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Motivation

* Lots of innovation in PHY/MAC design.
* Modern wireless PHYs require fast DSP.
* Easy to program? fast? portable?

* GnuRadio: easy to program, but slow.

* SORA, Warp: fast, but difficult to program, and
code is non-portable.

* We want all three!

Geoffrey Mainland—Drexel University



Problems for Researchers
* CPU platforms (SORA)

* Vectorization, CPU placement, cache use.

* FPGA platforms (Warp)

* Latency-sensitive design, difficult for new students/
researchers to get started.

* Portability/readability

* Manually highly-optimized code is difficult to read/
maintain/modify.

* Impossible to target another platform.
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What makes wireless special?

* Large degree of separation between data and
control.

* Makes providing the right abstractions challenging.
* Absolutely requires low-latency stream processing.

* Makes (efficient) compilation challenging.
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Research Goals

* Language Properties:
* Easy to read/write (high-level).

* Easy to reason about (useful as a specification
language).

* General domain-specific abstractions (makes
portability possible).

* Implementation Properties:

* Fast!

* Multiple back-ends (makes portability a reality).
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Ziria
* Wireless code written in a high-level language.

* Compiler deals with low-level code optimization.

* Provides language abstractions that are intuitive,
expressive, and appropriate for the domain.

* Implements efficient compilation scheme(s).

* Original implementation was joint work with Gordon
Stewart, Mahanth Gowda, Dimitrios Vytiniotis, and
Bozidar Radunovic.

* Competitive with Sora, hand-written C++ 802.11
stack.
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Ziria: A Two-layer Design

* Lower-level

* Imperative C-like code for manipulating bits, bytes,
arrays, efc.

* Higher-level

* Monadic language for specifying and composing
sfream processors.

* Enforces clean separation between control and data
flow.

* Monadic stream language enables aggressive
compiler optimizations.
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Existing Abstractions

* Predominant abstraction is a dataflow graph where
processing occurs at the vertices (GnuRadio, SORA,
Streamlt).

* A reasonable execution model, but not a great
programming model.

Events (messages) in

Why are data flow graphs unsatistactory?
* When is vertex state initialized?
* How can “control” messages change a vertex’s behavior?

* How can a vertex send a “control” message to another vertex,
perhaps one to which it is not immediately connected?

* How can we jointly optimize interacting vertices’ operations? Eventsilinessadestitl
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Control-Aware Stream Abstractions

control value
----- * v
Transformer/

computer index

Stream conl Juter c of

type:
ST (C v) a b
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Control-Aware Stream Abstractions

A stream input a
control value
----- * v
b sfream output b
map :: (a»b) > ST T ab take :: ST (C a) a b

repeat :: ST (C ()) ab>STTahb emit :: b > ST (C ()) a b
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“Horizontal” and “Vertical” Composition

(>>=) :: ST (Cv) ab > (v->STwab)>STwahb
return :: v > ST (C v

Composition along control
path (like a monad)

Composition along data

path (like an arrow)

(>>>) :: STT ab > ST T b c > ST T ac
(>>>) :: ST (Cv) ab->STTDbc > ST (C v) ac
(>>>) :« STT ab > ST (Cv) bc~>ST (Cv) ac
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Creating a Pipeline

{ v ¢« (cl >>> t1)
; t2 >>> t3

}
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WiFi Receiver (simplified)

Detect
Carrier

Channel | » Invert Invert
Estimation | Channel | : . | Channel | :

Packet Channel

start Info | Decode ‘_ Decode
. | Header | : | Packet |
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New Language/Compiler

* Uniform surface language (requires new types).
* Pure, monadic core (intermediate) language.

* Well-defined semantics for core language (PLT
Redex).

* Compiler is a series of transformations on the typed
intermediate language.

Geoffrey Mainland—Drexel University 14



Example: Scrambler

Data In
>
XM x® x° l Xt x3 x2 X
Scrambler Diagram from 802.11 Standard Descrambled
Data Out

fun scrambler () {
let mut tmp : bit;

repeat {
X <- take;
tmp = (scrmbl_st[3] » scrmbl_st[0]);
scrmbl_st[0:5] = scrmbl_st[1:6];
scrmbl_st[6] = tmp;
emit x N tmp;

}
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Observations about Scrambler

fun scrambler () {
let mut tmp : bit;

repeat {
X <- take;
tmp = (scrmbl_st[3] * scrmbl_st[0]);
scrmbl_st[0:5] = scrmbl_st[1:6];
scrmbl_st[6] = tmp;
emit x N tmp;

¥

¥

* Executable specification.
* Not very efficient to operate one bit at a time.

* If we could make the scrambler operate a byte at a
time, we could convert it to a lookup table.
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Array of 8 bits

xs <- take;
for i in 0..8
emit xs[1];
}

>>>

scrambler ()
>>>

{
let mut xs : [bit;8]

repeat {
for 1 1in 0..8 {
X <- take;
xs[1] = Xx;
}
emit Xs;
}
}
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Scramble

* Now the pipeline reads
and writes bytes!

* If only we could
somehow fuse these

computations together...

*We can, with the fusion
transformation.
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Fusion

repeat { x ¢« take; emit f(x) } >>>
repeat { x ¢« take; emit g(x) }

Can be fused to:

repeat { x ¢« take; emit g(f(x)) }

* The original Ziria compiler went to great lengths to
perform “auto-mapping.”

* Our fusion transformation can fuse much more, including
repeat loops and for loops with known bounds.

* Fusion is an abstract interpretation of the operational
semantics.
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Putting it All Together

repeat {
xs <- take;
for 1 in 0..8
emit xs[1];

}
>>>
scrambler () .
55> Now that we have fusion,
{ | how do we know where
let mut xs : [bi1t;8] . .
to place coercions like
repeat { )
for i in 0..8 { these'
X <- take;
xs[1] = Xx;
}
emit Xs;

}
}
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Scrambler in the 6Mbps Pipeline

crc24(len, true) >>>

scrambler (default_scrmbl_st) >>>
encodel2 () >>>
interleaver_bpsk() >>>
modulate_bpsk()

(8,24]
(1,1]
(1,2]
148,48]
(1,1]

* The compiler performs rate analysis to figure out the input/
output “shape” of individual components. Previous compiler

required annotations.

* The pipeline coalescing transformation inserts coercions to

widen the pipeline, as with the scrambler on the previous slide,
and to perform “impedance matching.”

* Finally, fusion eliminates >>>.
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TX Performance
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RX Performance
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Where's the Magic?

1. The language
* First-order (essentially).

 take and emit are built-in to the language.
Statically-known read/write sizes.

*No zip or unzip.
2. The application
*No data dependencies once we know the data rate.

* Constant loop bounds.
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Challenges: Compiling to Hardware

* atan .. := conj (..*xX, ..xy)

* “Atomic” operations now have (space) costs we have to take
into consideration.

» Compound operations now have (time) costs we have to take
info consideration.

* Longest-latency operation now gates operating frequency.
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Why There is Hope

» Simple consumer/producer model matches hardware model
pretty well.

* ANF (already used in IR) leads to simple “instruction”-level
“fission.”

* But when to fuse? For example, we still want to convert scramble
to a LUT.
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