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Some Key Challenges

How to accurately model system performance and power early
on in the design process?

How to significantly improve design productivity?

High-level modeling and synthesis
Automatic transformations/optimizations for different hardware targets

How to explore the large hardware/software co-design space
and automate hardware/software partitioning?

Coarse-grain knobs

Which / how many processors?

Partitioning among CPU, DSP, accelerators?
Accelerators for which functions?

Hardwired vs. programmable accelerators?
Re-use IPs?

Fine-grain knobs
Voltage, clock speed, bus bandwidth, communication topology, memory hierarchy, ...



Our Approach in a Nutshell

- Build a new SoC synthesis environment
- Take C/C++ as input specification of the application

- Go through automatic transformations and model-guided
software/hardware partitioning

- Output SystemC code for modeling the entire SoC

- This flow has the following unique features
- A customized polyhedral compilation environment to extract program
features, implement target-specific optimizations, and generate code

- Use modular design and HLS to evaluate RTL performance and power
details quickly
- Two types of SystemC outputs

- 18t assisting the system engineers to achieve more accurate system-level
performance and power evaluations for the SoC

- 2nd: fully synthesizable, enabling HLS to generate RTL automatically



Overview of Workflow
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Automation of
Hardware/Software Co-Design

How to accurately model the whole system?

- Enabling to design globally optimal partitioning solutions under specific area

How to effectively and efficiently explore the huge system-level
. design space?

- Our contribution: an automated software/hardware partitioning
framework by tackling these three challenges
- High-level accurate hardware and software modeling

- Atask graph generation algorithm to capture key features of the
system (e.g., parallelism, communication cost, resource sharing)

- Arandomized ILP algorithm to explore the design space efficiently and

effectively




SoC Design Framework
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Goal: An automatic hardware
modeling framework with
desired features




Hardware Modeling

- How to accurately model performance and power early on?
- Essential to enable rapid prototyping of SoC devices
No gate-level/physical information available ®



Hardware Modeling

How to accurately model performance and power early on?
Essential to enable rapid prototyping of SoC devices
No gate-level/physical information available ®
How to automate system design process?
Typical design flow:
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Hardware Modeling

How to accurately model performance and power early on?
Essential to enable rapid prototyping of SoC devices
No gate-level/physical information available ®
How to automate system design process?
Typical design flow:
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Hardware Modeling

How to accurately model performance and power early on?

Essential to enable rapid prototyping of SoC devices
No physical information available ®

How to automate system design process?

Slow, manual process ®

How to explore the large design space?
Architecture selection flexibility to achieve different design goals

Huge design space, hard to find optimal implementation ®

Our approach directly tackles these three problems! ©




Our Solution: SystemC
Generation, Modeling and DSE

- How to accurately model performance and power early on?
- Essential to enable rapid prototyping of SoC devices

- How to automate system design process?

Automatic SystemC generation and analytical power & latency modeling

- How to explore the large design space?
- Architecture selection flexibility to achieve different design goal

Fast accelerator design space exploration

Our approach directly tackles these three problems! ©

Zuo et al., A Polyhedral-based SystemC Modeling and Generation
Framework for Effective Low-power Design Space Exploration, ICCAD’15



Our Approaches and Contributions

Accelerator SystemC Generation and
Design Space Exploration Flow

<« SystemC for ONE
point in design space
v

, : <— Model for ENTIRE design
Analytical power and latency modeling space J

_ _ <« Power-performance
Fast accelerator design space exploration Pareto curve

Stages help each other for a final holistic solution
» Each previous stage enables the effective operations of the next

stage
« Eventually achieve the high-performance & lower-power design

solutions and tradeoffs



An Example

- Blue dots form the design space
- Red dots are the frontiers
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Analysis of the DSE Results

- Communication dominated design (Gemver)
- Increase parallel computations causes minor latency decrease
- Optimization opportunity:
- P1 vs. P2: 1.7 x less power, 4% longer latency
- Computation dominated design (Correlation)
- Effective power-latency trade-off
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Now: the System Co-design!

- Build on top of LLVM infrastructure Appglcgﬂ?r” i
and leverage the compiler
technique

- Factor in control flow and data flow LLVM frontend parsing

dependency, resource reuse

e LLVM IR with hot region identified
possibilities, control and data '

dependenC|eS CDFG generation
: |
- Extract .and eXpO_Se different Transformation based on
parallelisms as different branches branch probability analysis
: : |
- Dramatically reduce the complexity Extract parallelism in all
- Output the task graph for efficient l

ILP formulation Task graph



Explore the Design Space:
Characterization and Randomized ILP

Each hot region of

the application Leverages our hardware and
software modeling framework
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Experiments

- Platform: Xilinx Zyng-7000 XC7Z045 SoC
- CPU: ARM Cortex-A9 (800 MHz)
- FPGA: 100HMz

- Benchmarks:
- Covariance, Correlation, 3-mm, RSA, AlexNet

- Experimental setup
- Efficiency: Compare the speedup with Simulated Annealing (SA)
- Optimality: Compare the partitioning result with brute-force search

- Accuracy: Compare latency, power and resource with FPGA synthesis
results

- Speedup over CPU: Compare the latency with the single-thread Intel
Xeon(R) CPU E3-1240



Experiments |

- Efficiency: Compare the speedup with Simulated Annealing (SA)

Randomized SA
ILP Runtime (S) | Runtime(s) | >Peedup to SA

Correlation 41.87 2667.59
Covariance 45.36 2375.66 52x
3-mm 40.10 1140.55 27X
RSA 42.43 4689 .72 110x
AlexNet 3284.03 48620.93 14x
Average -- 53x

» Our tool on average achieves 56.95x% speedup over SA
» For covariance, both algorithms found the same results, while for the other
benchmarks, randomized ILP outperforms SA



Experiments Il

- Optimality: Compare the partitioning result with brute-force
- Can only run the brute-force search for the first 3 benchmarks
- Randomized ILP can find the optimal results in the three cases

- Accuracy: Compare with FPGA synthesis results

FPGA Implementation

Correlation
Covariance
3-mm

RSA
AlexNet
Average

Latency
Error (%)

4.88
7.00
6.66
8.17
9.09
7.16

Power
Error (%)

6.30
6.52
4.69
10.71
6.72
6.98

Resource
Error (%)

0.54
0.71
2.09
1.72
5.06
2.02



Experiments lli

- Speedup over CPU: Compare the latency with the single-
thread (default input code, non optimized) Intel Xeon(R)
CPU E3-1240

Latency Power Latency
(s) (W) (s)
Correlation 0.0818 2.36 3.797 46.4
Covariance 0.0834 2.54 4 111 49.3
3-mm 0.0644 2.84 5.237 81.3
RSA 3.69 2.25 31.447 8.5
AlexNet 0.0458 19.5 10.90 238.0

Average 84.7



Polyhedral Tools

Polyhedral compilation tools, hierarchical compilation
Source code transformations toolbox (PolyOpt & PoCC)
Target-independent optimizations
Target-specific optimizations

Information for hardware mapping (loop trip count, data footprint,
etc.)

Objective: Provide program transformation environment,
with automatic optimizations for data locality / parallelism

Program transformations for improved energy efficiency

Automatic program transformations to reduce data movements, improve
parallelism

For multi-core CPUs: tune the transfo. for a given frequency/core
setup

Compile-time approximation of cache misses and parallelism metrics
Objective: Demonstrate frequency-aware program transformation




Overview of Polyhedral
Compilation Tools

Loop trip count

Input Extract
program polyhedral
block regions

Target-independent
transformations

Tiling

Fusion

Parallelization

—» Dual HAPoR / PAST representation
—> AST only representation

program optimized
for x86/CPU

—— | Program analysis

Buffer sizes
Parallelism info
Task dependences

Instruction stats

program optimized
for HLS

intrinsics generation

Communication
generation

scalar optimizations

v

Buffer generation

vectorization

Tasks creation

x86 CPU / SIMD

HLS / Fixed functions

Target-specific
transformations

Target
| code generation
(C/C++/SystemC)

Output
program

block
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Transformation Selection

Claim: smart H/S partitioning requires the code to be
optimized for each possible target (CPU/GPU/DSPI/IPI...)

- Finding the best optimization needs non-linear cost models

- Our approach: build search spaces of candidate
Implementations, and progressively prune them

Polyhe
analysis

“‘All” semantically-equivalent
programs

ILP/Polyhedral cost
model

“All” parallel/tiled programs

Lightweight HLS /
PolyFeat

“All” predicted good programs

Simulation / v Final candidate programs

auto-tuning

25



Transformations for CPU Energy
Optimization

- Central idea: the program transformation to minimize CPU energy may
depend on the CPU frequency, need to generate adaptive binaries

- If the frequency is low, the code may not issue enough load/store per second to
saturate the RAM bandwidth

- Example: Harris corner detection, from OpenCV 3.0

- If the frequency is high, the code may not need multi-cores to saturate the RAM
bandwidth

- Research problem: how to select the program transformation achieving
best speed or CPU energy for a particular frequency?
- Multi-core parallelism may be essential at low frequencies
- But it may provide little speedup at high frequencies (e.g., bandwidth-bound codes)

- And what if there is a trade-off multi-core parallelism vs. data locality in the space of
possible transformations?

- How to address this problem at compile-time? We need to:
- Model the run-time behavior of the program (e.g., L3 cache misses)

- Model program features in performance estimators, that consider CPU frequency
and RAM bandwidth

26



PolyFeat: Overview and Motivation

Develop a purely compile-time approach to quickly evaluate
thousands of candidate transformations, to determine quickly the best

one(s)
1. Generate space of useful/important candidate optimizations

- Combine trade-offs between multi-core parallelization, data locality, pre-SIMD, etc.
- Uses the polyhedral compiler PoCC (part of PolyOpt)
+ Limited to affine programs for the optimization process
- Explore 1000s of candidates via exploration of loop fusion/distribution, tile size selection, ...
2. For each candidate C code generated, extract metrics
- Approximate cache misses (private/shared caches)
- Count floating point operations (in each OpenMP thread, varying the number of
threads)
3. Build performance estimator, using CPU frequency and RAM
bandwidth
- Estimate CommCyc: number of cycles spent communicating with RAM
- Estimate CompCyc: number of cycles spent computing
- Simple performance estimator: max(CommCyc, CompCyc)
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Where Is PolyFeat in the Food Chain?

Claim: smart H/S partitioning requires the code to be
optimized for each possible target (CPU/GPU/DSPI/IPI...)

- Finding the best optimization needs non-linear cost models

- Our approach: build search spaces of candidate
Implementations, and progressively prune them

Polyhe
analysis

“‘All” semantically-equivalent
programs

ILP/Polyhedral cost
model

“All” parallel/tiled programs

Lightweight HLS /
PolyFeat

“All” predicted good programs

Simulation / v Final candidate programs

auto-tuning
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Extracting Features from Source Code

- Overview of the process:

1. Extract polyhedral representation of the program (including OpenMP
doall)

2. Inline parameter values (many of our analyses are not parametric)
Count the number of operations in each loop / region of interest

4. Compute the data space (in cache lines) accessed by each loop /
region

5. Run various ad-hoc algorithms to estimate cache misses, thread
workload, etc.

- Core features currently extracted:
- Number of FLOPs (scalar, vectorizable, and scalar-equivalent) EXACT

- Data footprint (read/written) EXACT
- Data cache misses (at each level, inc. shared/private) APPROX
- OpenMP thread workload EXACT
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Kernel Categorization

- Run PolyFeat on 60 benchmarks (30 PolyBench x 2)

- Objective: categorize benchmarks, show categorization changes w/
code transfo.

Benchmarks | seq/par | bw-bound | poor scale | comp-bound
polybench-parrallel | 12/18 27 4 |
polybench-poly 5725 15 1 10

Table V: Summary of Features

Benchmarks | version | seq | bw-bound | poor scale | comp-bound

correlation par v
poly v
gemm par v
poly v
jacobi-2d par v v
poly v
seidel-2d par v v
poly v

Table VI: Benchmark features



Performance Estimators

- Computation:

- Speedup by doubling the number of cores: number of ops in the largest
thread using T threads divided by number of ops in the largest thread
using 2T threads

- Computation cycles: number of ops, assume 1 cycle per flop and 1
cycle per vector flop

- Communication:

- Off-chip communication cycles: Freq * (LLCMiss * LLCLineSize /
RAM_bandwidth)

- Performance estimator:
- Max(ComputationCycles, CommunicationCycles)

- Model for selecting the number of cores:
- If Speedup(T, 2T) > Powerincrease(T, 2T) then use 2T cores
- Powerlncrease: measured using Intel MKL benchmark (over-estimate)
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Experimental Results [1/2])

Execution time vs. PolyFeat OI-L3
Haswell 4770k, 1 core, 3.5GHz
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Transformations: 3072 fusion/distribution/code motion alternatives, with automatic
OpenMP and SIMD parallelization

Figure 1: Harris on a 4k UHD image. Original code from
OpenCYV 3.0 performs in 0.14s, 3x slower than the best trans-
formation we output.



Experimental Results [2/2]

0.2

Harris corner detection
Execution Time - Core i7 4770k

Harris corner detection
CPU only Energy - Core i7 4770k
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Figure 3: CPU energy comparison, original (base) versus best

Figure 2: Execution time comparison, original (base) versus . . .
(in design space of 9216 points) for each frequency, our model,

best (in design space of 9216 points) for each frequency, our

model, and ParFuse

and MaxFuse

base | MaxFuse | ParFuse | model best
T @ 0.8GHz | 0.35s 0.74s 0.098s 0.098s | 0.98s
T @ 3.5GHz | 0.15s 0.18s 0.094s 0.097s | 0.094s
E @ 0.8GHz | 1.86] 3.52] 0.86] 0.86] 0.86]
E @ 3.5GHz | 2.65] 5.00] 2.78] 1.55] 1.48]

Table 1: Summary for FDTD-2D on Core i7-4770k
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Conclusions

Polyhedral/affine programs form only a restricted set of
computations, but this set can be effectively analyzed and optimized
at compile-time

Polyhedral programs include tensor operations (e.g., deep learning), many dense

linear algebra algorithms (e.g., most of BLAS), stencil computations (e.g., image
processing), etc.

Ability to determine latency/power with good precision, using light HLS

Hardware/software co-design needs quality code optimizations!
CPU code optimizations are often neglected by hardware specialists!

Polyhedral compilers provide fully automatic transformations for data locality and
parallelism (both coarse- and fine-grain)

Technical merits:
Polyhedral scheduling (aka automated loop transformations)
Multi-target code generation and optimization (CPU/GPU/FPGA/fixed fun.)
Automated data communication generation
Compile-time performance and energy modeling
Quick design space exploration
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