
Customized Polyhedral Compilation for
Low-Power High-Level SoC Synthesis

Shonan Seminar 134

Deming Chen1, Louis-Noël Pouchet2,
Wei Zuo1, Warren Kemmerer1, Jong Bin Lim1, Te Mu2

1: University of Illinois Urbana-Champaign
2: Colorado State University

Disclaimer
Contributors to this work include Wei Zuo, Warren Kemmerer, Jong Bin Lim,
Louis-Noel Pouchet, Andrey Ayupov, Taemin Kim, Kyungtae Han, and Deming
Chen.

This work was supported in part by an Intel University Research Office
grant.The PolyOpt and PoCC compilers are also supported in part by the U.S.
National Science Foundation and the U.S. Department of Energy.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation, the Department of Energy, nor Intel.

SoC Modeling and
Hardware/Software Co-design

SoC platform
CPU

• Easy to program
• General applications
• Limited parallelism and

performance
• Power hungry

Accelerators
• Fine-grained parallelism
• High performance and power

efficiency
• Difficult to program

B
U
S

C/C++ Application
targeting SoC

?? Which part(s) of the
application should go
to hardware?

Harder: High
communication cost,
complicated dependencies
…

Hardware/Software
partitioning

System performance
evaluation

A difficult problem,
many scenarios to

consider

Automation can significantly improve the design
productivity

“Easy” decision: High
computation intensity,
high parallelism …

Typically manually
decided: often suboptimal

Some Key Challenges
• How to accurately model system performance and power early

on in the design process?
• How to significantly improve design productivity?

• High-level modeling and synthesis
• Automatic transformations/optimizations for different hardware targets

• How to explore the large hardware/software co-design space
and automate hardware/software partitioning?

• Coarse-grain knobs
• Which / how many processors?
• Partitioning among CPU, DSP, accelerators?
• Accelerators for which functions?
• Hardwired vs. programmable accelerators?
• Re-use IPs?

• Fine-grain knobs
• Voltage, clock speed, bus bandwidth, communication topology, memory hierarchy, …

• Build a new SoC synthesis environment
• Take C/C++ as input specification of the application
• Go through automatic transformations and model-guided

software/hardware partitioning
• Output SystemC code for modeling the entire SoC

• This flow has the following unique features
• A customized polyhedral compilation environment to extract program

features, implement target-specific optimizations, and generate code
• Use modular design and HLS to evaluate RTL performance and power

details quickly
• Two types of SystemC outputs

• 1st: assisting the system engineers to achieve more accurate system-level
performance and power evaluations for the SoC

• 2nd: fully synthesizable, enabling HLS to generate RTL automatically

Our Approach in a Nutshell

Overview of Workflow

C/C++ application

Polyhedral model based
software/hardware co-design

engine
Software modeling Hardware modeling

Partition results and
evaluation of the system

Power & Time
instrumented SystemC

SystemC for
HLS

SystemC generation

Automation of
Hardware/Software Co-Design

• An efficient hardware/software partitioning tool needs to
• Consider different hardware and software implementations of each

code region for acceleration
• Expose trade-offs in area versus performance and power/energy

• Accurately model the entire system and all its components
• Enabling to design globally optimal partitioning solutions under specific area

or power budgets
• Efficiently explore the design space at system-level

• Our contribution: an automated software/hardware partitioning
framework by tackling these three challenges
• High-level accurate hardware and software modeling
• A task graph generation algorithm to capture key features of the

system (e.g., parallelism, communication cost, resource sharing)
• A randomized ILP algorithm to explore the design space efficiently and

effectively

How to efficiently model and explore component designs and also
support different platforms?

How to accurately model the whole system?

How to effectively and efficiently explore the huge system-level
design space?

Specification

System virtual platform
and co-simulation

Hardware-Software
Partitioning

Software for target
Processor Hardware acceleratorInterconnect

IPsIPsIPs

Software design Hardware design

SoC Design Framework

Goal: An automatic hardware
modeling framework with
desired features

Hardware Modeling
• How to accurately model performance and power early on?

• Essential to enable rapid prototyping of SoC devices
No gate-level/physical information available L

Hardware Modeling
• How to accurately model performance and power early on?

• Essential to enable rapid prototyping of SoC devices

• How to automate system design process?
• Typical design flow:

No gate-level/physical information available L

High-level
modeling

C/C++
specification

HW/SW
partition

System modeling: Virtual Platform

Software C/C++

Hardware:
SystemC
modeling

Other
IPs

Reimplementation in
RTL

Reimplementation:
synthesizable SystemC

Hardware Implementation

High-level syntheis+

Or

Hardware Modeling

Slow, manual process L

Reimplementation in
RTL

Reimplementation:
synthesizable SystemC

System modeling: Virtual Platform

Software C/C++

Hardware:
SystemC
modeling

Other
IPs

Hardware Implementation

High-level syntheis+

Or

High-level
modeling

C/C++
specification

HW/SW
partition

Manual

Manual

ManualManual

• How to accurately model performance and power early on?
• Essential to enable rapid prototyping of SoC devices

• How to automate system design process?
• Typical design flow:

No gate-level/physical information available L

Hardware Modeling
• How to accurately model performance and power early on?

• Essential to enable rapid prototyping of SoC devices

• How to automate system design process?

• How to explore the large design space?
• Architecture selection flexibility to achieve different design goals

No physical information available L

Slow, manual process L

Our approach directly tackles these three problems ! J

Huge design space, hard to find optimal implementation L

Huge design space, hard to find optimal implementation L

Slow, manual process L

No physical information available L

Our Solution: SystemC
Generation, Modeling and DSE

• How to accurately model performance and power early on?
• Essential to enable rapid prototyping of SoC devices

• How to automate system design process?

• How to explore the large design space?
• Architecture selection flexibility to achieve different design goal

Our approach directly tackles these three problems ! J

Automatic SystemC generation and analytical power & latency modeling

Polyhedral-based power & latency characterization and estimation

Fast accelerator design space exploration

Zuo et al., A Polyhedral-based SystemC Modeling and Generation
Framework for Effective Low-power Design Space Exploration, ICCAD’15

Our Approaches and Contributions

• Stages help each other for a final holistic solution
• Each previous stage enables the effective operations of the next

stage
• Eventually achieve the high-performance & lower-power design

solutions and tradeoffs

SystemC for ONE
point in design space

Model for ENTIRE design
space

Power-performance
Pareto curve

Automated C-to-SystemC transformation
 with power & latency annotated

Analytical power and latency modeling

Fast accelerator design space exploration

Accelerator SystemC Generation and
Design Space Exploration Flow

An Example

• Blue dots form the design space
• Red dots are the frontiers

Error Rate: Power: 4.1%; Latency: 3.28%

Analysis of the DSE Results
• Communication dominated design (Gemver)

• Increase parallel computations causes minor latency decrease
• Optimization opportunity:

• P1 vs. P2: 1.7 x less power, 4% longer latency
• Computation dominated design (Correlation)

• Effective power-latency trade-off

Gemver Correlation

Now: the System Co-design!
Application in

C/C++

LLVM frontend parsing

LLVM IR with hot region identified

CDFG generation

Transformation based on
branch probability analysis

Extract parallelism in all
paths

• Build on top of LLVM infrastructure
and leverage the compiler
technique

• Factor in control flow and data flow
dependency, resource reuse
possibilities, control and data
dependencies

• Extract and expose different
parallelisms as different branches
• Dramatically reduce the complexity

for ILP
• Output the task graph for efficient

ILP formulation Task graph

Explore the Design Space:
Characterization and Randomized ILP

Hardware
modeling

Software
modeling

Pareto curve of each hot region

Each hot region of
the application

Sampling the Pareto
curve of each region

Annotate Latency/Power/Area of
the sampled point to task graph

ILP formulation

N sample points
and associated
latency, power
and area

Find the implementation of each
component for shortest latency of the task
graph given power and area constraints

Design space localization

Leverages our hardware and
software modeling framework

Assume brown dot is the
selected implementation of
the region

Localize

This step shrinks the design space
in a logarithmic manner

Experiments
• Platform: Xilinx Zynq-7000 XC7Z045 SoC

• CPU: ARM Cortex-A9 (800 MHz)
• FPGA: 100HMz

• Benchmarks:
• Covariance, Correlation, 3-mm, RSA, AlexNet

• Experimental setup
• Efficiency: Compare the speedup with Simulated Annealing (SA)
• Optimality: Compare the partitioning result with brute-force search
• Accuracy: Compare latency, power and resource with FPGA synthesis

results
• Speedup over CPU: Compare the latency with the single-thread Intel

Xeon(R) CPU E3-1240

Experiments I

• Efficiency: Compare the speedup with Simulated Annealing (SA)

Benchmarks Randomized
ILP Runtime (S)

SA
Runtime(s) Speedup to SA

Correlation 41.87 2667.59 63x

Covariance 45.36 2375.66 52x

3-mm 40.10 1140.55 27x

RSA 42.43 4689.72 110x

AlexNet 3284.03 48620.93 14x

Average -- 53x

• Our tool on average achieves 56.95× speedup over SA
• For covariance, both algorithms found the same results, while for the other

benchmarks, randomized ILP outperforms SA

Experiments II
• Optimality: Compare the partitioning result with brute-force

• Can only run the brute-force search for the first 3 benchmarks
• Randomized ILP can find the optimal results in the three cases

• Accuracy: Compare with FPGA synthesis results
Benchmarks FPGA Implementation

Latency
Error (%)

Power
Error (%)

Resource
Error (%)

Correlation 4.88 6.30 0.54
Covariance 7.00 6.52 0.71
3-mm 6.66 4.69 2.09
RSA 8.17 10.71 1.72
AlexNet 9.09 6.72 5.06
Average 7.16 6.98 2.02

Experiments III
• Speedup over CPU: Compare the latency with the single-

thread (default input code, non optimized) Intel Xeon(R)
CPU E3-1240

Benchmark Randomized ILP CPU Speedup

Latency
(s)

Power
(W)

Latency
(s)

Correlation 0.0818 2.36 3.797 46.4

Covariance 0.0834 2.54 4.111 49.3

3-mm 0.0644 2.84 5.237 81.3

RSA 3.69 2.25 31.447 8.5

AlexNet 0.0458 19.5 10.90 238.0

Average 84.7

Polyhedral Tools
• Polyhedral compilation tools, hierarchical compilation

• Source code transformations toolbox (PolyOpt & PoCC)
• Target-independent optimizations
• Target-specific optimizations
• Information for hardware mapping (loop trip count, data footprint,

etc.)
ÞObjective: Provide program transformation environment,
with automatic optimizations for data locality / parallelism

• Program transformations for improved energy efficiency
• Automatic program transformations to reduce data movements, improve

parallelism
• For multi-core CPUs: tune the transfo. for a given frequency/core

setup
• Compile-time approximation of cache misses and parallelism metrics

ÞObjective: Demonstrate frequency-aware program transformation

Overview of Polyhedral
Compilation Tools

24

Extract
polyhedral

regions
Program analysis

Loop trip count

Buffer sizes

Parallelism info

Task dependences

Instruction stats

Output
program

block

Tiling

Fusion

Parallelization

Target-independent
transformations

...

vectorization

intrinsics generation

scalar optimizations

x86 CPU / SIMD

Target-specific
transformations

Buffer generation

Tasks creation

Communication
generation

HLS / Fixed functions

Target
code generation
(C/C++/SystemC)

Input
program

block

Dual HAPoR / PAST representation

AST only representation

program optimized
for x86/CPU

program optimized
for HLS

Transformation Selection

25

Claim: smart H/S partitioning requires the code to be
optimized for each possible target (CPU/GPU/DSP/IP/…)

• Finding the best optimization needs non-linear cost models
• Our approach: build search spaces of candidate

implementations, and progressively prune them
“All” semantically-equivalent

programs

“All” parallel/tiled programs

“All” predicted good programs

Final candidate programs Simulation /
auto-tuning

Lightweight HLS /
PolyFeat

ILP/Polyhedral cost
model

1-10

1000’s

1000000’s

∞Polyhedral
analysis

Transformations for CPU Energy
Optimization

• Central idea: the program transformation to minimize CPU energy may
depend on the CPU frequency, need to generate adaptive binaries
• If the frequency is low, the code may not issue enough load/store per second to

saturate the RAM bandwidth
• Example: Harris corner detection, from OpenCV 3.0

• If the frequency is high, the code may not need multi-cores to saturate the RAM
bandwidth

• Research problem: how to select the program transformation achieving
best speed or CPU energy for a particular frequency?
• Multi-core parallelism may be essential at low frequencies
• But it may provide little speedup at high frequencies (e.g., bandwidth-bound codes)
• And what if there is a trade-off multi-core parallelism vs. data locality in the space of

possible transformations?
• How to address this problem at compile-time? We need to:

• Model the run-time behavior of the program (e.g., L3 cache misses)
• Model program features in performance estimators, that consider CPU frequency

and RAM bandwidth

26

PolyFeat: Overview and Motivation

Develop a purely compile-time approach to quickly evaluate
thousands of candidate transformations, to determine quickly the best

one(s)
1. Generate space of useful/important candidate optimizations

• Combine trade-offs between multi-core parallelization, data locality, pre-SIMD, etc.
• Uses the polyhedral compiler PoCC (part of PolyOpt)

• Limited to affine programs for the optimization process
• Explore 1000s of candidates via exploration of loop fusion/distribution, tile size selection, …

2. For each candidate C code generated, extract metrics
• Approximate cache misses (private/shared caches)
• Count floating point operations (in each OpenMP thread, varying the number of

threads)
3. Build performance estimator, using CPU frequency and RAM

bandwidth
• Estimate CommCyc: number of cycles spent communicating with RAM
• Estimate CompCyc: number of cycles spent computing
• Simple performance estimator: max(CommCyc, CompCyc)

27

Where Is PolyFeat in the Food Chain?

28

Claim: smart H/S partitioning requires the code to be
optimized for each possible target (CPU/GPU/DSP/IP/…)

• Finding the best optimization needs non-linear cost models
• Our approach: build search spaces of candidate

implementations, and progressively prune them
“All” semantically-equivalent

programs

“All” parallel/tiled programs

“All” predicted good programs

Final candidate programs Simulation /
auto-tuning

Lightweight HLS /
PolyFeat

ILP/Polyhedral cost
model

1-10

1000’s

1000000’s

∞Polyhedral
analysis

Extracting Features from Source Code

• Overview of the process:
1. Extract polyhedral representation of the program (including OpenMP

doall)
2. Inline parameter values (many of our analyses are not parametric)
3. Count the number of operations in each loop / region of interest
4. Compute the data space (in cache lines) accessed by each loop /

region
5. Run various ad-hoc algorithms to estimate cache misses, thread

workload, etc.

• Core features currently extracted:
• Number of FLOPs (scalar, vectorizable, and scalar-equivalent) EXACT
• Data footprint (read/written) EXACT
• Data cache misses (at each level, inc. shared/private) APPROX
• OpenMP thread workload EXACT

29

Kernel Categorization

30

• Run PolyFeat on 60 benchmarks (30 PolyBench x 2)
• Objective: categorize benchmarks, show categorization changes w/

code transfo.

A:19

did not improve the OI enough to make it go beyond our cut-off point, and it was expected as the
best frequency / core configuration for this optimized kernel is indeed the best frequency for the
bandwidth-bound codes: the program still suffers from bandwidth contention, even after the tiling
we applied.

Benchmarks seq/par bw-bound poor scale comp-bound

polybench-parrallel 12/18 27 4 1
polybench-poly 5/25 15 1 10

Table V: Summary of Features

Benchmarks version seq bw-bound poor scale comp-bound

correlation
par

poly

gemm
par

poly

jacobi-2d
par

poly

seidel-2d
par

poly

Table VI: Benchmark features

7. PHASE ANALYSIS

We now discuss the occurences of phases in the programs we evaluated, via a separate set of ex-
periments conducted using the runtime algorithm described in Sec. 3. The objective is to show that
thanks to the stability of most affine kernels we evaluated, i.e., they contain only one phase, a purely
static approach where we select a single frequency / core configuration for the entire kernel duration
can achieve near-optimal results. We then discuss cases where phases occur, and point to future work
on using Alg. 2 to detect those phases analytically to enable the selection of different frequency /
core configurations for different phases of the program.

7.1. Phase Characterization

We plot in Fig. 8 the output of our adaptive runtime on several kernels. To better visualize phases, if
any, we used a very low threshold for frequency change: as soon as there is a 1% energy efficiency
difference between two time quanta (set to 50ms), the runtime is allowed to increase/decrease fre-
quency. Benchmarks were set to using a very large problem size, for better illustration. There is one
point per time quanta, and we report both the current frequency (in green), and the “instantaneous”
power for the quanta (in purple). We have conducted this study on all 60 benchmarks on Haswell,
using 4 cores, and isolated the most representative cases.

The top charts show typical power trace examples for single-phase kernels: the power consump-
tion is mostly stable, and the frequency typically oscillate between two of the frequency points, e.g.,
1.2GHz or 1.6GHz, indicating the optimal frequency may be in between these points. We conducted
this characterization for all 60 benchmarks, and for 46 of them there is a single phase. These includes
gemm and trmm for example. The bottom charts illustrate cases of multiple phases in the program.
A total of 14 benchmarks show 2 or more phases (up to 5), visualized as a stable change for a part of
the program execution of the frequency used. The effect of program transformations to improve data
locality can be visualized here: phases are not identical between both plots, in particular since data

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: June 2016.

Performance Estimators
• Computation:

• Speedup by doubling the number of cores: number of ops in the largest
thread using T threads divided by number of ops in the largest thread
using 2T threads

• Computation cycles: number of ops, assume 1 cycle per flop and 1
cycle per vector flop

• Communication:
• Off-chip communication cycles: Freq * (LLCMiss * LLCLineSize /

RAM_bandwidth)
• Performance estimator:

• Max(ComputationCycles, CommunicationCycles)
• Model for selecting the number of cores:

• If Speedup(T, 2T) > PowerIncrease(T, 2T) then use 2T cores
• PowerIncrease: measured using Intel MKL benchmark (over-estimate)

31

Experimental Results [1/2]

32

has loop-invariant loop bounds, a constant scalar stride, and the exit
value of the loop iterator is not read outside the loop; (5) syntactic
statements may contain a data-dependent conditional (e.g., using a
ternary operator in C).

Polyhedral programs have essential properties that we rely on to
build our static analysis, as described in Sec. 4.1. This class of
program covers a wide spectrum of compute-intensive and data-
intensive processing kernels, typically found in linear algebra meth-
ods, image processing, or physics simulation [8].

Transformation selection. The traditional approaches in poly-
hedral transformation selection is to build an integrated cost model
to select the (composition of) loop transformations that optimizes
theoretical performance objectives. For example, Bondhugula et al.
showed how to maximize data locality [4], Kong et al. how to max-
imize data locality under SIMD constraints [9], and numerous other
work looked at combined objectives for parallelization, e.g. [6, 11].
The drawback of such approach is that it can be very di�cult, if pos-
sible at all, to build a multi-objective model that can be embedded
in the polyhedral framework [9], limiting to “simple” performance
models. Furthermore, these theoretical objectives may not translate
into actual performance e↵ects, due in part to the lack of modeling
of run-time behaviors such as data cache misses.

Other approaches to cope with the above limitations rely on iter-
ative compilation, that is computing a set of candidate transforma-
tions and run them on the target machine, to find the best perform-
ing one(s) by measurement. Such approaches include heuristics to
find a multi-dimensional schedule [13], or exploring fusion/distri-
bution alternatives [14], auto-tuning [16, 3], or auto-tuning using
machine learning [7, 10]. In this work we take a novel approach
to transformation selection: we do not rely on one integrated cost
model, but consider a set of candidates, similarly to auto-tuning ap-
proaches. But, in contrast to auto-tuning approaches, we do not run
the candidate variants, instead we develop a very fast static analysis
to estimate the run-time behavior of the variants, at compile-time,
and without simulation.

2.2 Overview of the Approach
Our proposed optimization approach is made of three stages.

1) Build candidate transformations. The first stage is to
build a set of candidate program variants where each is a poly-
hedral program. In this work we particularly focus on pipelines
of producer-consumer kernels, known as directed acyclic graphs
(DAGs) of stencils. So these transformations must consider sev-
eral optimization objectives: various degrees of data locality opti-
mization, by investigating various alternatives to fuse filters/kernels,
OpenMP parallelization to exploit multi-cores, and very importantly
e↵ective SIMD pre-optimization to enable the vendor compiler (In-
tel ICC in our experiments) to generate e�cient vector code. We use
the PoCC polyhedral compiler [1], which implements state-of-the-
art polyhedral loop transformations, to generate up to 3072 variants
per input program. This is summarized in Sec. 3.

2) Compute program features for each candidate. The
next stage is to extract features estimating the run-time behavior
of the program. We exploit essential properties of static control-
flow in a�ne programs to build a complex system of metrics that
reflect the program’s execution. We compute high-level estimators
of the data cache accesses and misses, for each cache level (pri-
vate L1/L2 and shared L3), without resorting to any simulation.
We also compute estimators of the parallel speedup, running on a
given number of cores, by computing the maximal number of op-
erations in any OpenMP thread, giving us an estimate of the work-
load in the “biggest” thread. This is presented in Sec. 4. While
these metrics are only approximation of the actual program behav-
ior, we show they are enough to distinguish whether a program
variant is memory-bound or compute-bound, and enough to select

which transformation performs best. We highlight this capability
with the plot in Fig. 1 which shows the correlation between mea-
sured execution time (blue line, sorted by increasing execution time,
the lower the better) and estimated L3 operational intensity, which
is the ratio of flops per bytes transferred from RAM (red line, the
higher the better), for Harris corner detection on the 3072 variants
considered. While our estimator, in red, does not perfectly model
performance due to the various approximations and assumptions we
are making, it does capture the performance trend very well as well
as the performance ordering of the best points.

0"

0.5"

1"

1.5"

2"

2.5"

3"

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500"

O
pe

ra
&o

na
l*i
nt
en

si
ry
*(fl

op
s*p

er
*b
yt
es
)*

Ex
ec
u&

on
*&
m
e*
(in

*se
co
nd

s)
*

Transforma&ons:*3072*fusion/distribu&on/code*mo&on*alterna&ves,*with*automa&c*
OpenMP*and*SIMD*paralleliza&on*

Execu&on*&me*vs.*PolyFeat*OIML3*
Haswell*4770k,*1*core,*3.5GHz*

+me"

OI"L3"

Figure 1: Harris on a 4k UHD image. Original code from
OpenCV 3.0 performs in 0.14s, 3x slower than the best trans-
formation we output.

3) Build performance estimate for each candidate. The
last stage is to translate the above metrics into a performance es-
timate for the candidate transformation. We take as input infor-
mation about the CPU such as the RAM bandwidth and operating
frequency, to build a roofline model [18] of the program’s perfor-
mance. That is, we translate L3 misses metric into an estimate of
the processor’s cycles spent communicating with the RAM, and var-
ious metrics on the count of operations per thread into an estimate
of the processor’s cycles spent computing. The performance esti-
mate is the maximum of these two. For the class of computation
we consider, we show it is su�cient to capture when the program
is compute-bound or memory-bound (something that changes for a
given program variant as a function of the CPU frequency, which
impacts directly the communication cycles estimate), and select the
transformation optimizing either the memory transfer time (for the
memory-bound case) or the computation time (for the compute-
bound case). In addition, with a simple estimate of the power in-
crease when increasing the number of cores, we can determine the
energy-minimizing core count for each frequency, by relating the
estimated parallel speedup to the power increase, as shown in Sec. 5.

For example, for Harris corner detection with 3072 variants, con-
sidering 3 multi-core configurations (1, 2 or 4 cores) and 7 frequen-
cies ranging from 0.8GHz to 3.5GHz for the target CPU, this lead
to up to 64,000+ design points. Auto-tuning on the target machine
(done for validation purpose) took about 1 day, while our proposed
approach finds the near-optimal configuration for each frequency in
a few tens of minutes, estimating the performance of one of the 3072
variant by computing all metrics via static analysis for the full range
of possible core/frequency configurations in about 0.3s.

3. TRANSFORMATION SPACE
3.1 Design Principles

Our main objective in this work is to provide a rich enough search
space of candidate variants in the form of a polyhedral C code with
only OpenMP for and SIMD directives, so that we can build a static
analysis to compute program features on each generated C code.
Our analysis, detailed in later Sec. 4, does not depend on the tool

Experimental Results [2/2]

33

0"
0.02"
0.04"
0.06"
0.08"
0.1"

0.12"
0.14"
0.16"
0.18"
0.2"

0.8" 1.2" 1.6" 2.3" 2.7" 3.1" 3.5"

Ti
m
e,
&in
&se

co
nd

s&

Frequency,&in&GHz&

Harris&corner&detec6on&
Execu6on&Time&9&Core&i7&4770k&

Base"Time"

Best"Time"

Model"Time"

ParFuse"Time"

Figure 2: Execution time comparison, original (base) versus
best (in design space of 9216 points) for each frequency, our
model, and ParFuse

frequencies above 2.3GHz, that is when the code becomes memory-
bound. The Best energy is not “visible” because it is fully covered
by the red curve: our model finds exactly the energy-optimal variant
for all cases. The energy loss by using MaxFuse at low frequencies
is impressive: about 1.6x savings can be achieved by running on
multiple cores and therefore increasing the computation speed. Par-
Fuse at 3.5GHz has an energy of 1.51J (not shown), almost 3x worse
than MaxFuse, illustrating further the need to adapt the transforma-
tion to the CPU frequency for energy optimization. Our model finds
the energy-optimal variant for all cases.

0.4$

0.5$

0.6$

0.7$

0.8$

0.9$

1$

1.1$

0.8$ 1.2$ 1.6$ 2.3$ 2.7$ 3.1$ 3.5$

En
er
gy
,(i
n(
Jo
ul
es
(

Frequency,(in(GHz(

Harris(corner(detec8on((
CPU(only(Energy(<(Core(i7(4770k(

Base$Energy$

Best$Energy$

Model$Energy$

MaxFuse$Energy$

Figure 3: CPU energy comparison, original (base) versus best
(in design space of 9216 points) for each frequency, our model,
and MaxFuse

Summary for FDTD-2D benchmark. We summarize in Ta-
ble 1 the performance and energy improvements over the origi-
nal/base code of the best-ever variant in the design space, and of
the variant selected by our model, for the FDTD-2D benchmark. In
this case, maximal fusion is highly detrimental, due to preventing to
expose SIMDizable loops. ParFuse is close to the optimal choice,
for all cases, but our model correctly predicts that at high frequen-
cies, the parallel speedup being very small it is best to run on one
core only. It leads to a marginal execution time increase, but a 1.8x
energy reduction. Although it does not find the truly minimal energy
configuration as for Harris, the result remains very good.

base MaxFuse ParFuse model best
T @ 0.8GHz 0.35s 0.74s 0.098s 0.098s 0.98s
T @ 3.5GHz 0.15s 0.18s 0.094s 0.097s 0.094s
E @ 0.8GHz 1.86J 3.52J 0.86J 0.86J 0.86J
E @ 3.5GHz 2.65J 5.00J 2.78J 1.55J 1.48J

Table 1: Summary for FDTD-2D on Core i7-4770k

7. CONCLUSION
The best transformation for a program to minimize CPU energy

may depend not only of the number of cores available, but also of
the operating frequency. Current approaches rely on time-consuming
evaluation of large design spaces, which is impractical. We pro-
posed a purely compile-time solution to estimate the run-time be-
havior of a class of polyhedral programs, approximating key met-
rics such as cache misses and OpenMP speedup using static analy-
sis. Our work is fully automated and implemented in PoCC, and we
demonstrated its e↵ectiveness to reduce CPU energy by up to 2x on
two key applications from image processing and physics simulation.

As future work we will investigate the generalization of these re-
sults to a wider class of a�ne programs. The main limitation of our
approach is in the limited quality of the estimator of the computation
time, which can be improved by careful analysis of the SIMDization
generated by the back-end compiler at the ASM level. We plan to
develop such techniques to improve the precision of our analysis,
and validate roofline-based approaches using these metrics.

8. REFERENCES
[1] PoCC, the Polyhedral Compiler Collection, version 1.3.

http://pocc.sourceforge.net.
[2] PolyBench/C 3.2. http://polybench.sourceforge.net.
[3] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,

U.-M. O’Reilly, and S. Amarasinghe. Opentuner: An extensible
framework for program autotuning. In PACT’14, pages 303–316.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral program optimization system. In ACM
PLDI’08, June 2008.

[5] P. Feautrier. Parametric integer programming. RAIRO Recherche
Operationnelle, 22:243–268.

[6] P. Feautrier. Some e�cient solutions to the a�ne scheduling problem,
part II: multidimensional time. IJPP, 21(6):389–420, Dec. 1992.

[7] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov,
A. Zaks, B. Mendelson, E. Bonilla, J. Thomson, H. Leather, et al.
Milepost gcc: machine learning based research compiler. In GCC
Summit, 2008.

[8] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam. Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies. Intl. J. of Parallel
Programming, 34(3), 2006.

[9] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and
P. Sadayappan. When polyhedral transformations meet simd code
generation. ACM SIGPLAN Notices (PLDI’13), 48(6):127–138, 2013.

[10] H. Leather, E. Bonilla, and M. O’boyle. Automatic feature generation
for machine learning–based optimising compilation. ACM
Transactions on Architecture and Code Optimization (TACO),
11(1):14, 2014.

[11] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing
synchronization with a�ne partitioning. In ACM POPL’97, 1997.

[12] R. T. Mullapudi, V. Vasista, and U. Bondhugula. Polymage:
Automatic optimization for image processing pipelines. In
ASPLOS’15, pages 429–443. ACM, 2015.

[13] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative
optimization in the polyhedral model: Part ii, multidimensional time.
In ACM SIGPLAN Notices (PLDI’08), volume 43, pages 90–100.
ACM, 2008.

[14] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
and P. Sadayappan. Combined iterative and model-driven
optimization in an automatic parallelization framework. In SC, Nov.
2010.

[15] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong.
Polyhedral-based data reuse optimization for configurable
computing. In FPGA, 2013.

[16] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. A
scalable auto-tuning framework for compiler optimization. In
IPDPS’09, pages 1–12. IEEE, 2009.

[17] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. Counting integer points in parametric polytopes
using Barvinok’s rational functions. Algorithmica, 48(1):37–66, June
2007.

[18] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful
visual performance model for multicore architectures. Commun.
ACM, 52(4):65–76, Apr. 2009.

0"
0.02"
0.04"
0.06"
0.08"
0.1"

0.12"
0.14"
0.16"
0.18"
0.2"

0.8" 1.2" 1.6" 2.3" 2.7" 3.1" 3.5"

Ti
m
e,
&in
&se

co
nd

s&

Frequency,&in&GHz&

Harris&corner&detec6on&
Execu6on&Time&9&Core&i7&4770k&

Base"Time"

Best"Time"

Model"Time"

ParFuse"Time"

Figure 2: Execution time comparison, original (base) versus
best (in design space of 9216 points) for each frequency, our
model, and ParFuse

frequencies above 2.3GHz, that is when the code becomes memory-
bound. The Best energy is not “visible” because it is fully covered
by the red curve: our model finds exactly the energy-optimal variant
for all cases. The energy loss by using MaxFuse at low frequencies
is impressive: about 1.6x savings can be achieved by running on
multiple cores and therefore increasing the computation speed. Par-
Fuse at 3.5GHz has an energy of 1.51J (not shown), almost 3x worse
than MaxFuse, illustrating further the need to adapt the transforma-
tion to the CPU frequency for energy optimization. Our model finds
the energy-optimal variant for all cases.

0.4$

0.5$

0.6$

0.7$

0.8$

0.9$

1$

1.1$

0.8$ 1.2$ 1.6$ 2.3$ 2.7$ 3.1$ 3.5$

En
er
gy
,(i
n(
Jo
ul
es
(

Frequency,(in(GHz(

Harris(corner(detec8on((
CPU(only(Energy(<(Core(i7(4770k(

Base$Energy$

Best$Energy$

Model$Energy$

MaxFuse$Energy$

Figure 3: CPU energy comparison, original (base) versus best
(in design space of 9216 points) for each frequency, our model,
and MaxFuse

Summary for FDTD-2D benchmark. We summarize in Ta-
ble 1 the performance and energy improvements over the origi-
nal/base code of the best-ever variant in the design space, and of
the variant selected by our model, for the FDTD-2D benchmark. In
this case, maximal fusion is highly detrimental, due to preventing to
expose SIMDizable loops. ParFuse is close to the optimal choice,
for all cases, but our model correctly predicts that at high frequen-
cies, the parallel speedup being very small it is best to run on one
core only. It leads to a marginal execution time increase, but a 1.8x
energy reduction. Although it does not find the truly minimal energy
configuration as for Harris, the result remains very good.

base MaxFuse ParFuse model best
T @ 0.8GHz 0.35s 0.74s 0.098s 0.098s 0.98s
T @ 3.5GHz 0.15s 0.18s 0.094s 0.097s 0.094s
E @ 0.8GHz 1.86J 3.52J 0.86J 0.86J 0.86J
E @ 3.5GHz 2.65J 5.00J 2.78J 1.55J 1.48J

Table 1: Summary for FDTD-2D on Core i7-4770k

7. CONCLUSION
The best transformation for a program to minimize CPU energy

may depend not only of the number of cores available, but also of
the operating frequency. Current approaches rely on time-consuming
evaluation of large design spaces, which is impractical. We pro-
posed a purely compile-time solution to estimate the run-time be-
havior of a class of polyhedral programs, approximating key met-
rics such as cache misses and OpenMP speedup using static analy-
sis. Our work is fully automated and implemented in PoCC, and we
demonstrated its e↵ectiveness to reduce CPU energy by up to 2x on
two key applications from image processing and physics simulation.

As future work we will investigate the generalization of these re-
sults to a wider class of a�ne programs. The main limitation of our
approach is in the limited quality of the estimator of the computation
time, which can be improved by careful analysis of the SIMDization
generated by the back-end compiler at the ASM level. We plan to
develop such techniques to improve the precision of our analysis,
and validate roofline-based approaches using these metrics.

8. REFERENCES
[1] PoCC, the Polyhedral Compiler Collection, version 1.3.

http://pocc.sourceforge.net.
[2] PolyBench/C 3.2. http://polybench.sourceforge.net.
[3] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,

U.-M. O’Reilly, and S. Amarasinghe. Opentuner: An extensible
framework for program autotuning. In PACT’14, pages 303–316.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral program optimization system. In ACM
PLDI’08, June 2008.

[5] P. Feautrier. Parametric integer programming. RAIRO Recherche
Operationnelle, 22:243–268.

[6] P. Feautrier. Some e�cient solutions to the a�ne scheduling problem,
part II: multidimensional time. IJPP, 21(6):389–420, Dec. 1992.

[7] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov,
A. Zaks, B. Mendelson, E. Bonilla, J. Thomson, H. Leather, et al.
Milepost gcc: machine learning based research compiler. In GCC
Summit, 2008.

[8] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam. Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies. Intl. J. of Parallel
Programming, 34(3), 2006.

[9] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and
P. Sadayappan. When polyhedral transformations meet simd code
generation. ACM SIGPLAN Notices (PLDI’13), 48(6):127–138, 2013.

[10] H. Leather, E. Bonilla, and M. O’boyle. Automatic feature generation
for machine learning–based optimising compilation. ACM
Transactions on Architecture and Code Optimization (TACO),
11(1):14, 2014.

[11] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing
synchronization with a�ne partitioning. In ACM POPL’97, 1997.

[12] R. T. Mullapudi, V. Vasista, and U. Bondhugula. Polymage:
Automatic optimization for image processing pipelines. In
ASPLOS’15, pages 429–443. ACM, 2015.

[13] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative
optimization in the polyhedral model: Part ii, multidimensional time.
In ACM SIGPLAN Notices (PLDI’08), volume 43, pages 90–100.
ACM, 2008.

[14] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
and P. Sadayappan. Combined iterative and model-driven
optimization in an automatic parallelization framework. In SC, Nov.
2010.

[15] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong.
Polyhedral-based data reuse optimization for configurable
computing. In FPGA, 2013.

[16] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. A
scalable auto-tuning framework for compiler optimization. In
IPDPS’09, pages 1–12. IEEE, 2009.

[17] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. Counting integer points in parametric polytopes
using Barvinok’s rational functions. Algorithmica, 48(1):37–66, June
2007.

[18] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful
visual performance model for multicore architectures. Commun.
ACM, 52(4):65–76, Apr. 2009.

0"
0.02"
0.04"
0.06"
0.08"
0.1"

0.12"
0.14"
0.16"
0.18"
0.2"

0.8" 1.2" 1.6" 2.3" 2.7" 3.1" 3.5"

Ti
m
e,
&in
&se

co
nd

s&

Frequency,&in&GHz&

Harris&corner&detec6on&
Execu6on&Time&9&Core&i7&4770k&

Base"Time"

Best"Time"

Model"Time"

ParFuse"Time"

Figure 2: Execution time comparison, original (base) versus
best (in design space of 9216 points) for each frequency, our
model, and ParFuse

frequencies above 2.3GHz, that is when the code becomes memory-
bound. The Best energy is not “visible” because it is fully covered
by the red curve: our model finds exactly the energy-optimal variant
for all cases. The energy loss by using MaxFuse at low frequencies
is impressive: about 1.6x savings can be achieved by running on
multiple cores and therefore increasing the computation speed. Par-
Fuse at 3.5GHz has an energy of 1.51J (not shown), almost 3x worse
than MaxFuse, illustrating further the need to adapt the transforma-
tion to the CPU frequency for energy optimization. Our model finds
the energy-optimal variant for all cases.

0.4$

0.5$

0.6$

0.7$

0.8$

0.9$

1$

1.1$

0.8$ 1.2$ 1.6$ 2.3$ 2.7$ 3.1$ 3.5$

En
er
gy
,(i
n(
Jo
ul
es
(

Frequency,(in(GHz(

Harris(corner(detec8on((
CPU(only(Energy(<(Core(i7(4770k(

Base$Energy$

Best$Energy$

Model$Energy$

MaxFuse$Energy$

Figure 3: CPU energy comparison, original (base) versus best
(in design space of 9216 points) for each frequency, our model,
and MaxFuse

Summary for FDTD-2D benchmark. We summarize in Ta-
ble 1 the performance and energy improvements over the origi-
nal/base code of the best-ever variant in the design space, and of
the variant selected by our model, for the FDTD-2D benchmark. In
this case, maximal fusion is highly detrimental, due to preventing to
expose SIMDizable loops. ParFuse is close to the optimal choice,
for all cases, but our model correctly predicts that at high frequen-
cies, the parallel speedup being very small it is best to run on one
core only. It leads to a marginal execution time increase, but a 1.8x
energy reduction. Although it does not find the truly minimal energy
configuration as for Harris, the result remains very good.

base MaxFuse ParFuse model best
T @ 0.8GHz 0.35s 0.74s 0.098s 0.098s 0.98s
T @ 3.5GHz 0.15s 0.18s 0.094s 0.097s 0.094s
E @ 0.8GHz 1.86J 3.52J 0.86J 0.86J 0.86J
E @ 3.5GHz 2.65J 5.00J 2.78J 1.55J 1.48J

Table 1: Summary for FDTD-2D on Core i7-4770k

7. CONCLUSION
The best transformation for a program to minimize CPU energy

may depend not only of the number of cores available, but also of
the operating frequency. Current approaches rely on time-consuming
evaluation of large design spaces, which is impractical. We pro-
posed a purely compile-time solution to estimate the run-time be-
havior of a class of polyhedral programs, approximating key met-
rics such as cache misses and OpenMP speedup using static analy-
sis. Our work is fully automated and implemented in PoCC, and we
demonstrated its e↵ectiveness to reduce CPU energy by up to 2x on
two key applications from image processing and physics simulation.

As future work we will investigate the generalization of these re-
sults to a wider class of a�ne programs. The main limitation of our
approach is in the limited quality of the estimator of the computation
time, which can be improved by careful analysis of the SIMDization
generated by the back-end compiler at the ASM level. We plan to
develop such techniques to improve the precision of our analysis,
and validate roofline-based approaches using these metrics.

8. REFERENCES
[1] PoCC, the Polyhedral Compiler Collection, version 1.3.

http://pocc.sourceforge.net.
[2] PolyBench/C 3.2. http://polybench.sourceforge.net.
[3] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,

U.-M. O’Reilly, and S. Amarasinghe. Opentuner: An extensible
framework for program autotuning. In PACT’14, pages 303–316.

[4] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral program optimization system. In ACM
PLDI’08, June 2008.

[5] P. Feautrier. Parametric integer programming. RAIRO Recherche
Operationnelle, 22:243–268.

[6] P. Feautrier. Some e�cient solutions to the a�ne scheduling problem,
part II: multidimensional time. IJPP, 21(6):389–420, Dec. 1992.

[7] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov,
A. Zaks, B. Mendelson, E. Bonilla, J. Thomson, H. Leather, et al.
Milepost gcc: machine learning based research compiler. In GCC
Summit, 2008.

[8] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler,
and O. Temam. Semi-automatic composition of loop transformations
for deep parallelism and memory hierarchies. Intl. J. of Parallel
Programming, 34(3), 2006.

[9] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and
P. Sadayappan. When polyhedral transformations meet simd code
generation. ACM SIGPLAN Notices (PLDI’13), 48(6):127–138, 2013.

[10] H. Leather, E. Bonilla, and M. O’boyle. Automatic feature generation
for machine learning–based optimising compilation. ACM
Transactions on Architecture and Code Optimization (TACO),
11(1):14, 2014.

[11] A. W. Lim and M. S. Lam. Maximizing parallelism and minimizing
synchronization with a�ne partitioning. In ACM POPL’97, 1997.

[12] R. T. Mullapudi, V. Vasista, and U. Bondhugula. Polymage:
Automatic optimization for image processing pipelines. In
ASPLOS’15, pages 429–443. ACM, 2015.

[13] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative
optimization in the polyhedral model: Part ii, multidimensional time.
In ACM SIGPLAN Notices (PLDI’08), volume 43, pages 90–100.
ACM, 2008.

[14] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
and P. Sadayappan. Combined iterative and model-driven
optimization in an automatic parallelization framework. In SC, Nov.
2010.

[15] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong.
Polyhedral-based data reuse optimization for configurable
computing. In FPGA, 2013.

[16] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth. A
scalable auto-tuning framework for compiler optimization. In
IPDPS’09, pages 1–12. IEEE, 2009.

[17] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and
M. Bruynooghe. Counting integer points in parametric polytopes
using Barvinok’s rational functions. Algorithmica, 48(1):37–66, June
2007.

[18] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful
visual performance model for multicore architectures. Commun.
ACM, 52(4):65–76, Apr. 2009.

Conclusions
• Polyhedral/affine programs form only a restricted set of

computations, but this set can be effectively analyzed and optimized
at compile-time
• Polyhedral programs include tensor operations (e.g., deep learning), many dense

linear algebra algorithms (e.g., most of BLAS), stencil computations (e.g., image
processing), etc.

• Ability to determine latency/power with good precision, using light HLS
• Hardware/software co-design needs quality code optimizations!

• CPU code optimizations are often neglected by hardware specialists!
• Polyhedral compilers provide fully automatic transformations for data locality and

parallelism (both coarse- and fine-grain)
• Technical merits:

• Polyhedral scheduling (aka automated loop transformations)
• Multi-target code generation and optimization (CPU/GPU/FPGA/fixed fun.)
• Automated data communication generation
• Compile-time performance and energy modeling
• Quick design space exploration

34

