B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

A Brief History of Streams

Aggelos Biboudis
Monday October 22, 2018
NIl Shonan Meeting Seminar 136 on Functional Stream Libraries and Fusion

The goal of this talk

A brief (or 10km-overview) of Streams
Review the major areas

Introduce the main terminology

If something is overlooked, please mention

Let’s discuss challenges (interactive)

Processing
stream of tweets

tweets
filter(t => t.contains("#phdlife"))

filter(t => Sentiment.detectSentiment(t) == POSITIVE)
map(t => t.User)

take 15

any(u => u.Followers > 1000)

AR VAR VAR VRV

Basics of a Streaming AP

type o stream

Producers

val of_arr . o array > o Stream

val unfold . (T » (ax * ©) option) » T » o stream

Transformers

val map (o » B) > o stream » B stream
val filter . (x » bool) 5> o Sstream » o stream
val take : 1nt > o stream - o stream

val flat_map : (x » B stream) » o stream - B stream
val zip_with : (¢ > B > yv) » (o stream » B stream -» y stream)

Consumer
val fold (T »> >T) »TC > o stream » T

Stream Origins

Melvin Conway, 1963: Coroutines
"separable programs”

Douglas Mcllroy, 1964: Unix Pipes
pipe() iImplemented by Ken Thompson in v3, 1973
‘| " leads to a “pipeline revolution” in v4

Peter Landin, 1965: Streams
“functional analogue of coroutines”

Design of a Separable

Transition-Diagram Compiler’

MEeLviy E. Conway
Directorate of Computers, USAI
L. (. Hanscom Field, Bedford, Mass.

A COBOL compiler design is presented which is compact
enough to permit rapid, one-pass compilation of a large sub-
set of COBOL on a moderately large computer. Versions of
the same compiler for smaller machines require only two work-
ing tapes plus a compiler tape. The methods given are largely
applicable to the construction of ALGOL compilers.

Introduction

This paper is written in rebuttal of three propositions
widely held among compiler writers, to wit: (1) syntax-
directed compilers [1] suffer practical disadvantages over
other types of compilers, chiefly in speed; (2) compilers
should be written with compilers; (3) Cosor [2] compilers
must be complicated. The form of the rebuttal is to de-
scribe a high-speed, one-pass, syntax-directed CoBor com-
piler which can be built by two people with an assembler
in less than a year.

The compiler design presented here has the following
properties.

L. It processes full elective CoBor except for automatic
segmentation and its byproducts, such as those properties
of the avrer verb which are affected by segmentation.
The verbs DEFINE, ENTER, USE and INCLUDE are accessible

4 - 413 1] 1 g s v ¥ LR

Coroutines: Conway, 1963

to make this design (in which all tables ave accessed while
stored in memory) practical on contemporary computers.
None of these techniques is limited in application to Cosor,
compilers. The following specific techniques are discussed:
the coroutine method of separating programs, transition
diagrams in syntactical analysis, data name qualification
analysis, and instruction generation for conditional state-
ments.

The algorithms described were verified on the 5000-word
Burroughs 220 at the Case Institute ol Technology Com-
puting Center. A two-pass configuration was planned for
that machine, and first-pass code was checked out through
the syntactical analysis. At the time the project was dis-
continued a complete CosoL syntax checker was operating
at 140 fully-punched source cards per minute. (The Case
220 had a typical single-address instruction time of 100
microseconds.) Remarks presented later suggest that a
complete one-pass version of the compiler, which would
be feasible on a 10,000-word machine, would run at well
over 100 source cards per minute.

Coroutines and Separable Programs

That property of the design which makes it amenable to
many segment configurations is its separabilily. A program
organization is separable if it is broken up into processing
modules which communicate with each other according to
the following restrictions: (1) the only communication
between modules is in the form of diserete items of in-
formation; (2) the flow of each of these items is along
fixed, one-way paths; (3) the entire program can be laid
out so that the input is at the left extreme, the output is at
the right extreme, and etverywhere in between all informa-
tion items flowing between modules have a component of
motion to the right.

6

Unix Pipes: D. Mcllroy, 1964

(implemented in 1973 by Ken Thomson more info at
http.//WWW.softpanorama.org/SCHpt|ng/P|porama/h|story.shtml)

' 10 B B

Summary--whatﬁa most porfant

W

To put my strongest concerns in ¢ ntishellx
1, -We should have some ways of coupling programs btke
._sarden hose--screw in enother segment when 1t becomes then
‘1t becores necessary to massaege date in esnother way.,
This is the way of IO also, | | |
2. Cur loader should be &ble tc do link-loading end
controlled establishment, |

3¢ Our librery filing scheme should ellow for rather

ot

general indexing, responsibility, generations, data path :
switching, : :
4, It should be possible td get private=§ystem corponents

(all routines are syter components)_ggf;5uggering around:with.

M. D. McIlroy
Oct. 1134964

~

http://www.softpanorama.org/Scripting/Piporama/history.shtml

treams: Landin, 1965

e e S TANDARDIZ ATION S
B I RECORD

A Co:rrespondence Between

ALGOL 60 and Church’s Lambda-
Notation: Part 1*

By P. J. Laxpint

This paper describes how some of the semantics of ALGOL
60 can be formalized by establishing a correspondence
between expressions of ALGOL 60 and expressions in a
modified form of Church’s \-notation. First a model for com-
puter languages and computer behavior is described, based on
the notions of functional application and functional abstraction,
but also having analogues for imperative language features.
Then this model is used as an “abstract object language" into
which ALGOL 60 is mapped. Many of ALGOL 60's features
emerge as particular arrangements of a small number of struc-
tural rules, suggesting new classifications and generalizations.

The correspondence is first described informally, mainly by
illustrations. The second part of the paper gives a formal
description, i.e. an “abstract compiler” into the “abstract object
language.” This is itself presented in a “purely functional”
notation, that is one using only application and abstraction.

forv:= a step b until ¢, for(y,

d, concatenalte (step(a, b, c),
e while p unitlist (d),
do T while(e, p)),
T)

where for, concatenate, step and while are defined as follows.
if — null S then [v := AS;

T;

Jor(v, t8, T)]

rec for(v, S, T)

Il

rec concatenate S = null S — ()
null(hS) — concatenate (tS)
else — h*S:concatenate(t(hS) :tS)
(@ —¢) X sign(b) >0 ()
else — a:step(a+b, b, ¢)
rec while(e, p) = p — e:while(e, p)

else — ()

rec step(a, b, ¢)

However, these definitions fail to reflect the sequence of
execution prescribed for Arcor 60. When interpreted by
the sharing machine they would lead to an attempt to
evaluate the entire control-list before the first iteration of
the loop. The inadequacy of this approach is especially
flagrant in the case of while. We therefore consider for-
list-elements as denoting not lists but a particular kind of
function, called here a siream, that is like a list but has
special properties related to the sequencing of evaluation.
Principally, the items of an intermediately resulting
stream need never exist simultaneously. So streams might
have practical advantages when a list is subjected to a
cascade of editing processes.’

? Following [MEE], an infixed colon indicates prefixing. Thus
“r:L” is equivalent to ““prefic z L.”

¢ [t appears that in stream-transformers we have a functional
analogue of what Conway [12] calls ‘‘co-routines.”

Fast-rorward 52 years

iterators (‘yield’), generators as in Python, ...
LINQ), Java 8 Streams, ...

Lucid, LUSTRE, ...

Naiad, Flink, DryadLINQ, Spark Streaming, ...
Rx, EIm, ...

SIMD, ...

Streamlt, ...

Ziria, ...

(Gilles) Kahn networks (1974)

* |nfinite streams of data processed

 Kahn Process: a sequential program reading /
writing to FIFOs channels

e Unbounded channels
e Determinism

* Monotonicity

10

Semantics of Kahn Process
Networks

* Operational: a transition system

* Denotational: each process is a function on
streams

1. feedback loops correspond to fix points

11

Synchronous Data Flow

ynchronous Data Flow (1987

EDWARD A. LEE, MEMBER, IEEE, AND DAVID G. MESSERSCHMITT, FELLOW, IEEE

Data flow is a natural paradigm for describing DSP applications
for concurrent implementation on parallel hardware. Data flow
programs for signal processing are directed graphs where each
node represents a function and each arc represents a signal path.
Synchronous data flow (SDF) is a special case of data flow (either
atomic or large grain) in which the number of data samples pro-
duced or consumed by each node on each invocation is specified
a priori. Nodes can be scheduled statically (at compile time) onto
single or parallel programmable processors so the run-time over-
head usually associated with data flow evaporates. Multiple sam-
ple rates within the same system are easily and naturally handled.
Conditions for correctness of SDF graph are explained and sched-
uling algorithms are described for homogeneous parallel proces-
sors sharing memory. A preliminary SDF software system for auto-
matically generating assembly language code for DSP micro-
computers is described. Two new efficiency techniques are intro-
duced, static buffering and an extension to SDF to efficiently
implement conditionals.

I. DATA FLow AND SYNCHRONOUS DATA FLow: AN
INTRODUCTION

For concurrent implementation, a signal processing task
is broken into subtasks which are then automatically, semi-
automatically, or manually scheduled onto parallel pro-
cessors, either at compile time (statically) or at run-time
(dynamically). Automatic breakdown of an ordinary se-
quential computer program is an appealing concept (1], but
the success of techniques based on traditional imperative
programming is limited; imperative programs do not often
exhibit the concurrency available in the algorithm. If the
programmer provides the breakdown as a natural conse-
quence of the programming methodology, we should
expect more efficient use of concurrent resources.

Synchronous data flow (SDF) is a special case of data flow
[21-[6], a hardware and software methodology popular
among computer scientists for parallel computation. Under
the data flow paradigm, algorithms are described as
directed graphs where the nodes represent computations
(or functions) and the arcs represent data paths. A second-
order recursive digital filter described as a data flow graph
is shown in Fig. 1. In that example, an essentially infinite

Fig. 1. A data flow graph for a second-order recursive dig-
ital filter. The empty circles are “fork’” nodes, which simply
replicate each input sample on all output paths. The D" on
two of the arcs indicates delay, and the ““1"” adjacent to each
node input or output indicates that a single token is con-
sumed or produced when the node fires.

stream of input data is expected, so the nodes specify com-
putations performed infinitely often. This is typical of signal
processing applications, and is an important property often
lacking in more general applications.

The data flow principle is that any node can fire (perform
its computation) whenever input data are available on its
incoming arcs. A node with no input arcs may fire at any
time. Thisimplies that many nodes may fire simultaneously,
hence the concurrency. Because the program execution is
controlled by the availability of data, data flow programs are
said to be data-driven [7]. To preserve the integrity of the
computation, nodes must be free of side effects. For exam-
ple, a node may not write to a memory location which is
later read by another node unless the two are explicitly con-
nected by an arc. The only influence one node has on
another is the data passing through the arcs.

InFig.1,each inputand output of each node has the num-
ber “1” adjacent to it, which in our notation indicates that
when the node fires, a single sample (or token) will be con-
sumed or produced on each arc. A synchronous data flow
graph is one for which these numbers may be specified for
every node apriori. That is, the number of tokens produced
or consumed must be independent of the data. We expect
that most nodes for signal processing applications will be

12

Stream Processing Functions
Burge, 1975

Stream Processing Functions

Abstract: One principle of structured programming is that a program she
which are then combined so that the relation of the parts to the whole can b
ways to compose programs. The main method used is to permit the prograr
on by a variable. The sequence is represented by a function called a strec
tional while and for loops of structured programming may be composed by
ing), which results in more structured programs than the originals. This te
way into its logically separate parts, which can then be considered independ

Introduction

One of the underlying principles of structured program-
ming [1] is that the separation of the parts of a program,
and the relation of the parts to the whole, should both be
clearly apparent from its written form. A second princi-
ple is that the meaning of each part should depend in a
simple way only on the meaning of its subparts, and not
on any other properties. Programs written in this way
are easy to understand and write, and the details of their
operation are transparently clear. This principle of struc-
tured programming is epitomized in the expression for-

' e ~

use
rat
for
be

sep
deg
of

dat
mit
twie¢

The data structure that is relevant is an A-sequence,
defined as follows:

An A-sequence has a hs, which is an 4,

and a rs which is an 4-sequence.

Streams A sequence is therefore an infinite list, and the
problem of conserving storage for its representation in-
side a computer becomes even more pressing. A se-
quence can be represented by a particular type of func-
tion, which is called a stream function or a stream. A
stream is applicable to an empty list of arguments, and
it produces a pair whose first is the next item in the se-
qu'ence and whose second is a stream for the tail of the
sequence. Thus

A-stream C (null list = A X A-stream)

13

Lists/Generators/Lazy Lists

Principia Mathematica (Whitehead and Russell,1910-1913)

— |PL (lists, generators, and more by Newell, Shaw and Simon, 1957) /
Programming the logic theory machine (Newell and Shaw, 1962)

— Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part
| (McCarthy, 1960)

— Laziness appears with a quadruple attack:

The “Procrastinating [SECD] Machine” by (Burge, 1975) «
SASL's semantics get rewritten adopting laziness (Turner, 1975)
CONS should not evaluate its arguments (Friedman et al., 1976)
A Lazy Evaluator (Henderson et al., 1977)

— |terators appear with a double attack:

Abstraction mechanisms in CLU (Liskov et al, CACM vol 20, 1977)
Abstraction and Verification in Alphard (M Shaw et al, CACM vol 20, 1977)

— The Semantic Elegance of Applicative Languages (Turner, 1981)

14

Turner On Lazy Lists vs Coroutines

6.2 Advantages of Laziness

Two other projects independently developed lazy functional programming sys-
tems in the same year as SASL — Friedman & Wise (1976), Henderson & Morris
(1976). Clearly laziness was an idea whose time had arrived.

My motives in changing to a lazy semantics in 1976 were

(i) on a sequential machine, consistency with the theory of (Church 1941)

requires normal order reduction

(ii) a non-strict semantics is better for equational reasoning

(iii) allows interactive I/O via lazy lists — call-by-value SASL was limited to
outputs that could be held in memory before printing.

(iv) I was coming round to the view that lazy data structures could replace
exotic control structures, like those of J-PAL.
(a) lazy lists replace coroutines (e.g. equal fringe problem)
(b) the list of successes'* method replaces backtracking

15

Lazy Lists

Why
Functional Programming
Matters

John Hughes
The University, Glasgow

Abstract

As software becomes more and more complex, it is more and more
important to structure it well. Well-structured software is easy to write
and to debug, and provides a collection of modules that can be reused
to reduce future programming costs. In this paper we show that two fea-
tures of functional languages in particular, higher-order functions and lazy
evaluation, can contribute significantly to modularity. As examples, we
manipulate lists and trees, program several numerical algorithms, and im-
plement the alpha-beta heuristic (an algorithm from Artificial Intelligence
used in game-playing programs). We conclude that since modularity is the
key to successful programming, functional programming offers important
advantages for software development.

16

data List a

= Nil
| Cons a (List a)

Lazy Lists

(in strict languages / OCaml)

(* lists in OCaml *)
type 'a list =

| Nil
| Cons of 'a * 'a list

(* infinite lists in OCaml with thunks *)
type 'a lazy_list =

| Nil
| Cons of 'a * (unit - 'a lazy_list)

(* list shape / step *)
type ('a, 'z) list_shape =

| Nil
| Cons of 'a * 'z

17

Lazy Lists

(in strict languages / OCaml)

(* compact form of a stream *)
type 'a stream = Cons of 'a * (unit - ('a, 'a stream) list_shape)

(* compact form of stream with closure conversion to
explicitly pass the state to the stepper function *)
type 'a stream = { stepper : 's * ('s - ('a,'s) list_shape) - 'a stream }

18

What happens today on the other side”

(strict languages with yield)

// LINQ query (C#)

from p in Enumerable.Range(®, int.MaxValue)
where p % 2 == 0

select p

// desugared
Enumerable.Range(0, int.MaxValue)
Where<int>((Func<int, bool>) (p =>p % 2 == 0))

// 1implementation of operators
TEnumerable<TResult> SelectlIterator<TSource, TResult>(
TEnumerable<TSource> source,
Func<TSource, 1nt, TResult> selector) {
int index = -1;
foreach (TSource element in source) {
checked { index++;

yield return selector(element/E;?&ih
€
h
/€,

19

ra

b/, Y

U
h/rerq /(Or

https://referencesource.microsoft.com/mscorlib/A.html#3acf01620172c7f0
https://referencesource.microsoft.com/System.Core/R/48f64203cdc8e8cb.html
https://referencesource.microsoft.com/mscorlib/A.html#3acf01620172c7f0
https://referencesource.microsoft.com/mscorlib/A.html#8adbe0476ca899db

Two sty\es of composition

(or “who controls my stack”?)

Pull<T> source(T| | arr) { Push<T> source(T| | arr) {
return new Pull<T>() { return k -> {
boolean hasNext() {..} for (int 1 = 0;
T next() {..} 1 < arr.length; 1++)
I 6 kCarr[1]); };
¥ }
Pull<Integer> sIt = Push<Integer> skn =
source(v) . .map(1->1%1); source(v) .map(1->1%1);
while (sIt.hasNext()) { sknCel -> /* consume el */);

el = sIt.next();
/* consume el */

h

(Scala/C#/F#) 20 (Java 8 Streams)

Two styles of composition

(F-algebra vs F-co algebra)

e Push-based design

inspired by folds
producer-driven
better inlining v
map, filter v

flat_map (laziness takes a hit
combined with take)

no trivial take

no trivial zip

21

e Pull-based design

inspired by unfolds or
generators (CLU/Alphard)

consumer-driven
map, filter v
flat_map v
infinite streams v
zZip v

short-circuit (take) v

And, puH/push perspectives

(on hotspot-compiler-dev mailing list)

perspectives on streams performance

John Rose john.r.rose at oracle.com
FriMar 6 01:01:20 UTC 2015

e Previous message: RFR(S) 8074010: followup to 8072383
e Next message: perspectives on streams performance

e Messages sorted by: [date | [thread] [subject | [author |

In order to get the full benefit from JDK 8 streams we will need to make th
I think of streams as a more concise and orderly replacement of classic "fo
A classic "for" loop is a external iterator notation: The iteration machin
(P“”) External iterators are easier to optimize, because their crucial iteration

(PMS%) HotSpot are less good at internal iterators. If the original point of the

22

| owering the Abstraction

excessive construction and deconstruction of values (e.g., composing and
decomposing in pattern matching);

recursive calls when an environment does not support specific optimizations
(e.q., tail-call optimization);

heap-allocated closures (e.g., lambdas capturing free variables) when the
program is higher-order;

multiple iterations over one sequence of data that can be traversed once
(e.g., a map of squares pipeline over a stream);

iterations over multiple sequences of data that can be traversed at once
(e.q., zipping a stream); and

highly polymorphic call-sites (e.g., MoveNext() in iterators), also known as
“megamorphic”, which incur dynamic dispatch (“virtual method”) overhead.

23

|_owering the Abstraction

A Transformation System for Developing Recursive Programs

R. M. BURSTALL AND JOHN DARLINGTON

Unversity of Edinburgh, Edinburgh, Scotland

ABSTRACT A system of rules for transforming programs 1s described, with the programs in the form of
recursion equations An imtally very simple, lucid, and hopefully correct program 1s transformed into a more
efficient one by altering the recursion structure lllustrative examples of program transformations are given,
and a tentative implementation 1s described Alternative structures for programs are shown, and a possible
imtial phase for an automatic or semiautomatic program manipulation system is indicated

KEY WORDS AND PHRASES program transformation, program mampulauon, optimization, recursion

CR CATEGORIES® 3 69,4 12,4 22,524,525

1. Introduction

We present here a system for transforming programs, where the programs are expressed
as first order recursion equations. This recursive form seems well adapted to manipula-
tion, much more so than the usual Algol-style form of program, and our transformation
system consists of just a few simple rules together with a strategy for applying them.
Despite their simplicity, these rules produce some interesting changes in the programs.
The overall aim of our investigation has been to help people to write correct programs
which are easy to alter. To produce such programs it seems advisable to adopt a lucid,
mathematical, and abstract programming style. If one takes this really seriously, at-
tempting to free one’s mind from considerations of computational efficiency, there may
be a heavy penalty in program running time; 1n practice it is often necessary to adopt a
more intricate version of the program, sacrificing comprehensibility for speed. The
question then arises as to how a lucid program can be transformed into a more intricate
but efficient one in a systematic way, or indeed in a way which could be mechanized.

24

(Stream) Fusion

Burstall R. M. and Darlington J.
— Listlessness is Better Than Laziness (Wadler, 1984)
— Shortcut fusion (foldr/build, Gill et al., 1993)

— Shortcut Fusion for Accumulating Parameters & Zip-like
Functions (unbuild/unfoldr, Svenningsson, 2002)

— Coutts et al., Stream Fusion

25

Stream) Fusion

3s. Stream (s - Step a s) s

Done
Yield a s
Skip s

data Stream a
data Step a s

(note the resemblance o) The Under-Appreciated Unfold

Jeremy Gibbons Geraint Jones
School of Computing and Math. Sciences Oxford University Computing Lab
Oxford Brookes University Wolfson Building, Parks Road
Gipsy Lane, Headington, Oxford OX1 3QD, UK.
Oxford OX3 0BP, UK. Email: geraint@comlab.ox.ac.uk

Email: jgibbons@brookes.ac.uk

20

(Stream) Fusion

Burstall R. M. and Darlington J.
— Listlessness is Better Than Laziness (Wadler, 1984)
— Shortcut fusion (foldr/build, Gill et al., 1993)

— Shortcut Fusion for Accumulating Parameters & Zip-like
Functions (unbuild/unfoldr, Svenningsson, 2002)

— Coutts et al., Stream Fusion

27

Staged Stream Fusion

of _arr .(arr).
> map (fun x — .(~x * ~x).)
> sum

S‘(O().\V\g l

let s_1 = ref 0 in

let arr_2 = arr in

for i_3 = 0 to Array.length arr_2 -1 do
let el_4 = arr_2.(i_3) in
let t_56 = el_4 * el_4 in
s_1 :=t_6 + !s_1

done;

Is_1

28

Staged Stream Fusion

zip_with (fun el e2 — .{(~el,~e2)).) CO/’I«,}o/
(of_arr .(arrl). (* 1st stream *) \ S
> map (fun x — .(~x * ~x).)
> take .(12).
> filter (fun x — .(~x mod 2 = 0).)
> map (fun x — .(~x * ~x).))
(iota .(1). (* 2nd stream *)
> flat_map (fun x — iota .(~x+1). > take .(3).)
> filter (fun x — .(~x mod 2 = 0).))
> fold (fun z a — .(~a :: ~z).) .([1).

29

Multi-Stage Programming

* manipulate code templates

* pbrackets to create well-{formed, scoped, typed}
templates
let c= .< 1+ 2 >.

e create holes
let cf X = .< .~X + .~X >.

* synthesize code at staging-time (runtime)
cfc~> .<(Q+2)+ QA+ 2) >.

30

Nalve Staging

type o stream =

| Cons of 'a *

basedcw1unfoldp;

functiqng\l\a\nglogue of iterators
= EOTE

0. 0 * (o » (x,0) stream_shape)

31

Naive Staging

___binding-time analysijs

——ee—

type o stream = 30. o |code * (o |code |- (a,0) stream_shape code)

/

classify variables as static and dywnamic

32

Naive Staging

let map : ('a code -> 'b code) -> 'a stream -> 'b stream =
fun f (s, step) ->
let new_step = fun s ->
.< match .~(step s) with
' N1l -> Nil
' Cons (a,t) -> Cons (.~(f .<a>.), t)>.
in (s, new_step);;

33

&2.
w“"&\a‘ 9J R ‘
\V\‘(‘Qx . V\\.\V\\V\ &S 1* e S u t
0 o’(.\OV\ \ *(\"'Q'a
W oV ¥
(({.\O\AS
Vo let rec loop_1 z_2 s_3 =

X =®» match match match s_3 with
| (1_4, arr_5) ->
1f 1_4 < (Array.length arr_5) of_arr
then Cons ((arr_5.(1_4)),((1_4 + 1), arr_5))

else N1l
X =P With
| Ni1 -> Nil map
| Cons (a_6,t_7) -> Cons ((a_b * a_6), t_7)
=P With
I N1l -> z_2

| Cons (a_8,t_9) -> loop_1 (z_2 + a_8) t_9 sum

34

Step 1: fusing the stepper

e stepper has known structure though!

let map : ('a code -> 'b code) -> "a st_stream -> 'b st_stream =
fun f (s, step) ->
let new_step s k = step s @@ function
| N1l -> k N1l
| Cons (a,t) -> .<let a' = .~(f a) 1in .~(k @ Cons (.<a'>., t))>.

1n (s, new_step) \;\\

stream_shape is static and factored out
of the dynamic code

* Anders Bondorf. 1992. Improving binding times without explicit CPS-conversion. In LFP '92
* Oleg Kiselyov, Why a program in CPS specializes better, http://okmij.org/ftp/meta-programming/#bti

35

Result
(after step 1)

let rec loop_1 z_2 s_3 =
X =—» match s_3 with Pq,(f'erh
I (1_4, arr_5) ->
1f 1_4 < (Array.length arr_5)
then
let el_6 = arr_5.(1_4) 1n
let a'_7 = el_6 * el_6 1n
loop_1 (z_2 + a'_7) ((1_4 + 1), arr_5)
else z_2

36

Step 2: fusing the state

no pair-allocation in loop: state passed in and
mutated

let of_arr : 'a array code -> 'a st_stream =
let 1nit arr k
= .< let 1 = ref 0 and
arr = .~arr in .~(k C.<1>.,.<arr>.))>.
and step (1,arr) k
= .< 1f !'(.~1) < Array.length .~arr
then
let el = (.~arr).(!(.~1)) 1in
incr .~1;
~(k @@ Cons (.<el>., ()))
else .~(k Nil)>.

in
. . 7 E 3
fun arr -> (init arr,step) (int * a array) code

~> 1nt ref code * o array code

37

let 1_8 = ref 0

Y ‘
and arr_9 = [10;1;2;3;41] 1n C“rf’oh
X =—» let rec loop_10 z_11 =
1f ! 1_8 < Array.length arr_9

then
let el_12
incr 1_8;
let a'_13

arr_9.(! 1_8) 1n

el_12 * el_12 1n

X —» loop_10 (z_11+a'_13)

else z_11

38

-actor out static knowledge:
After 3 key domain-specific optimizations™

1. The structure of the stepper is known:
use that at staging time!

2. The structure of the state is known:
use that at staging time, too!

3. Tall recursion vs lteration:
modularize the loop structure (for vs while)

* 6 domain-specific optimizations in total, accommodating linearity (filter and flat_map), sub-ranging, infinite
streams (take and unfold), and parallel stream fusion (zip)

39

Step 3: generating
imperative 100ps

let of_arr : 'a array code -> 'a stream = fun arr ->
let 1n1t k
= .<let arr = .~arr in .~(k .<arr>.)>.

and upper_bound arr

= .<Array.length .~arr - 1>.
and index arr 1 k

= .<let el = (.~arr).(.~1) 1n .~(k .<el>.)>.
in (init, For {upb;index})

~—

N\
start with For-form
and if needed

transform to Unfold

40

Result

/00,0~éa:ea// Fused

let s_1 = ref 0 1n
let arr_2 = [10;1;2;3;41] 1n
for 1_3 = @ to (Array.length arr_2) - 1 do
let el_4 = arr_2.(1_3) 1n
let t.5 =el_4 * el_4 1n s_1 := Is_1 + t_5
done;
Is_1

41

Now In Dotty (Scala 3) too

def sum() = '{ (array: Array[Int]) =>
~Stream.of ('(array)) .fold('{0}, ((a, b) => '"{ ~a + ~b }))

S)((X rray: scala.Array[scala.Int]) => {

var Xx: scala.Int = 0 GPCE ’18, November 5-6, 2018, Boston, MA, USA

var x$2: scala.Int = array.length
var x$3: scala.Int = 0 .
while (x$3.<(x%$2)) { 20 m ::Z;:::I
val el: scala.Int = array.apply(x$3) 100 % sasne e
x$3 = x$3.+(1) E 6
X = X.+(el) 40
} 20
X Sty so,,)o%% S, 013‘%6 oy O'O(‘pro , %r%"‘b?@ '04,?&%(%,%r
}) "5 'G’sgpe/) e Mo,

42

Data parallelism over large arrays
(with Repa)

representation type (e.g., Unboxed) shapetype(e.g.,Z :. Int :. Int)

l // element type

data Array r sh e

 Delayed representation for fusion (fusion is merely
a nested function composition)

* Operations like computeP and toldP parallelize the
computations automatically

43

Data parallelism over large arrays

(with Accelerate)

a function from Exp Int -> Exp Int we are not in the Haskell world anymore,
EXp vs AcC use represents arrays in the Accelerate world

\ copying may occur here ;-)
> let arr = froNList (Z:.3:.5)/[1..] :: Array DIM2 Int

> run $ A. map (+1) (use arr)
Array (Z :. .. 5) [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

GPU backends
 Delayed representation for fusion again, but hidden

e Arrays cannot be nested

44

NESL (1995)

 NESL Blelloch, Guy (1995). "NESL: A Nested Data-Parallel Language”
well suited for irregular algorithms (trees, graphs or sparse matrices)

A combination of SETL and ML

* Nested-ness eliminated in maps by a flattening transformation
(vectorization using segment-descriptors)
([[10], [20, 30], [40, 50, 60]] -> ([1, 2, 3], [10, 20, 30, 40, 50, 60]))

// apply-to-each
{a *a: ain [3, -4, -9, 5] | a > 0},

// replication of 1
{a *1 : ain [3, -4, -9, 5] | a > 0};

// nested parallelism
{sum(a) : a 1n [[2,3], [8,3,9], [7]]};

45

INfluences

* Data Parallel Haskell (incorporating higher-order
functions)

— rewrlte rules 1like
mapv f x - fv X

(fv)v X - segmentv x (fv (concatv x))

* Nessie: A NESL to CUDA Compiler (Reppy & Sandler,
2015)

e Streaming NESL, Madsen & Filinksi, 2016 (dealing with
space consumption by incorporating chunking)

46

Modularity in Array
Processing

* Futhark: a stand-alone language for array
programming
https://futhark-lang.org

 LIFT: a functional intermediate representation
based on lamlbda calculus
http://www.lift-project.org/

47

https://futhark-lang.org
http://www.lift-project.org

LIft, Gist

dot(x, y) = reduce (+, 0, map(x, zip(x, Vy)))

1

partialDot (x: [float]N , y: [float]N) =
(join o mapWrgo(
join o toGlobal(mapLclO(mapSeq(id)))
o splitl
o 1terate6(join
o mapLclO(toLocal(mapSeq(id))
o reduceSeq (add , 0))
o split2)
o join - mapLclO(toLocal(mapSeq(id))
o reduceSeq (multAndSumuUp, 0))
o split2) - split128)(zip(x, VY))

48

Futhark, Gist

e Futhark is based on Second Order Array Combinators (R.

S. Bird, Algebraic ldentities tor Program Calculation,
1989) and supports:

* nested parallelism

e |Nn-place array updates
 fusion through rewrite rules

fun main (matrix : [n][m]f32): ([n][m]f32, [n]f32) =
map (Arow : ([m]f32, f32) -
let row” = map (Ax : f32 - x+1.0) row
let s = reduce (+) 0 row
in (row’,s))
matrix

49

Query Engine Optimizations

* Many ideas are shared
* (physical) operators consume data from tables
* produce streams of tuples

* cost analysis to compute efficient scans

50

Query Engine Optimizations

* Volcano model (Graefe, 1994), pull
* DataPath (Arumugam, 2010), push

 HyPer model (Neumann, 2011), code generation,
why the shift?

1. nextis called for every tuple.

2. each call raises a performance hit (one virtual call per
element followed by branch prediction degradation)

3. this model promotes poor code |locality

51

Push versus pull-basead loop
fusion In query engines

Push versus pull-based loop fusion in
query engines

AMIR SHAIKHHA, MOHAMMAD DASHTI
and CHRISTOPH KOCH

Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
(e-mails: amir .shaikhha@epfl.ch, mohammad.dashti@epfl.ch, christoph.koch@epfl.ch)

Abstract

Database query engines use pull-based or push-based approaches to avoid the materialization
of data across query operators. In this paper, we study these two types of query engines in

52

Haskell libraries for lazy-10

e hitps://hackage.haskell.org/package/iteratee
e hitps://hackage.haskell.org/package/streamin
e hitps://hackage.haskell.org/package/pipes

e hitps://hackage.haskell.org/package/conduit

53

https://hackage.haskell.org/package/iteratee
https://hackage.haskell.org/package/streaming
https://hackage.haskell.org/package/pipes
https://hackage.haskell.org/package/conduit

e.g. pIpes

(https://hackage.haskell.org/package/pipes-4.3.9/docs/Pipes-Tutorial.html)

* Pipes have three features: effects, streaming and composability

= Producers can only yield values and they model streaming
sources

= Consumers can only await values and they model streaming
sinks

= Pipes can both yield and await values and they model stream
transformations

= Effects can neither yield nor await and they model non-streaming
components

o4

https://hackage.haskell.org/package/pipes-4.3.9/docs/Pipes-Tutorial.html

Major Challenges

e | et's diScussS

