
Streaming
Data
Compression

Jeremy

Gibbons

Streaming 2

1. Metamorphisms

Tail-recursive (accumulative) list consumption:

foldl :: (b ! a ! b)! b ! [a]! b

foldl f z (x : xs) = foldl f (f z x) xs

foldl f z [] = z

Coinductive list production:

unfoldr :: (b ! Maybe (c, b))! b ! [c]
unfoldr g z = case g z of Just (y : z0)! y : unfoldr g z0

Nothing ! []

A metamorphism is their composition:

unfoldr g � foldl f e

Streaming 3

2. Examples of metamorphisms

regroup n = group n � concat

heapsort = flattenHeap � buildHeap

baseconv (b, c) = toBase b � fromBase c

arithCode = toBits � narrow

Streaming 4

3. Streaming

Interleaving production and consumption:

stream :: (b ! Maybe (c, b))! (b ! a ! b)! b ! [a]! [c]
stream g f z xs = case g z of

Just (y, z0)! y : stream g f z0 xs
Nothing ! case xs of

x : xs0 ! stream g f (f z x) xs0

[] ! []

Streaming condition for g and f :

g z = Just (y, z0) =) 8x . g (f z x) = Just (y, f z0 x)

Theorem: if the streaming condition holds for g and f , then for all finite xs

stream g f z xs = unfoldr g (foldl f z xs)

Moreover, stream can be productive on infinite inputs.

Streaming 5

4. Example of streaming

Buffering process unfoldr uncons � foldl (++) [], where

uncons xs = case xs of

x : xs0 ! Just (x, xs0)
[] ! Nothing

Since unfoldr uncons = id, buffering is just concat.

The streaming condition holds for uncons and ++, so concat can be streamed.

Streaming 6

5. A non-example

concat is special, because production can always exhaust the internal state.

In contrast, consider regroup n = unfoldr (chunk n) � foldl (++) [], where

chunk n [] = Nothing
chunk n xs = Just (splitAt n xs)

Streaming condition fails: chunk is too aggressive, and may produce short chunks
when there is still remaining input.

Try more cautious producer chunk0:

chunk0 n xs | n 6 length xs = Just (splitAt n xs)
| otherwise = Nothing

But this never produces a short chunk.

Process should remain cautious while input remains, then throw caution to the
winds.

Streaming 7

6. Flushing

fstream :: (b ! Maybe (c, b))! (b ! [c])! (b ! a ! b)! b ! [a]! [c]
fstream g h f z xs = case g z of

Just (y, z0)! y : fstream g h f e z0

Nothing ! case xs of

x : xs0 ! fstream g h f (f z x) xs0

[] ! h z

Theorem: if the streaming condition holds for g and f , then for all finite xs

fstream g h f z xs = apo g h (foldl f z xs)

where

apo :: (b ! Maybe (c, b))! (b ! [c])! b ! [c]
apo g h z = case g z of Just (y : z0)! y : apo g h z0

Nothing ! h z

In particular, regroup n = fstream (chunk0 n) (unfoldr (chunk n)) (++) [].

Streaming 8

7. Change of base

Consider conversion from base 3 to base 7:

fromBase3 = foldr stepr 0 where stepr d x = (d + x) / 3
toBase7 = unfoldr next where next 0 = Nothing

next x = let y = 7⇥ x in Just (byc, y � byc)

(assume input digits are all in range: 0, 1, 2). Wrong kind of fold; but

fromBase3 = extract � foldl stepl (0, 1) where stepl (u, v) d = (u⇥ 3 + d, v / 3)

where extract (u, v) = apply (u, v) 0 where apply (u, v) x = v ⇥ (u + x).

Now the extract is an obstacle; but toBase7 � extract = unfoldr next0 where

next0 (0, v) = Nothing

next0 (u, v) = let y = b7⇥ u⇥ vc in Just (y, (u� y / (v ⇥ 7), v ⇥ 7))

So we have a metamorphism.

Streaming 9

8. Streaming change of base

Streaming condition does not hold for stepl and next0. Eg:

next0 (1, 1/3) = Just (2, (1/7, 7/3))
next0 (1, stepl (1, 1/3) 1) = next0 (4, 1/9) = Just (3, (1/7, 7/9))

ie 0.13 ' 0.2227 but 0.113 ' 0.3057: next0 is too aggressive.

Remaining input in unit interval; so possible outputs range from apply (u, v) 0 to
apply (u, v) 1. Safe to commit iff these start with same digit in base 7:

next00 (u, v) = if bu⇥ v ⇥ 7c == b(u + 1)⇥ v ⇥ 7c then next0 (u, v) else Nothing

Then streaming condition holds for stepl and next00, and

toBase7 (fromBase3 xs) = apo next00 (unfoldr next0) (foldl stepl (0, 1) xs)
= fstream next00 (unfoldr next0) stepl (0, 1) xs

for finite base 3 digit sequences xs. Moreover, also works on (most) infinite xs.

Streaming 10

9. Coding

• Huffman coding (HC)

efficient; optimally effective for bit-sequence-per-symbol

• arithmetic coding (AC)

Shannon-optimal (fractional entropy); but inefficient

• asymmetric numeral systems (ANS)

efficiency of Huffman, effectiveness of arithmetic coding

• applications of streaming

ANS introduced by Jarek Duda (2013).

Used by Facebook (Zstandard), Apple (LZFSE), Google (Draco), Dropbox
(DivANS). . .

Streaming 11

10. Intervals

Pairs of rationals

type Interval = (Rational, Rational)

with operations

unit = (0, 1)
weight (l, r) x = l + (r � l)⇥ x
narrow i (p, q) = (weight i p, weight i q)
scale (l, r) x = (x � l) / (r � l)
widen i (p, q) = (scale i p, scale i q)

so that

weight i x 2 i () x 2 unit
weight i x = y () scale i y = x

and widen i (narrow i j) = j. Also, narrow and unit form a monoid.

Streaming 12

11. Models

Given

counts :: [(Symbol, Integer)]

get

encodeSym :: Symbol ! Interval

decodeSym :: Rational ! Symbol

such that

decodeSym x = s () x 2 encodeSym s

Eg alphabet {‘a’, ‘b’, ‘c’} with counts 2, 3, 5 encoded as (0, 1/5), (1/5, 1/2), and (1/2, 1).

Streaming 13

12. Arithmetic coding

encode1 :: [Symbol]! Rational

encode1 = pick � foldl estep1 unit where

estep1 :: Interval ! Symbol ! Interval

estep1 i s = narrow i (encodeSym s)

decode1 :: Rational ! [Symbol]
decode1 = unfoldr dstep1 where

dstep1 :: Rational ! Maybe (Symbol, Rational)
dstep1 x = let s = decodeSym x in Just (s, scale (encodeSym s) x)

where pick :: Interval ! Rational satisfies pick i 2 i. Eg, with pick = fst:

(0, 1) ‘a’�! (0, 1/5) ‘b’�! (1/25, 1/10) ‘c’�! (7/100, 1/10) 7/100

Streaming 14

13. Trading in bits

Let pick = fromBits � toBits, where

toBits :: Interval ! [Bool]
fromBits :: [Bool]! Rational

Obvious thing: let toBits i pick shortest binary fraction in i, and fromBits evaluate
this fraction. But doesn’t satisfy streaming.

Instead: toBits i yields bit sequence bs such that bs ++ [True] is shortest.

toBits = unfoldr nextBit where

nextBit (l, r) | r 6 1/2 = Just (False, (0, 1/2) ‘widen‘ (l, r))
| 1/2 6 l = Just (True, (1/2, 1) ‘widen‘ (l, r))
| otherwise = Nothing

fromBits = foldr pack (1/2) where pack b x = ((if b then 1 else 0) + x) / 2

Now pick is a hylomorphism. Also, toBits yields a finite sequence.

Streaming 15

14. Streaming encoding

Move fromBits from encoding to decoding:

encodeBits :: [Symbol]! [Bool]
encodeBits = toBits � foldl estep1 unit

decodeBits :: [Bool]! [Symbol]
decodeBits = unfoldr dstep1 � fromBits

Now streaming condition holds for nextBit and estep1, so encoding can be
streamed.

Also, fromBits can be written with a foldl (like fromBase3). The streaming
condition doesn’t hold immediately, but does with flushing. So decoding can be
streamed too.

Streaming 16

15. Towards ANS—fusion and fission

encode1

= [[definition; now let pick = fst]]
fst � foldl estep1 unit

= [[map fusion for foldl, backwards]]
fst � foldl narrow unit �map encodeSym

= [[narrow is associative]]
fst � foldr narrow unit �map encodeSym

= [[fusion for foldr]]
foldr weight 0 �map encodeSym

= [[map fusion; let estep2 s x = weight (encodeSym s) x]]
foldr estep2 0

so let encode2 = foldr estep2 0.

Streaming 17

16. Unfoldr–foldr theorem

Inverting a fold:

unfoldr g (foldr f e xs) = xs (= g (f x z) = Just (x, z) ^ g e = Nothing

Allowing junk:

(9ys . unfoldr g (foldr f e xs) = xs ++ ys)(= g (f x z) = Just (x, z)

With invariant:

unfoldr g (foldr f e xs) = xs (= ((g (f x z) = Just (x, z))(= p z) ^
((g e = Nothing) (= p e)

where invariant p of foldr f e and unfoldr g is such that

p (f x z)(= p z

p z0 (= p z ^ g z = Just (x, z0)

Streaming 18

17. Correctness of decoding

dstep1 (estep2 s z)
= [[estep2]]

dstep1 (weight (encodeSym s) z)
= [[dstep1; let s0 = decodeSym (weight (encodeSym s) z)]]

Just (s0, scale (encodeSym s0) (weight (encodeSym s) z))
= [[s0 = s (see below)]]

Just (s, scale (encodeSym s) (weight (encodeSym s) z))
= [[scale i �weight i = id]]

Just (s, z)

Streaming 19

17. Correctness of decoding (continued)

Indeed, s0 = s:

decodeSym (weight (encodeSym s) z) = s

() [[central property]]
weight (encodeSym s) z 2 encodeSym s

() [[property of weight]]
z 2 unit

and z 2 unit is an invariant. Therefore

take (length xs) (decode1 (encode2 xs)) = xs

for all finite xs.

Streaming 20

18. From fractions to integers

Where AC encodes longer messages as more precise fractions, ANS makes larger
integers.

count :: Symbol ! Integer

cumul :: Symbol ! Integer

total :: Integer

find :: Integer ! Symbol

such that

find z = s () cumul s 6 z < cumul s + count s

for 0 6 z < total.

Streaming 21

19. Asymmetric encoding: the idea

• text encoded as integer z, with log2 z bits of information

• next symbol s has probability p = count s / total, so requires log2 (1/p) bits

• so map z, s to z0 ' z ⇥ total / count s—but do so invertibly

• with z0 = (z ‘div‘ count s)⇥ total, can undo the multiplication:

z ‘div‘ count s = z0 ‘div‘ total

• what about s? with z0 = (z ‘div‘ count s)⇥ total + cumul s,

s = find (cumul s) = find (z0 ‘mod‘ total)

• what about z? with z0 = (z ‘div‘ count s)⇥ total + cumul s + z ‘mod‘ count s,

z ‘mod‘ count s = z0 ‘mod‘ total � cumul s

Streaming 22

20. ANS encoding and decoding

encode3 :: [Symbol]! Integer

encode3 = foldr estep3 0

estep3 :: Symbol ! Integer ! Integer

estep3 s z = let (q, r) = z ‘divMod‘ count s in q ⇥ total + cumul s + r

decode3 :: Integer ! [Symbol]
decode3 = unfoldr dstep3

dstep3 :: Integer ! Maybe (Symbol, Integer)
dstep3 z = let (q, r) = z ‘divMod‘ total

s = find r

in Just (s, count s ⇥ q + r � cumul s)

Correctness argument as before.

Streaming 23

21. Variation

Correctness does not depend on starting value: can pick any l instead of 0.

Also, estep3 strictly increasing on z > 0, and dstep3 strictly decreasing, so we
know when to stop:

encode4 :: [Symbol]! Integer
encode4 = foldr estep3 l

decode4 :: Integer ! [Symbol]
decode4 = unfoldr dstep4

dstep4 :: Integer ! Maybe (Symbol, Integer)
dstep4 z = if z == l then Nothing else dstep3 z

and we have

decode4 (encode4 xs) = xs

for all finite xs, without junk.

Streaming 24

22. Bounded precision

Fix base b and lower bound l. Represent accumulator z as pair (x, ys) such that:

• remainder ys is a list of digits in base b

• window x satisfies l 6 x < u for upper bound u = l ⇥ b

under abstraction z = foldl inject x ys where

inject x y = x ⇥ b + y and extract x = x ‘divMod‘ b

Eg with b = 10 and l = 100, pair (123, [4, 5, 6]) represents 123456.

type Number = (Integer, [Integer])

Note “you can’t miss it” properties:

inject x y < u () x < l
l 6 fst (extract x)() u 6 x

Want b, l powers of 2, u single-word. Also nice if l ‘mod‘ total = 0.

Streaming 25

23. Encoding

Maintain window in range.

econsume5 :: [Symbol]! Number

econsume5 = foldr estep5 (l, [])

estep5 :: Symbol ! Number ! Number

estep5 s (x, ys) = let (x0, ys0) = enorm5 s (x, ys) in (estep3 s x0, ys0)

enorm5 :: Symbol ! Number ! Number

enorm5 s (x, ys) = if estep3 s x < u

then (x, ys)
else let (q, r) = extract x in enorm5 s (q, r : ys)

Eg with b = 10, l = 100:

(340, [3]) ‘a’ � (68, [3]) norm � (683, []) ‘b’ � (205, []) ‘c’ � (100, [])

Streaming 26

24. Decoding

dproduce5 :: Number ! [Symbol]
dproduce5 = unfoldr dstep5

dstep5 :: Number ! Maybe (Symbol, Number)
dstep5 (x, ys) = let Just (s, x0) = dstep3 x

(x00, ys00) = dnorm5 (x0, ys)
in if x00 > l then Just (s, (x00, ys00)) else Nothing

dnorm5 :: Number ! Number -- dnorm5 (enorm5 s (x, ys)) = (x, ys) when l 6 x < u
dnorm5 (x, y : ys) = if x < l then dnorm5 (inject x y, ys) else (x, y : ys)
dnorm5 (x, []) = (x, [])

Decoding is symmetric to encoding: renormalize after emitting a symbol.

(340, [3]) ‘a’�! (68, [3]) norm�! (683, []) ‘b’�! (205, []) ‘c’�! (100, [])

Correctness again as before (no junk; invariant l 6 x < u).

Streaming 27

25. Trading in sequences

eflush5 :: Number ! [Integer]
eflush5 (0, ys) = ys

eflush5 (x, ys) = let (x0, y) = extract x in eflush5 (x0, y : ys)

encode5 :: [Symbol]! [Integer]
encode5 = eflush5 � econsume5

dstart5 :: [Integer]! Number

dstart5 ys = dnorm5 (0, ys)

decode5 :: [Integer]! [Symbol]
decode5 = dproduce5 � dstart5

for which

dstart5 (eflush5 x) = x (= l 6 x < u

Streaming 28

26. Streaming

Both encode5 and decode5 can be transformed into an unfold after a fold, albeit
with some reverses.

The streaming condition applies, so they can yield output before consuming all
inputs. (Encoding needs a flushing phase too.)

But perhaps better not to take that route. In fact, encode5 and decode5 already
correspond to fast imperative loops.

Streaming 29

27. Fast loops

encode :: [Symbol]! [Integer]
encode = h1 l � reverse where

h1 x (s : ss) = let x0 = estep3 s x in if x0 < u then h1 x0 ss else

let (q, r) = extract x in r : h1 q (s : ss)
h1 x [] = h2 x
h2 x = if x == 0 then [] else let (x0, y) = extract x in y : h2 x0

decode :: [Integer]! [Symbol]
decode = h0 0 � reverse where

h0 x (y : ys) | x < l = h0 (inject x y) ys
h0 x ys = h1 x ys
h1 x ys = let Just (s, x0) = dstep3 x in h2 s x0 ys
h2 s x (y : ys) | x < l = h2 s (inject x y) ys
h2 s x ys = if x > l then s : h1 x ys else []

