5

Streaming
Data
Compression

Jeremy
Gibbons

1. Metamorphisms

Tail-recursive (accumulative) list consumption:

foldl: (b -a-b) ob-[a] - b
foldl f z (x : xs) = foldl f (f z x) xs
foldl f z [] =z

Coinductive list production:

unfoldr :: (b - Maybe (c,b)) - b - [c]
unfoldr g z = case g z of Just (y :zY - y:unfoldr g z
Nothing - [1

]

A metamorphism is their composition:

unfoldr g - foldl f e

Streaming

2. Examples of metamorphisms

regroup n = group n = concat
heapsort = flattenHeap - buildHeap
baseconv (b, c) = toBase b - fromBase c
arithCode = toBits narrow

3. Streaming

Interleaving production and consumption:

stream : (b - Maybe (c,b)) - (b -a - Db) - b - [a] - [c]
stream g f z xs = case g z of
Just (y,zY - y:streamgf z-xs
Nothing - case xs of
X :xs—- stream g f (f z x) xs™

[1 - 1]

Streaming condition for g and f:
gz =Just (y,zY =CIX (f zx) =Just (y,f z%)

Theorem: if the streaming condition holds for g and f, then for all finite xs
stream g f z xs = unfoldr g (foldl f z xs)

Moreover, stream can be productive on infinite inputs.

4. Example of streaming

Buffering process unfoldr uncons - foldl (+) [], where

uncons xs = case xs of
X : xs- Just (x,xsD
[] -~ Nothing

Since unfoldr uncons = id, buffering is just concat.

The streaming condition holds for uncons and +, so concat can be streamed.

5. A non-example

concat is special, because production can always exhaust the internal state.
In contrast, consider regroup n = unfoldr (chunk n) - foldl (+) [], where

chunk n [] = Nothing
chunk n xs = Just (splitAt n xs)

Streaming condition fails: chunk is too aggressive, and may produce short chunks
when there is still remaining input.

Try more cautious producer chunk"
chunk™n xs | n < length xs = Just (splitAt n xs)
| otherwise = Nothing

But this never produces a short chunk.

Process should remain cautious while input remains, then throw caution to the
winds.

Streaming

6. Flushing

fstream :: (b -~ Maybe (c,b)) - (b - [c]) - (b->a ->Db) - b - [a] - [c]
fstream g h f z xs = case g z of

Just (y,zY - y:fstreamghf ez"

Nothing - case xs of

X :xs—- fstream g h f (f z x) xs™
[] - hz

Theorem: if the streaming condition holds for g and f, then for all finite xs
fstream g h f z xs = apo g h (foldl f z xs)

where
apo :: (b - Maybe (c,b)) - (b - [c]) - b - [c]
apoghz=casegzoflust (y:zY - y:apoghz"”
Nothing - hz

In particular, regroup n = fstream (chunk™n) (unfoldr (chunk n)) (+) [].

7. Change of base

Consider conversion from base 3 to base 7:

fromBase3 = foldr stepr O wheresteprd x =(d+x)/3
toBase7 = unfoldr next where next 0 = Nothing

next x =lety =7 x x in Just (IyYILy — yID1

(assume input digits are all in range: 0O, 1, 2). Wrong kind of fold; but
fromBase3 = extract - foldl stepl (0O, 1) where stepl (u,v) d =(ux3+d,v/3)

where extract (u,v) = apply (u,v) 0 where apply (u,v) x =v x (U + Xx).

Now the extract is an obstacle: but toBase7 - extract = unfoldr next Hwhere

next~0, v) = Nothing
next(u,v) =lety = [ZIxuxvih Just (y,(u—y /(v x7),v x7))

So we have a metamorphism.

8. Streaming change of base

Streaming condition does not hold for stepl and next™'Eg:

next (1, 1/3) = Just (2, (17, /3))
next (1, stepl (1, 1/3) 1) = next' (4, /) = Just (3, (/7, ’/9))

ie 0.13 [COP22; but 0.113 [COB057: nexts too aggressive.

Remaining input in unit interval; so possible outputs range from apply (u,v) O to
apply (u,v) 1. Safe to commit iff these start with same digit in base 7:

next™(u,v) = if Mxv x 7[F= [l + 1) x v x 7[Then next{u, v) else Nothing
Then streaming condition holds for stepl and next™and

toBase7 (fromBase3 xs) = apo next"™{unfoldr nextY (foldl stepl (0, 1) xs)
= fstream next™{(unfoldr nextY stepl (0, 1) xs

for finite base 3 digit sequences xs. Moreover, also works on (most) infinite xs.

9. Coding

e Huffman coding (HC)

efficient; optimally effective for bit-sequence-per-symbol

e arithmetic coding (AC)

Shannon-optimal (fractional entropy); but inefficient

e asymmetric numeral systems (ANS)

efficiency of Huffman, effectiveness of arithmetic coding
e applications of streaming

ANS introduced by Jarek Duda (2013).

Used by Facebook (Zstandard), Apple (LZFSE), Google (Draco), Dropbox
(DivANS). ..

Streaming

10. Intervals

Pairs of rationals

type Interval = (Rational, Rational)

with operations

unit =(0,1)

weight (I, r) x =1+ (r—1) xx

narrow i (p,q) = (weight i p,weight i q)
scale (I, r)x =&-D/7((r—1)

wideni (p,q) = (scalei p,scalei q)

so that

weight | x 1L X T umhit
weightix =y [I_Schleiy =x

and widen 1 (narrow i j) =]J. Also, narrow and unit form a monoid.

11

11. Models

Given

counts :: [(Symbol, Integer)]

get
encodeSym :: Symbol - Interval
decodeSym :: Rational - Symbol
such that

decodeSym x =s LI X T erdcodeSym s

Eg alphabet {*a’, ‘b’, ‘c’} with counts 2, 3,5 encoded as (0, /5), (*/5, /), and (*/5,1).

Streaming

12. Arithmetic coding

encode; :: [Symbol] - Rational

encode; = pick - foldl estep; unit where
estep, :: Interval - Symbol - Interval
estep, 1 s = narrow i (encodeSym s)

decode; :: Rational - [Symbol]
decode; = unfoldr dstep,; where
dstep, :: Rational - Maybe (Symbol, Rational)
dstep; X = let s = decodeSym x in Just (s, scale (encodeSym s) X)

where pick :: Interval - Rational satisfies pick i [11Eg, with pick = fst:

‘a’ ‘b’ ‘c’
(0,1) — (0,%) —= (5,%0) — (“1100,*10) ~ 1100

13

13. Trading in bits

Let pick = fromBits - toBits, where

toBits : Interval - [Bool]
fromBits :: [Bool] - Rational

Obvious thing: let toBits i pick shortest binary fraction in i, and fromBits evaluate
this fraction. But doesn’t satisfy streaming.

Instead: toBits I yields bit sequence bs such that bs -+ [True] is shortest.

toBits = unfoldr nextBit where

nextBit (I,r) | r <, = Just (False, (0,) ‘widen* (I,r))
1/, < = Just (True, (}/>,1) ‘widen‘ (I, r))
otherwise = Nothing

fromBits = foldr pack (*/2) where pack b x = ((if b then 1 else 0) +x) / 2

Now pick is a hylomorphism. Also, toBits yields a finite sequence.

14. Streaming encoding

Move fromBits from encoding to decoding:

encodegiis :: [Symbol] - [Bool]
encodegjts = toBits - foldl estep; unit

decodegis ;- [Bool] —» [Symbol]
decodegjtis = unfoldr dstep,; o fromBits

Now streaming condition holds for nextBit and estep,, so encoding can be
streamed.

Also, fromBits can be written with a foldl (like fromBase3). The streaming
condition doesn’t hold immediately, but does with flushing. So decoding can be
streamed too.

Streaming

15. Towards ANS—fusion and fission

encodeq
= [I definition; now let pick = fst T]
fst - foldl estep; unit
= [map fusion for foldl, backwards]
fst - foldl narrow unit = map encodeSym
= |[narrow is associative]
fst o foldr narrow unit = map encodeSym
= [[fusion for foldr 1]
foldr weight O = map encodeSym
= [[map fusion; let estep, s x = weight (encodeSym s) x]
foldr estep, O

so let encode, = foldr estep, O.

16

Streaming 17

16. Unfoldr-foldr theorem

Inverting a fold:

unfoldr g (foldr f e xs) = xs [=d(f xz) =Just (X,z) gk = Nothing
Allowing junk:

(Lyd. unfoldr g (foldr f e xs) =xs +Hvys) =g (f xz) =Just (X,2)

With invariant:

unfoldr g (foldr f e xs) = xs [=({g (f xz)=Just (x,z)) [=dz) [1
((ge = Nothing) [=Qde)
where invariant p of foldr f e and unfoldr g is such that
p(fxz) [=dz

pzH- [=dz Cgk = Just (x,zY

Streaming

17. Correctness of decoding

dstep, (estep, s z)
= I estepy 1I
dstep; (weight (encodeSym s) z)
= [[dstepy; let s"= decodeSym (weight (encodeSyms) z) Tl
Just (s'scale (encodeSym sY (weight (encodeSym s) z))
= [[s"=s (see below) Tl
Just (s, scale (encodeSym s) (weight (encodeSym s) z))
= |[] scalei-weighti=id T]]
Just (s, z)

18

Streaming 19

17. Correctness of decoding (continued)

Indeed, s—=s:

decodeSym (weight (encodeSyms) z) =s
[_IJ] central property]

weight (encodeSym s) z [CencodeSym s
LI T[] property of weight]

z [umhit

and z [uhit is an invariant. Therefore
take (length xs) (decode; (encode; xs)) = xs

for all finite xs.

18. From fractions to integers

Where AC encodes longer messages as more precise fractions, ANS makes larger
integers.

count ::Symbol - Integer
cumul :: Symbol - Integer
total ::Integer

find :Integer —» Symbol

such that
find z =s LI _dumul s < z<cumul s+ count s

for O < z < total.

19. Asymmetric encoding: the idea

e text encoded as integer z, with log, z bits of information
e Next symbol s has probability p = count s / total, so requires log, (1/p) bits
e SO Map z,s to z-'[Zk total / count s—but do so invertibly

e with z= (z ‘div‘ count s) x total, can undo the multiplication:

z ‘div‘ count s = zHdiv* total

e what about s? with z= (z ‘div‘ count s) x total + cumul s,

s = find (cumul s) = find (z~mod‘ total)

e what about z? with z= (z ‘div‘ count s) x total + cumul s + z ‘mod‘ count s,

z ‘mod°‘ count s = z“mod-* total — cumul s

Streaming

20. ANS encoding and decoding

encodes :: [Symbol] - Integer
encodez = foldr estep5 O

esteps :: Symbol - Integer - Integer
esteps sz = let (g, r) = z ‘divMod’ count s in q % total +cumul s+ r

decodes :: Integer - [Symbol]
decodez = unfoldr dsteps
dsteps :: Integer — Maybe (Symbol, Integer)
dstep; z = let (g, r) = z ‘divMod" total
s=findr
In Just (s,count s < g+ r —cumul s)

Correctness argument as before.

22

21. Variation

Correctness does not depend on starting value: can pick any | instead of O.
Also, estep strictly increasing on z > 0, and dsteps strictly decreasing, so we
know when to stop:

encodey :: [Symbol] - Integer

encode, = foldr esteps |

decodey :: Integer — [Symbol]
decode, = unfoldr dstep,

dstep, :: Integer - Maybe (Symbol, Integer)
dstep, z = if z == | then Nothing else dstep; z

and we have
decodes (encodey xS) = Xs

for all finite xs, without junk.

22. Bounded precision

Fix base b and lower bound |I. Represent accumulator z as pair (X, ys) such that:
e remainder ys is a list of digits in base b
e window x satisfies | < x <u for upper boundu =1xDb

under abstraction z = foldl inject x ys where
InNject Xy =xxb+y and extract x = x ‘divMod‘ b

Eg with b =10 and | = 100, pair (123, [4,5,6]) represents 123456.
type Number = (Integer, [Integer])

Note “you can’t miss it” properties:

Inject Xy <u HI'ES
| < fst (extract x) LI 11K x

Want b, | powers of 2, u single-word. Also nice if | ‘mod‘ total = 0.

Streaming

23. Encoding

Maintain window In range.

econsumes :: [Symbol] - Number
econsumes = foldr esteps (I,[])

esteps :: Symbol - Number - Number
esteps s (X,ys) = let (x5ysY = enorms s (x,ys) in (esteps s x5'ysY
enorms :: Symbol - Number - Number
enorms s (X,ys) = if estepzsx<u
then (X, ys)
else let (g,r) = extract x inenorms s (g, r :ys)

Eg with b = 10,1 = 100:

340,[31) & (68,131 "2 (683,[1) > (205,[1) > (200,[1)

25

Streaming 26

24. Decoding

dproduces :: Number - [Symbol]
dproduces = unfoldr dsteps

dsteps :: Number - Maybe (Symbol, Number)
dsteps (x,ys) = letJust (s,xY) = dsteps x

(x"Hys™y = dnorms (x5lys)
in if x> | then Just (s, (x"2ys'™) else Nothing

dnorms :: Number - Number -- dnorms (enormss (X,ys)) = (X,ys) when| < x<u
dnorms (X,y :ys) = if x <l then dnorms (inject x y, ys) else (X,y :ys)

dnorms (x,[1) =0[D

Decoding is symmetric to encoding: renormalize after emitting a symbol.

(340,[31) = (68,131 "2 (683,[1) = (205,[1) — (100,[1)

Correctness again as before (no junk; invariant | < x <u).

Streaming

25. Trading In sequences

eflushg :: Number - [Integer]
eflushg (0,ys) = ys
eflushs (x,ys) = let (x5'y) = extract x in eflushs (x5y :ys)

encodes :: [Symbol] - [Integer]
encodes = eflushg = econsumes

dstarts :: [Integer] -~ Number
dstarts ys = dnorms (0O, ys)

decodes :: [Integer] - [Symbol]
decodes = dproduces - dstarts

for which

dstarts (eflushs x) =x [=1IK x<u

27

26. Streaming

Both encodes and decodes can be transformed into an unfold after a fold, albeit
with some reverses.

The streaming condition applies, so they can yield output before consuming all
inputs. (Encoding needs a flushing phase too.)

But perhaps better not to take that route. In fact, encodes and decodes already
correspond to fast imperative loops.

Streaming

27. Fast loops

encode :: [Symbol] - [Integer]
encode = hp | = reverse where

hi x (s:ss) = let x“= esteps s x in if x“< u then hy x"“5s else
let (g,r) =extract x inr :hy g (s:ss)

hy X [] = hy X

h, x = if x == 0 then [] else let (x5y) = extract x iny : hy, x"

decode :: [Integer] - [Symbol]
decode = hg O = reverse where

hox (y:ys) |x<Il=hg(inject xy) ys

ho X ys =h1 XVys

hi X Vs = let Just (s,xY = dsteps x in ha s x"s
hosx (y:ys) | x<I|=hys (inject xy) ys

ho s X ys =ifx>lthens:hy xyselse[]

29

