Customized Polyhedral Compilation for
Low-Power High-Level SoC Synthesis

Shonan Seminar 134

Deming Chen?, Louis-Noe€l Pouchet?,
Wei Zuo', Warren Kemmerer?!, Jong Bin Lim1, Te Mu?

1: University of lllinois Urbana-Champaign
2: Colorado State University

Disclaimer

Contributors to this work include Wei Zuo, Warren Kemmerer, Jong Bin Lim,
Louis-Noel Pouchet, Andrey Ayupov, Taemin Kim, Kyungtae Han, and Deming
Chen.

This work was supported in part by an Intel University Research Office
grant.The PolyOpt and PoCC compilers are also supported in part by the U.S.
National Science Foundation and the U.S. Department of Energy.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation, the Department of Energy, nor Intel.

8- National Science Foundation lntel)

~ WHERE DISCOVERIES BEGIN

SoC Modeling and
Hardware/Software Co-design

?7? Which part(s) of the C/C++ Application

application should go targeting SoC
to hardware?

Typically manually

decided: often suboptimal

A difficult problem, Hardware/Software
many scenarios to partitioning

— SoC platfor

PP EEG

Accelerators

Automation can significantly improve the design
productivity

Ditticult to program
1 |
System performance
evaluation Harder: High

communication cost,
complicated dependencies

Some Key Challenges

How to accurately model system performance and power early
on in the design process?

How to significantly improve design productivity?

High-level modeling and synthesis
Automatic transformations/optimizations for different hardware targets

How to explore the large hardware/software co-design space
and automate hardware/software partitioning?

Coarse-grain knobs

Which / how many processors?

Partitioning among CPU, DSP, accelerators?
Accelerators for which functions?

Hardwired vs. programmable accelerators?
Re-use IPs?

Fine-grain knobs
Voltage, clock speed, bus bandwidth, communication topology, memory hierarchy, ...

Our Approach in a Nutshell

- Build a new SoC synthesis environment
- Take C/C++ as input specification of the application

- Go through automatic transformations and model-guided
software/hardware partitioning

- Output SystemC code for modeling the entire SoC

- This flow has the following unique features
- A customized polyhedral compilation environment to extract program
features, implement target-specific optimizations, and generate code

- Use modular design and HLS to evaluate RTL performance and power
details quickly
- Two types of SystemC outputs

- 18t assisting the system engineers to achieve more accurate system-level
performance and power evaluations for the SoC

- 2nd: fully synthesizable, enabling HLS to generate RTL automatically

Overview of Workflow

==

Automation of
Hardware/Software Co-Design

How to accurately model the whole system?

- Enabling to design globally optimal partitioning solutions under specific area

How to effectively and efficiently explore the huge system-level
. design space?

- Our contribution: an automated software/hardware partitioning
framework by tackling these three challenges
- High-level accurate hardware and software modeling

- Atask graph generation algorithm to capture key features of the
system (e.g., parallelism, communication cost, resource sharing)

- Arandomized ILP algorithm to explore the design space efficiently and

effectively

SoC Design Framework

==
==

Goal: An automatic hardware
modeling framework with
desired features

Hardware Modeling

- How to accurately model performance and power early on?
- Essential to enable rapid prototyping of SoC devices
No gate-level/physical information available ®

Hardware Modeling

How to accurately model performance and power early on?
Essential to enable rapid prototyping of SoC devices
No gate-level/physical information available ®
How to automate system design process?
Typical design flow:

r

N
High-level

modeling

C/C++
specification

!

HW/SW
partition

-

Other
IPs

Software C/C++

Hardware:
SystemC
modeling

~

System modeling: Virtual Platform

Hardware Implementation

Reimplementation in
RTL

Or

Reimplementation:

synthesizable SystemC

+

High-level syntheis

_

Hardware Modeling

How to accurately model performance and power early on?
Essential to enable rapid prototyping of SoC devices
No gate-level/physical information available ®
How to automate system design process?
Typical design flow:
(N\ N .
High-level System modeling: Virtual Platform Hardware Implementation
modeling Manual —u Reimplementation in
C/C++ Software C/C++ \ RTL
specification
Other Mandal Or
ﬂ IPs RETRCTALEE Reimplementation: . .
HW/SW o) Syster_nC) synthesizable SystemC +| High-level syntheis
\ O\ J
Manual Manual

Slow, manual process ®

Hardware Modeling

How to accurately model performance and power early on?

Essential to enable rapid prototyping of SoC devices
No physical information available ®

How to automate system design process?

Slow, manual process ®

How to explore the large design space?
Architecture selection flexibility to achieve different design goals

Huge design space, hard to find optimal implementation ®

Our approach directly tackles these three problems! ©

Our Solution: SystemC
Generation, Modeling and DSE

- How to accurately model performance and power early on?
- Essential to enable rapid prototyping of SoC devices

- How to automate system design process?

Automatic SystemC generation and analytical power & latency modeling

- How to explore the large design space?
- Architecture selection flexibility to achieve different design goal

Fast accelerator design space exploration

Our approach directly tackles these three problems! ©

Zuo et al., A Polyhedral-based SystemC Modeling and Generation
Framework for Effective Low-power Design Space Exploration, ICCAD’15

Our Approaches and Contributions

Accelerator SystemC Generation and
Design Space Exploration Flow

<« SystemC for ONE
point in design space
v

, : <— Model for ENTIRE design
Analytical power and latency modeling space J

_ _ <« Power-performance
Fast accelerator design space exploration Pareto curve

Stages help each other for a final holistic solution
» Each previous stage enables the effective operations of the next

stage
« Eventually achieve the high-performance & lower-power design

solutions and tradeoffs

An Example

- Blue dots form the design space
- Red dots are the frontiers

AtAx Modeled
0.07 0.07¢
0.06 0.06}
= o005f = o0.05f
O 004! %> O 0.04}
o} . p ;:.1,:::-:”‘ 3 .
5 003 5 0.03

®

0.02+ E 0.02}

X
0.01 : : : g 0.01
2 4 6 8 10 12 2

AtAx Measured

\

Latency (s) x107

Error Rate: Power: 4.1%; Latency: 3.28%

Analysis of the DSE Results

- Communication dominated design (Gemver)
- Increase parallel computations causes minor latency decrease
- Optimization opportunity:
- P1 vs. P2: 1.7 x less power, 4% longer latency
- Computation dominated design (Correlation)
- Effective power-latency trade-off

0.05 Gemver Correlation
0.8
0.04} 0.7
— 0.6
< —
N ; |
% 0.03 = 0.5
§ § 04}
0.02+ 0.3
0.2
» .‘1 ®
0.01 . - s 0.1 : Q—
0.005 0.01 0.015 0.02 0 0.2 0.4 0.6 0.8

Latency (s) Latency (s)

Now: the System Co-design!

- Build on top of LLVM infrastructure Appglcgﬂ?r” i
and leverage the compiler
technique

- Factor in control flow and data flow LLVM frontend parsing

dependency, resource reuse

e LLVM IR with hot region identified
possibilities, control and data '

dependenC|eS CDFG generation
: |
- Extract .and eXpO_Se different Transformation based on
parallelisms as different branches branch probability analysis
: : |
- Dramatically reduce the complexity Extract parallelism in all
- Output the task graph for efficient l

ILP formulation Task graph

Explore the Design Space:
Characterization and Randomized ILP

Each hot region of

the application Leverages our hardware and
software modeling framework

Hardware Software

del del Assume br gadrﬂt |8 trpcﬁn
modeling modeling N - : (}5
—_— _selected ImploeiigHRe
Pareto curve of each hot region ‘ I 1 gm latency, power
4 o e, and area
Sampling the Pareto 'Localiz\q l

the sampled point to task graph
!}

ILP formulation Find the implementation of each
component for shortest latency of the task

raph given power and area constraints
gﬁﬁs ep s ﬁ)nks t?\e desefgn space

in a logarithmic manner

| curve of each region A
Annotate Latency/Power/Area of \!_ @

A 4

Design space localization

Experiments

- Platform: Xilinx Zyng-7000 XC7Z045 SoC
- CPU: ARM Cortex-A9 (800 MHz)
- FPGA: 100HMz

- Benchmarks:
- Covariance, Correlation, 3-mm, RSA, AlexNet

- Experimental setup
- Efficiency: Compare the speedup with Simulated Annealing (SA)
- Optimality: Compare the partitioning result with brute-force search

- Accuracy: Compare latency, power and resource with FPGA synthesis
results

- Speedup over CPU: Compare the latency with the single-thread Intel
Xeon(R) CPU E3-1240

Experiments |

- Efficiency: Compare the speedup with Simulated Annealing (SA)

Randomized SA
ILP Runtime (S) | Runtime(s) | >Peedup to SA

Correlation 41.87 2667.59
Covariance 45.36 2375.66 52x
3-mm 40.10 1140.55 27X
RSA 42.43 4689 .72 110x
AlexNet 3284.03 48620.93 14x
Average -- 53x

» Our tool on average achieves 56.95x% speedup over SA
» For covariance, both algorithms found the same results, while for the other
benchmarks, randomized ILP outperforms SA

Experiments Il

- Optimality: Compare the partitioning result with brute-force
- Can only run the brute-force search for the first 3 benchmarks
- Randomized ILP can find the optimal results in the three cases

- Accuracy: Compare with FPGA synthesis results

FPGA Implementation

Correlation
Covariance
3-mm

RSA
AlexNet
Average

Latency
Error (%)

4.88
7.00
6.66
8.17
9.09
7.16

Power
Error (%)

6.30
6.52
4.69
10.71
6.72
6.98

Resource
Error (%)

0.54
0.71
2.09
1.72
5.06
2.02

Experiments lli

- Speedup over CPU: Compare the latency with the single-
thread (default input code, non optimized) Intel Xeon(R)
CPU E3-1240

Latency Power Latency
(s) (W) (s)
Correlation 0.0818 2.36 3.797 46.4
Covariance 0.0834 2.54 4 111 49.3
3-mm 0.0644 2.84 5.237 81.3
RSA 3.69 2.25 31.447 8.5
AlexNet 0.0458 19.5 10.90 238.0

Average 84.7

Polyhedral Tools

Polyhedral compilation tools, hierarchical compilation
Source code transformations toolbox (PolyOpt & PoCC)
Target-independent optimizations
Target-specific optimizations

Information for hardware mapping (loop trip count, data footprint,
etc.)

Objective: Provide program transformation environment,
with automatic optimizations for data locality / parallelism

Program transformations for improved energy efficiency

Automatic program transformations to reduce data movements, improve
parallelism

For multi-core CPUs: tune the transfo. for a given frequency/core
setup

Compile-time approximation of cache misses and parallelism metrics
Objective: Demonstrate frequency-aware program transformation

Overview of Polyhedral
Compilation Tools

Loop trip count

Input Extract
program polyhedral
block regions

Target-independent
transformations

Tiling

Fusion

Parallelization

—» Dual HAPoR / PAST representation
—> AST only representation

program optimized
for x86/CPU

—— | Program analysis

Buffer sizes
Parallelism info
Task dependences

Instruction stats

program optimized
for HLS

intrinsics generation

Communication
generation

scalar optimizations

v

Buffer generation

vectorization

Tasks creation

x86 CPU / SIMD

HLS / Fixed functions

Target-specific
transformations

Target
| code generation
(C/C++/SystemC)

Output
program

block

24

Transformation Selection

Claim: smart H/S partitioning requires the code to be
optimized for each possible target (CPU/GPU/DSPI/IPI...)

- Finding the best optimization needs non-linear cost models

- Our approach: build search spaces of candidate
Implementations, and progressively prune them

Polyhe
analysis

“‘All” semantically-equivalent
programs

ILP/Polyhedral cost
model

“All” parallel/tiled programs

Lightweight HLS /
PolyFeat

“All” predicted good programs

Simulation / v Final candidate programs

auto-tuning

25

Transformations for CPU Energy
Optimization

- Central idea: the program transformation to minimize CPU energy may
depend on the CPU frequency, need to generate adaptive binaries

- If the frequency is low, the code may not issue enough load/store per second to
saturate the RAM bandwidth

- Example: Harris corner detection, from OpenCV 3.0

- If the frequency is high, the code may not need multi-cores to saturate the RAM
bandwidth

- Research problem: how to select the program transformation achieving
best speed or CPU energy for a particular frequency?
- Multi-core parallelism may be essential at low frequencies
- But it may provide little speedup at high frequencies (e.g., bandwidth-bound codes)

- And what if there is a trade-off multi-core parallelism vs. data locality in the space of
possible transformations?

- How to address this problem at compile-time? We need to:
- Model the run-time behavior of the program (e.g., L3 cache misses)

- Model program features in performance estimators, that consider CPU frequency
and RAM bandwidth

26

PolyFeat: Overview and Motivation

Develop a purely compile-time approach to quickly evaluate
thousands of candidate transformations, to determine quickly the best

one(s)
1. Generate space of useful/important candidate optimizations

- Combine trade-offs between multi-core parallelization, data locality, pre-SIMD, etc.
- Uses the polyhedral compiler PoCC (part of PolyOpt)
+ Limited to affine programs for the optimization process
- Explore 1000s of candidates via exploration of loop fusion/distribution, tile size selection, ...
2. For each candidate C code generated, extract metrics
- Approximate cache misses (private/shared caches)
- Count floating point operations (in each OpenMP thread, varying the number of
threads)
3. Build performance estimator, using CPU frequency and RAM
bandwidth
- Estimate CommCyc: number of cycles spent communicating with RAM
- Estimate CompCyc: number of cycles spent computing
- Simple performance estimator: max(CommCyc, CompCyc)

27

Where Is PolyFeat in the Food Chain?

Claim: smart H/S partitioning requires the code to be
optimized for each possible target (CPU/GPU/DSPI/IPI...)

- Finding the best optimization needs non-linear cost models

- Our approach: build search spaces of candidate
Implementations, and progressively prune them

Polyhe
analysis

“‘All” semantically-equivalent
programs

ILP/Polyhedral cost
model

“All” parallel/tiled programs

Lightweight HLS /
PolyFeat

“All” predicted good programs

Simulation / v Final candidate programs

auto-tuning

28

Extracting Features from Source Code

- Overview of the process:

1. Extract polyhedral representation of the program (including OpenMP
doall)

2. Inline parameter values (many of our analyses are not parametric)
Count the number of operations in each loop / region of interest

4. Compute the data space (in cache lines) accessed by each loop /
region

5. Run various ad-hoc algorithms to estimate cache misses, thread
workload, etc.

- Core features currently extracted:
- Number of FLOPs (scalar, vectorizable, and scalar-equivalent) EXACT

- Data footprint (read/written) EXACT
- Data cache misses (at each level, inc. shared/private) APPROX
- OpenMP thread workload EXACT

29

Kernel Categorization

- Run PolyFeat on 60 benchmarks (30 PolyBench x 2)

- Objective: categorize benchmarks, show categorization changes w/
code transfo.

Benchmarks | seq/par | bw-bound | poor scale | comp-bound
polybench-parrallel | 12/18 27 4 |
polybench-poly 5725 15 1 10

Table V: Summary of Features

Benchmarks | version | seq | bw-bound | poor scale | comp-bound

correlation par v
poly v
gemm par v
poly v
jacobi-2d par v v
poly v
seidel-2d par v v
poly v

Table VI: Benchmark features

Performance Estimators

- Computation:

- Speedup by doubling the number of cores: number of ops in the largest
thread using T threads divided by number of ops in the largest thread
using 2T threads

- Computation cycles: number of ops, assume 1 cycle per flop and 1
cycle per vector flop

- Communication:

- Off-chip communication cycles: Freq * (LLCMiss * LLCLineSize /
RAM_bandwidth)

- Performance estimator:
- Max(ComputationCycles, CommunicationCycles)

- Model for selecting the number of cores:
- If Speedup(T, 2T) > Powerincrease(T, 2T) then use 2T cores
- Powerlncrease: measured using Intel MKL benchmark (over-estimate)

31

Experimental Results [1/2])

Execution time vs. PolyFeat OI-L3
Haswell 4770k, 1 core, 3.5GHz

0.12 3

0.1

0.08 ‘a-/

N
n

N

Execution time (in seconds)

Operational intensiry (flops per bytes)

006 15 .
- * fime
0.04 e 1
T _ 0113
e O N P S e R
0.02 - 05
0 T T T T T T 0
0 500 1000 1500 2000 2500 3000 3500

Transformations: 3072 fusion/distribution/code motion alternatives, with automatic
OpenMP and SIMD parallelization

Figure 1: Harris on a 4k UHD image. Original code from
OpenCYV 3.0 performs in 0.14s, 3x slower than the best trans-
formation we output.

Experimental Results [2/2]

0.2

Harris corner detection
Execution Time - Core i7 4770k

Harris corner detection
CPU only Energy - Core i7 4770k

I
HN

0.18 N\ 11—
0.16
£ 014 A\ g o9
g0 N 3
§ 0.12 \ ef==Base Time e 08 e=b==Base Energy
g 0.1 . 5 0.7 Best Energy
> 0.08 Best Time &
o U o
E=
£ 006 ‘ﬁ% «@=Nodel Time & 06 =i=Model Energy
0.04 @ ParFuse Time 0.5 MaxFuse Energy
0.02 0s
0 8

0.8 1.2 1.6 2.3 2.7 3.1 3.5
Frequency, in GHz

0.8 1.2 1.6 2.3 2.7 3.1 3.5

Frequency, in GHz

Figure 3: CPU energy comparison, original (base) versus best

Figure 2: Execution time comparison, original (base) versus . . .
(in design space of 9216 points) for each frequency, our model,

best (in design space of 9216 points) for each frequency, our

model, and ParFuse

and MaxFuse

base | MaxFuse | ParFuse | model best
T @ 0.8GHz | 0.35s 0.74s 0.098s 0.098s | 0.98s
T @ 3.5GHz | 0.15s 0.18s 0.094s 0.097s | 0.094s
E @ 0.8GHz | 1.86] 3.52] 0.86] 0.86] 0.86]
E @ 3.5GHz | 2.65] 5.00] 2.78] 1.55] 1.48]

Table 1: Summary for FDTD-2D on Core i7-4770k

33

Conclusions

Polyhedral/affine programs form only a restricted set of
computations, but this set can be effectively analyzed and optimized
at compile-time

Polyhedral programs include tensor operations (e.g., deep learning), many dense

linear algebra algorithms (e.g., most of BLAS), stencil computations (e.g., image
processing), etc.

Ability to determine latency/power with good precision, using light HLS

Hardware/software co-design needs quality code optimizations!
CPU code optimizations are often neglected by hardware specialists!

Polyhedral compilers provide fully automatic transformations for data locality and
parallelism (both coarse- and fine-grain)

Technical merits:
Polyhedral scheduling (aka automated loop transformations)
Multi-target code generation and optimization (CPU/GPU/FPGA/fixed fun.)
Automated data communication generation
Compile-time performance and energy modeling
Quick design space exploration

34

