a�car�is�expected�to�be�due�to�the�electronics�it�contains.�The�influence�
of� electronics� goes� further� affecting� most� of� the� service� sector.� ICT� services,� eͲbanking,� eͲcommerce,�
security,�etc.�have�evolved�dramatically�as�a�consequence�of�the�electronic�push.�A�second�consequence�of�
Moore's� Law� affects� the� business�model.�All� the� electronic� products,� the� electronic� components� in� nonͲ
electronic�manufactured�products�and�services�become�obsolete�in�a�short�time�as�a�new�technology�node�is�
available�able�to�produce�devices�with�higher�performance�at�the�same�cost.�Paradigmatic�examples�are�the�
Intel's�TickͲTock�and�the�iPhone�evolution�each�year.�The�huge�investments�required�to�follow�Moore's�Law�
increases� dramatically� the� cost� of� silicon� and� limits� the� accessibility� to� semiconductor� fabrication� to� big�
players,�both�Integrated�Device�Manufacturers�(IDM)�and�large�Fabless�semiconductor�companies.�

This� business�model�will� change� in� the� short� time� as�Moore's� Law� reaches� an� end.� If�
Moore's� Law� changed� the�world,� its� end�may� have� a� similar� effect.� CyberͲPhysical� Systems� of� Systems�
(CPSoS)�will�dominate�the�electronics�century�becoming�pervasive�in�all�the�aspects�of�our�daily�lives.�For�the�
first� time,� the�underlying� technology�will�be�stable�with�only� incremental� improvements� in� time.�This�may�
make�it�accessible�to�many�new�players�looking�for�a�competitive�advantage�in�silicon.�Investment�will�move�
from�the�initial�stages�of�the�value�chain�to�those�closer�to�the�final�user.�

In�this�new�scenario,�modeling,�analysis�and�verification�of�CPSs�will�have�to�evolve.�The�
focus�should�be�put�on�the�device,�not�isolated�but�as�a�component�in�a�complex,�heterogeneous,�distributed�
network� of� many� other� computing� devices.� Services� will� be� offered� by� the� interaction� of� functional�
components�deployed�in�many�distributed�computing�resources�of�many�kind,�from�small�motes,�embedded�
systems� and� smartͲphones� to� large� data� centers� and� even�HighͲPerformance� Computing� (HPC)� facilities.�
Electronic�design�in�this�new�context�should�address�effectively�new�requirements.�Among�them,�scalability,�
reusability,� human� interaction,� easy�modeling,� fast� designͲspace� exploration� and� optimization,� powerful�
functional� and� extraͲfunctional� verification,� efficient� handling� of� mixedͲcriticality� and� security,� etc.� An�
essential�aspect�will�be�the�availability�of�powerful,�platform�independent�SW�and�HW�synthesis�tools�able�to�
produce� automatically� efficient� implementations� of� the� system� model� on� many� different� computing�
resources.� In� this� presentation,� the� effect� of� this� dramatic� change� in� system� design�will� be� discussed.� A�
singleͲsource� approach� supported� by� powerful� design� tools� will� be� proposed.� Current� results� from� the�
European�FP7�ConTrex�project�will�be�described.�

From Virtual System Integration to Incremental Life-cycle Assurance
Peter H. Feiler – phf@sei.cmu.edu

Feb 25, 2016

Challenging problems associated with system software complexity growth are threatening industry’s

ability to build next generation safety critical embedded systems. Current best practice of building and

then testing software-reliant mission and safety critical systems has led to 80% of requirement and

architecture design flaws being discovered post-unit test resulting in rework cost exceeding 50% of the

total system cost. Contributors to these problems include the growth of software, system integration,

and interaction complexity exacerbated by ambiguous, missing, incomplete, and inconsistent

requirements.

In this presentation we discuss a strategy for addressing this problem from two perspectives: 1) The use

of an architecture-centric virtual integration practice (ACVIP) to discover system-level issues early in the

development life cycle; 2) An incremental assurance approach that focuses on improving the quality of

requirements and automating incremental verification throughout the life cycle.

ACVIP is based on the SAE International Architecture Analysis and Design Language (AADL) standard. It is

a quantitative, architecture-centric, model-based approach enabling virtual integration analysis in the

early phases and throughout the lifecycle to detect and remove defects that currently are not found

until software and systems integration and acceptance testing. ACVIP is currently being piloted and

matured in a multi-year international Aerospace industry initiative called System Architecture Virtual

Integration (SAVI) as well as other industry and government projects.

To improve the quality of requirements we focus on coverage of system specifications, quality

attributes, and hazards, as well as management of uncertainty in the requirements. To improve the

quality of evidence we use compositional verification, and multi-valued logic to automate the planning,

execution of verification plans, and management, reporting of assurance evidence. We do so

incrementally along three dimensions: one architecture layer at a time, focus on critical

requirements/quality attributes and incrementally expand to the full set, and incrementally manage the

impact of changes on requirements, architecture design, and verification evidence. We will illustrate the

application of this incremental life-cycle assurance approach on real world examples supported by a

prototype tool workbench.

Copyright 2016 Carnegie Mellon University

DM-0003370

mailto:phf@sei.cmu.edu

Model-based Analysis of Energy Consumption Behavior
Shin Nakajima, National Institute of Informatics

Cyber-physical systems (CPS) have brought forward scientific challenges to

construct dependable software-intensive systems. The systems constitute social

infrastructures to support our daily lives, and have strong connections with their

outside environment as embedded systems do. These systems are different in their

shape and capability. Some of them have a common non-functional property

regarding their energy consumption behavior, because they are dependent on

batteries. The capacity of a battery is limited and, unless charged, decreases

monotonically to eventual depletion. Furthermore, the systems are

software-intensive so that they implement smart services, in which application

programs are indirectly responsible for consuming the battery power. Running a

buggy program may result in a large amount of energy unexpectedly. This brings a

new technical challenge of eliminating energy bugs (e-bugs) during the development

of software-intensive systems.

Model-based analysis methods are finding potential e-bugs in application software

designs. Such methods use a formal model to account for the behavior of both

application programs and functional hardware components. Although hardware

components are the direct consumers of battery power, programs are responsible for

energy consumption indirectly, because they control the hardware usage. An

analysis model must represent discrete behavior of programs and use real-valued

variables to account for execution time or consumed energy. Thus, model-based

analysis methods are studied in regard to the co-existence of Booleans and reals. It

is exactly one of the primary characteristics of CPS.

Establishing model-based methods of analyzing energy consumption behavior is

mandatory for developing trustworthy cyber-physical systems. We study such a

method using a variant of linear hybrid automata as a rigorous model, and then

reduce the problem of� detecting anomalies in the energy consumption behavior to

logic model checking.

Practical Application of Formal Methods to

Automotive Systems

Toshiaki Aoki
Japan Advanced Institute of Science and Technology

The safety and reliability of automotive systems are becoming a big concern
in our daily life. Recently, a functional safety standard which specializes in
automotive systems has been proposed by the ISO. In addition, electrical throt-
tle systems have been inspected by NHTSA and NASA due to the unintended
acceleration problems of Toyota’s cars. In light of such recent circumstances,
we are researching practical applications of formal methods to ensure the high
quality of automotive systems. We have several joint projects with our indus-
trial partners. In this presentation, we firstly introduce the overview of those
projects. Then, we focus on one of them, the verification of an automotive op-
erating system with model checking and testing.An operating system which we
focus on is the one conforming to the OSEK/VDX standard.

JAIST and DENSO started a joint research project in 2006. DENSO devel-
ops automotive software using OSs which are provided by the other companies.
We examined the feasibility of applications of formal methods at this point.
Then, we decided to apply formal methods to a commercial OS whose target
CPU is V850. Renesas Electronics Corporation(REL) which develops this OS
and CPU joined this project in 2009. We call the OS ’REL OS’ below. REL
OS has been already released and used in a current series of cars at this time.
It is needless to say that traditional methods have been applied to REL OS in
order to check it then. Our aim is to achieve higher quality of the OS for next
series of cars by applying formal methods.

This presentation shows a case study that model checking is applied to a
commercial OS, that is, REL OS. REL OS is too complicated to convince us that
it correctly performs for any application. We adopted exhaustive verification
techniques to check REL OS. We have conducted exhaustive testing based on
a design model which was exhaustively verified by model checking. As a result,
we acquired the confidence that REL OS correctly performs for any application
although no new bug was found. The model checking and testing were more
exhaustive and reliable than the traditional methods. Such combined model
checking and testing are appropriate to convince us of the correctness thanks to
their exhaustive nature.

1

Shin Nakajima

Summary Vania JOLOBOFF

For the past 10 years I have been working on virtual prototyping, whereas I previously worked in
compiler, operating systems and distributed systems.

I have worked on virtual prototyping of complete embedded systems from the prospective of the
architect and software development engineers. The main issues from this prospective are (i) the

simulation speed that must be fast enough to cope with Hardware In the Loop or Human In the
Loop and (ii) the different methods that can be used to ensure the system is working properly,
according to the requirements, whether they are automated tests or formal proofs using various
techniques. In order to achieve that, we have set up a virtual prototyping framework, SimSoC,
which is distributed as open source on INRIA forge.

The goal of SimSoC is “Full System Simulation”, that is, the system virtual prototype boots exactly
like the real device with exactly the same embedded software, including the operating system.
SimSoC applications can boot Linux operating system on fully simulated hardware such as the
multi-core Freescale 8641D SoC.

The cornerstone of SimSoC is a library of hardware simulation modules, that include Instruction Set

Simulators (ISS) for ARM and MIPS and Power architectures. All of the SimSoC ISS rely on the

same technology, namely a Dynamic Binary Translation that works in several steps. First the binary

code is translated in a data structure representing the basic blocks. Second the basic blocks are

individually optimized for faster simulation. An observer mechanism measures the frequency usage

of basic block to detect the 'hot spots' and those hot spots are translated into native code, via the

LLVM JIT compiler. A garbage collector is included to detect code that has become stale. SimSoC

simulation speed can reach over 500 Millions of Instructions per second. SimSoC also contains

tools to debug the virtual prototype. A native debugger such as GDB can be connected to the virtual

prototype to debug the embedded software. Also a specific version (for the Power Architecture e200

only) has been developed with Approximately Timed measurements so that software developers can

obtain performance evaluation of the embedded software on the real hardware with a good

approximation. It also contains a module to interface with the real network so that virtual devices

can be simulated on a computer, using their own IP address and TCP/IP software.

We have been working more recently on techniques to proof correctness of the application. A large

effort has been undertaken to prove that the ISS coded in C for the ARM architecture is really

simulating the ARM processor from a formal definition, using the Coq theorem prover.

Since about one year, I have been collaborating with Pr Frederic Mallet from University of Nice to

introduce a runtime verification component in SimSoC based on logical clocks. There exist

property specification languages such as PSL but they require that the properties are known at

compile time of the virtual prototype. But in real life practice, engineers discover properties that

entail from the requirements or that should be enforced by software due to hardware constraints

while debugging the system. We are working towards a system where the engineers can define new

properties and check them dynamically without recompiling the virtual prototype and without

storing huge trace files.

Specification and Prototyping of Cyber-Physical

Networks-of-Systems

Andreas Gerstlauer
The University of Texas at Austin

A key aspect of future embedded and cyber-physical systems (CPS) is networking of traditionally dis-
connected computer systems. This poses new fundamental design challenges. Machine-to-machine com-
munication comes with inherent uncertainties, such as data losses, yet systems have to perform under
tight performance guarantees. Furthermore, network-level mapping, scheduling and offloading of computa-
tions comes with non-obvious tradeoffs that will greatly influence overall application performance and power
consumption. Systematically exploring such design spaces requires new approaches for network/system
co-design across communication and computation boundaries.

In this talk, we present our early work on developing the modeling foundations for a novel network-level
co-design science of future networks-of-systems (NoS). This includes: (1) formal models of computation
and communication (MoCC) for NoS specification, including associated analysis and synthesis, and (2) fast
yet accurate NoS co-simulation models for early virtual prototyping and rapid design space exploration.
The former are based on extensions of existing deterministic datatflow models to expose inherent network
uncertainties and explicitly capture associated application adaptivity and reactivity. The latter are based on
adapting existing technologies for host-compiled simulation of multi-processor/-core system-on-chip (MPC-
SoC) platforms. In such models, source-level application code is natively compiled onto the simulation host
and first back-annotated with performance estimates obtained either from accurate reference simulations
or by employing novel machine-learning based approaches for source-level power and performance predic-
tion. Back-annotated code is then wrapped into light-weight operating system and processors models that
further integrate into standard, SystemC-based transaction-level modeling (TLM) and network simulation
backplanes. Such models have been shown to simulate at close to native execution speeds (in excess of
1000MIPS) with near cycle accuracy (less than 5% timing and energy error). Furthermore, by integrating
with floorplanning and thermal models, an exploration of real application code running on complex NoS
across a full range of performance, energy, reliability, performance and thermal (PERT) metrics becomes
possible.

Bio: Andreas Gerstlauer is an Associate Professor in Electrical and Computer Engineering at The Uni-
versity of Texas at Austin. He received his Ph.D. in Information and Computer Science from the University
of California, Irvine (UCI) in 2004. Prior to joining UT Austin in 2008, he was an Assistant Researcher in
the Center for Embedded Computer Systems (CECS) at UC Irvine, leading a research group to develop
electronic system-level (ESL) design tools, commercial derivatives of which were used at the Japanese
Aerospace Exploration Agency (JAXA), NEC Toshiba Space Systems and others. Dr. Gerstlauer is co-
author on 3 books and more than 80 publications. He has presented in numerous conference and industrial
tutorials, is an editor for ACM TECS and TODAES journals, and has served as the topic, track or program
chair of major international conferences such as DAC, DATE, ICCAD and CODES+ISSS. His research in-
terests include system-level design automation, system modeling, design languages and methodologies,
and embedded hardware and software synthesis.

Architectural Models

For Self-Integrating Systems

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA

Systems necessarily interact with their neighbors through the e↵ect each has
on the environment of the others (so-called stigmergic interactions), particularly
the “plant”—for example, several medical devices may be attached to the same
patient. Unmanaged interactions can be deleterious (e.g., gridlock in California,
where cars at a green light cannot proceed because tra�c is backed up from
the uncoordinated red light further ahead) and it is better if systems are open

to interactions, so these can be coordinated. Furthermore, systems should be
adaptive so they can adjust their behavior to their circumstances. We then have
systems of systems, which can exhibit desired and positive behavior, but it is
also possible that normal or adjusted (or faulty) behavior by one component
system adversely a↵ects others, leading to emergent misbehavior.

Not all interactions can be planned ahead of time so systems need to self

integrate as they encounter other systems at runtime. But we want the resulting
integrations to guarantee properties such as safety, so self-integration needs to
construct or update an assurance case.

One way accomplish all this is for the self-integrating systems to exchange
models of their architecture, behavior, and local assurance case: this is (safety)
models at runtime (M@RT and SM@RT). The models are used to guide adapta-
tion: for example, one component system may synthesize a monitor or wrapper
for its interaction with another to eliminate some class of behaviors that vi-
olate its assumptions. Thus, trustworthy self-integration requires autonomous
adaptation, synthesis, and verification at integration time, and this means that
embedded automated deduction will be the engine of integration.

I hope to stimulate discussion on the kinds of architectural and other models
that can best support trustworthy self integration.

References

1. John Rushby. Trustworthy self-integrating systems. In Nikolaj Bjørner, Sanjiva
Prasad, and Laxmi Parida, editors, 12th International Conference on Distributed
Computing and Internet Technology, ICDCIT 2016, Volume 9581 of Springer-Verlag
LNCS, pages 19–29, Bhubaneswar, India, January 2016.

2. Mario Tokoro. Open Systems Dependability—Dependability Engineering for Ever-
Changing Systems. CRC Press, 2013.

3. Mario Trapp and Daniel Schneider. Safety assurance of open adaptive systems—a
survey. In Nelly Bencomo, Robert France, Betty H.C. Cheng, and Uwe Assmann,
editors, Models@Run.Time: Foundations, Applications, and Roadmaps, volume 8378
of Springer-Verlag LNCS, pages 279–318, 2014.

Title	–	Overview	of	the	Architecture	Centric	Virtual	Integration	Process	

Bruce	Lewis	

US	Army	Research	Development	and	Engineering	Laboratory	

	

There	is	a	significant	need	for	Architecture-Centric	Modeling,	Analysis,	and	verification	within	the	
aviation	domain.		These	techniques	are	being	applied	in	early	experiments	sponsored	by	our	research	
organization	and	led	by	the	author.		Our	approach	strongly	leverages	the	Architecture	Analysis	&	Design	
Language	(AADL),	an	engineering	process,	the	Architecture	Centric	Virtual	Integration	Process	(ACVIP),	
for	the	application	of	the	AADL,	and	a	number	of	analysis	tools	in	the	domains	of	utilization,	latency,	
timing,	scheduling,	safety,	fault	tolerance,	and	security	and	includes	generation	of	the	system	
configuration	files	and	glue	code	to	integrate	the	system	described	in	the	architecture	specification	and	
verified	with	the	models.			
	
My	presentation	includes	the	justification	for	why	an	analytical	process	for	architecture	analysis	is	
required	based	on	the	very	high	costs	of	system	integration	in	our	domain.		It	demonstrates	the	
significant	gap	we	now	have	in	the	development	process	that	is	driving	these	high	costs	and	the	need	for	
a	multi-domain	architectural	modeling	environment	to	overcome	the	issues	we	are	experiencing.		I	
provide	a	short	history	of	development	of	the	AADL	and	these	methods	through	DARPA	research	to	the	
current	capability	and	AADL	standard	documents	and	annexes.		I	discuss	the	coverage	of	the	AADL	for	
system,	software	and	computer	hardware	and	the	modeling	methods	we	are	using	in	the	context	of	
integrated	analyses	against	the	system	architecture	specification.		Concepts	of	model	refinement	and	
verification	along	with	consistency	analysis	based	on	the	System	Architecture	Virtual	Integration	(SAVI)	
program	are	included.		Our	process	is	incremental,	evaluating	integration	feasibility	and	verifying	
requirements,	constraints	and	assurance	cases	at	each	stage	throughout	development.		I	will	discuss	our	
projects	and	international	projects	that	are	taking	a	similar	analytically	driven,	architecture-centric	
approach	and	our	roadmap	for	future	research.		I	will	also	provide	some	information	based	on	return	on	
investment	calculations	for	aviation	system	development.	
	
	

Time, Events and Architectures.

Jean-Pierre Talpin, INRIA

A cyber-physical (or reactive, or embedded) system is the integration of heterogeneous components
originating from several design viewpoints: reactive software, some of which is embedded in
hardware, interfaced with the physical environment through mechanical parts. Time takes different
forms when observed from each of these viewpoints: it is discrete and event-based in software,
discrete and time-triggered in hardware, continuous in mechanics or physics. Design of CPS often
benefits from concepts of multiform and logical time(s) for their natural description. High-level
formalisms used to model software, hardware and physics additionally alter this perception of time
quite significantly.

In model-based system design, time is usually abstracted to serve the purpose of a single of many
design tasks: verification, simulation, profiling, performance analysis, scheduling analysis. For example,
in non-real-time commodity software, timing abstraction such as number of instructions and
algorithmic complexity is sufficient: software will run the same on different machines, except slower
or faster. Instead, in cyber-physical systems, multiple recurring instances of meaningful events may
create as many dedicated logical clocks, on which to ground modeling and design practices.

Time abstraction increases efficiency in event-driven simulation or execution (i.e. SystemC simulation
models try to abstract time, from cycle-accurate to approximate-time, and to loosely-time), while
attempting to retain functionality, but without any actual guarantee of valid accuracy (responsibility is
left to the model designer). Functional determinism (a.k.a. conflict-freeness in Petri Nets, monotonicity
in Kahn PNs, confluence in Milner's CCS, latency-insensitivity and elasticity in circuit design) allows for
reducing to some amount the problem to that of many schedules of a single self-timed behavior, and
time in many systems studies is partitioned into models of computation and communication (MoCCs).
Multiple, multiform time(s) raises the question of combination, abstraction or refinement between
distinct time bases or domains. The question of combining continuous time and discrete logical time
demands formal reasoning in simulation. While timed reasoning takes multiple forms, there is no
unified foundation for reasoning about multi-form time in system design.

The objective of project TEA is to define formal methods and models for timed quantitative reasoning,
or, put simply, for time reasoning, in embedded and cyber-physical system design. Formal time models
and calculi constitute a powerful mean to revisit common domain problems in real-time system design,
such as functional determinism, time predictability, memory resources predictability, real-time
scheduling, mixed-criticality and power management; yet from the perspective gained from inter-
domain timed and quantitative abstraction or refinement relations. By this regained focus, we aim at
delivering better tooled methodologies for virtual prototyping and virtual integration of embedded
architectures.

MARTE/CCSL�for�Modeling�(and�Analysis�?)�of�CyberǦPhysical�Systems�
�

Speaker:�Frédéric�MALLET,�Université�Nice�Sophia�Antipolis�

Abstract:�

Cyber� Physical� Systems� (CPS)� combine� digital� computational� systems� with� surrounding� physical�
processes.�Computations�are�meant�to�control�and�monitor�the�physical�environment,�which�in�turn�
affects� the� computations.� The� intrinsic� heterogeneity� of� CPS� demands� the� integration� of� diverse�
models�to�cover�the�different�aspects�of�systems.�The�UML�proposes�a�great�variety�of�models�and�is�
very�commonly�used� in� industry�even� though� it�does�not�prescribe�a�particular�way�of�using� those�
models�together.�The�MARTE�profile�proposes�a�set�of�extensions�to�UML� in�a�bid�to�allow� for�the�
modeling�of�realͲtime�and�embedded�systems�(RTES).�Yet�CPS�are�a�wider�class�of�systems�than�mere�
RTES.�Hence�a� legitimate�question�arises�as�whether�MARTE�can�be�used� for�CPS�as�well.�This� talk�
discusses� some� possible� uses� of�MARTE� to�model� CPS� and� uses� logical� clocks� as� a�way� to� bring�
together�the�different�models.�

Logical�clocks�appear�as�interesting�abstractions�to�coordinate�both�digital�and�physical�models.�The�
use� of�MARTE/CCSL,�which� gives� a� concrete� syntax� to� describe� logical� clock� specifications,� opens�
questions�on�what�kind�of�verification�is�possible�and�what�needs�to�be�added�to�tackle�cyber�physical�
systems� in�particular.�On� this�part,� in�particular,� some�possible�extensions�of�CCSL�with� stochastic�
constructs�are�discussed�in�a�bid�to�connect�to�existing�verification�frameworks,�including�stochastic�
modelͲchecking.�

Frédéric Mallet: MARTE/CCSL for Modeling Cyber-Physical Systems. SyDe Summer
School 2015: 26-49 (2015)

Matias Ezequiel Vara Larsen, Julien DeAntoni, Benoît Combemale, Frédéric Mallet: A
Behavioral Coordination Operator Language (BCOoL). MoDELS 2015: 186-195 (2015)

Amani Khecharem, Carlos Gomez, Julien DeAntoni, Frédéric Mallet, Robert de Simone:
Execution of heterogeneous models for thermal analysis with a multi-view approach. FDL
2014: 1-8

Jing Liu, Ziwei Liu, Jifeng He, Frédéric Mallet, Zuohua Ding: Hybrid MARTE statecharts.
Frontiers of Computer Science 7(1): 95-108 (2013)

�

MASIW – an AADL-based Toolset for Modelling, Analysis and Verification of Avionics
Alexey Khoroshilov (Institute for System Programming of the Russian Academy of Sciences)
khoroshilov@ispras.ru

Growth of modern avionics systems makes design of such systems impossible without involvement of
automation. MASIW is an AADL-based toolset for design of modern avionics systems developed by

ISPRAS in collaboration with GosNIIAS. The toolset provides both a generic platform for design and
analysis of architecture models and a specialized solution for the particular domain of avionics
systems. It supports creation, editing and management of AADL models in both textual and graphical
notation. Also MASIW provides various features for analysis and synthesis of AADL models.

Analysis capabilities include
• a checker of static structural constraints such as resource sufficiency, interface consistency,

usage domain rules, etc.
• specialized analyzer of AFDX networks aimed to statically estimate latencies, buffer usage, etc.

• a simulator of AADL models augmented with behaviour specification in AADL Behaviour

Annex notation or in Java (also simulation can be combined with execution of actual
applications in virtual environment managed by the simulator).

Synthesis capabilities include schedule generation for a particular processor module as well as

automatic building of assignment of hardware platform resources to software components in
accordance with all requirements formalized in the architecture model.

Finally, MASIW provides a framework for generation of configuration data from architecture models.
Currently it is used for generation of configuration tables for ARINC-653 operating systems and for

AFDX switches and endpoints.

During development of the toolset we met a number problems with semantics for an architecture
description language. Generally, modelling languages are needed for both following usages:
• to express some ideas by some author (usually, a human) and

• to perceive these ideas by some particular interpreter (which can be a human or a machine).

These two usages of modelling languages contradict with each other. The more powerful a modelling
language is, the easier to write models for author and the harder they are perceived by interpreters (in
particular, the harder to implement a machine interpreter). Vice versa, the less powerful the modelling
language, the easier to interpret it and the harder to use it by a model author.

If the intended interpreter of a modelling language is a machine, the language have to have formal
semantics. Sometimes modelling languages are used to solve a lot of tasks some of which are not
automated yet. In such cases those parts that are intended to be used only by human may be left not so
formalized. Generally this situation is normal but since models are tending to become more and more

complicated, covering of analysis tasks by automation becomes more and more essential.

To analyse architecture models by a machine, domain-induced formal interpretations have to be
defined. Intermediate models can be used to reduce effort of formalization and implementation of such
interpretations. All transformations of such interpretations are formal. These formal transformations

should be checked for adequacy to informal semantics which is defined by normative documents.

We believe that such formal transformations have to be more actively used within architecture
language specifications to make architecture languages formally interpretable which means that is it
easily and robustly analyzable by a machine. This allows to build analyzers for user-defined

characteristics which are formalized and can be implemented in different instruments with the same
precise semantics.

A Need for High-Level CPS Modeling and V&V

Masumi Toyoshima

In my understanding, the most distinguished characteristics of CPS are the tight

coupling with physical world and the feedback loop. One example of such CPS is ADAS

and AD systems in automotive domain (Advanced Driver Assistance Systems,

Automated Driving).

When we think about developing an AD system, we model the CPS feedback, sensing &

computing & actuating with much environment information including pedestrians,

lanes, tires, road surfaces, etc. While doing this, we always encounter the inherent

uncertainty including sensing errors, lanes hard to see, the next move of pedestrians or

other vehicles, etc. Actually in the development phase of control modeling and

simulation, it is not so difficult to build models which include these uncertainties, for

example with probabilities and conduct simulation and validate by human decision. But

we need to implement these control logics on embedded computers which act

deterministically and they must be verified against safety requirement, which

sometimes is not described with probability or quantity.

Several works trying to define the criteria of autonomous machines including

automated driving systems are running in academia and some governments. I expect

they will be high-level definitions of criteria from us developers point of view because of

the tight connection with the society. So I think architectural level integration and

verification will be much more important for my purpose.

Model-checking for Ravenscar systems
Jerome HUGUES

Safety-critical software engineering such as hard real-time system is a
challenging research topic. Recent development methodologies suggest
various solutions based on abstraction and automation for more trusty
system construction. Formal verification in early phases of development
process, seems an import solution to reduce risk of errors. Yet system should
be well specified to obtain useful analysis results. In this talk, we propose a
formal mapping for an abstraction of real- time system based on LNT. We
focus mainly on scheduling analysis with fixed/unfixed priority algorithms
and asynchronous communication between periodic and sporadic tasks.
Experimentation illustrates results with three famous case studies. In
addition, we define an automatic model verification to validate the
applicability of our proposal.

This talk is based on joint work with Hana Mkaouar and Bechir Zalila
(ENIS)

An architecture-centric design analysis and
optimization framework for automotive systems

Huafeng Yu

TOYOTA InfoTechnology Center, USA
Huafeng.yu@us.toyota-itc.com

(Joint work with UC Riverside)

In automotive domain, architecture design was not considered to be essential, thus it is rarely formalized
and analyzed in the design stage in conventional automotive design processes. Consequently, it generally
leads to a manual, error-prone, time-consuming architecture exploration and validation. To avoid this
problem, formalization, formal reasoning, and early-phase exploration are required, along with explicit
quality attributes associated with particular architectural entities. Currently, architectural aspects of the
system are not well expressed by general modeling languages, like UML or SysML. Domain-specific
architecture description languages, such as AADL, AUTOSAR and EAST-ADL were therefore proposed
for embedded systems, especially aviation and automotive systems. With these languages and their
associated methodologies, a system-level design, considering architecture and behavior, as well as an
architecture-centric analysis and optimization is becoming a promising solution to promote virtual
engineering solutions for automotive embedded control systems.

In this talk, an architecture-centric system-level design framework will be presented. The proposed
framework and its work flow are also based on platform-based design. During the design process,
software and hardware are abstracted as software and hardware models. The meeting-in-the middle
process is then started to map the instances of the top platform (i.e., software model) with constraints into
the instances of the lower platform (i.e., hardware model) with appropriate constrains. During this process,
we analyze and evaluate various options on automotive software and hardware architecture, including
selection of computational units (ECUs and possibly GPUs and FPGAs) and communication protocols,
generation of software tasks, and mapping and scheduling of software tasks on hardware platforms. We
also consider multiple metrics and their trade-offs, including performance, fault tolerance, security,
extensibility, etc. We will target applications of advanced driver assistance systems, as well as
autonomous driving and vehicular networks, which typically have high data volume and stringent timing
requirements.

H. Yu, Software Challenges for Automotive Cyber-Physical Systems, In newsletter of IEEE Technical Committee
on Cybernetics for Cyber-Physical Systems (CCPS), 1:7-11, Feb, 2016.

B. Zheng, P. Deng, R. Anguluri, Q. Zhu and F. Pasqualetti, Cross-Layer Codesign for Secure Cyber-Physical
Systems, to appear in the IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems (TCAD),
2016.

H. Yu, P. Joshi, J.-P. Talpin, S. Shukla, and S. Shiraishi, The challenge of interoperability: model-based integration
for automotive control software, in the 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 58:1--58:6,
San Francisco, June, 2015.

Model-Based Systems Engineering for System-Level Design
of Cyber-Physical Systems

T. John Koo, Ph.D.

Director, Cyber-Physical Systems
Hong Kong Applied Science and Technology Research Institute (ASTRI)

CPS (Cyber-Physical Systems) defined as the future generations of embedded ICT
systems deeply connected between the information world and the physical world opens
up a wide range of innovative applications and service in the domains of automotive,
aerospace, health and energy as well as smart city. In the Fourth Industry Revolution,
Industry 4.0, CPS is fundamentally changing the landscape of the manufacturing
industry. We focus particularly on Virtual Prototyping, which deploys Model-Based
Systems Engineering (MBSE) principle for supporting the system-level design and
emulation of the complex system dynamics and the evaluation of the overall system
performance prior to constructing any physical prototypes in order to reduce design
iterations and optimize for higher levels of performance and reliability.

2016/03/10
Takashi Kitamura (AIST)

Testing specifications.

Formal specifications (i.e., specifications described by languages with formal
semantics) play an important role in developing safety-critical systems. As Cyber
Physical Systems (CPSs) underpins our daily-life and they will do so even more in
the future, the role of formal specifications in developing CPSs will become more and
more important. As the importance of formal specifications increases, their
correctness has an important meaning. The main approaches to the correctness of
formal specifications are model checking and formal proofs. These two techniques
are indeed powerful in a sense that they can formally prove the correctness; the
former by fully automatically and the latter by an interactive manner. However, both
techniques also have disadvantages; that of model checking is scalability, which is
often known as the state explosion problem, while that of the formal proof is its high
cost induced by the fact that the technique requires efforts of highly-skilled experts
on this technique. Indeed, it is believed that these have been main obstacles of wider
prevalence of the techniques in industry. As these techniques have their own
disadvantages which are too big in real world development, testing may become an
yet another alternative approach. Although testing cannot prove the correctness like
model checking and formal proof, it can also avoid the scalability and the cost
problem; it is more scalable than model checking, and cheaper than formal proofs.
Moreover, the literature of testing has found certain effectiveness of the techniques.
Accordingly, testing may be used for guaranteeing the correctness at a certain level.
In this meeting, I want to discuss about the possibility and effectiveness of
guaranteeing the correctness of specifications by testing.

	report
	abstract0406
	JulienDelangeP1
	DionisioDeNiz
	NaoyasuUbayashi
	GaborKarsai
	abstract-noll
	Abstract EV
	FeilerShonan2016
	From Virtual System Integration to Incremental Life-cycle Assurance

	ShinNakajima
	toshiaki
	Vania_Joloboff_Shonan
	Gerstlauer
	rushby-shonan073
	BruceLewis
	Talpin
	MALLET_abstract
	Khoroshilov-Shonan-073
	Toyoshima-CPS
	Hugues
	Shonan073-yu
	Talk_Abstract-NII_CPS_Architecture_ASTRI-CPS_20160308
	2016-03-10_shonan_meeting_kitamura

