

Mahsa Ashouri

PhD student - Institute of Service Science - National Tsing Hua University - Taiwan.

Department Of Mathematics, Isfahan University of Technology, Sep. 2008 – Jun. 2011 (Statistic) Department Of Mathematics, Isfahan University of Technology, Sep. 2002 – Jun. 2007 (Statistic)

I. Publications and conference papers

- 1. M. Ashouri, K. Cai, F. Lin, G. Shmueli, "Assessing the Value of an Information System for Developing Predictive Analytics: The Case of Forecasting School-Level Demand in Taiwan" (2018), Journal of Service Science, informs (accepted paper) and presented in "TSWIM, June 26-28, 2016, Chiayi, Taiwan.
- 2. M. Ashouri, G. Shmueli, **"A New Tree-Based Method for Clustering Time Series"**, **working paper**, presented in SCECR, June 26-28, 2017, Ho Chi Minh City, Vietnam and will be presented in Informs international meeting, June 17-20, 2018, Taipei, Taiwan.
- 3. M. Ashouri, "Using Centered and Non-centered Algorithms for Simulating S&P Share Index Data", CIAS, January, 2012, Indian Statistical Institute, Kolkata, India.
- 4. M. Ashouri, M. Alimirzaei, "Non-centered Algorithm for Simulating Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Processes", Proceedings of the International Seminar on Probability and Stochastic Processes, September, 2011, University of Rasht, Iran.

II. Research interests

• Data mining (decision trees and random forests), Time series analysis and time series clustering, Big data analysis.

III. Open questions

- 1. How to use decision trees for time series forecasting?
- 2. How to visualize many time series?
- 3. How to evaluate time series clustering?

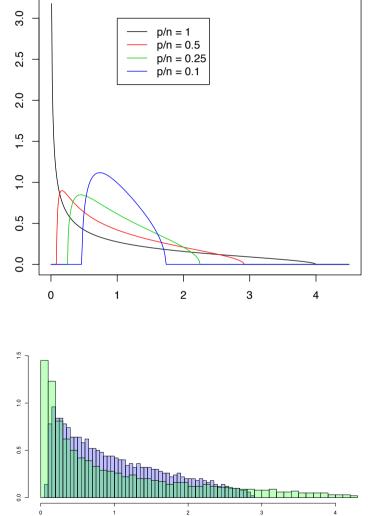
George Athanasopoulos

Associate Professor and Deputy HoD: Econometrics and Business Statistics.

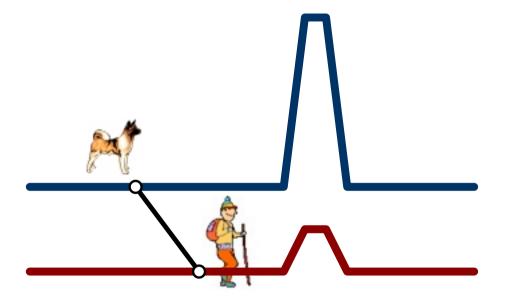
- Forecasting hierarchical and grouped time series
 - Student numbers for Monash University.
 - Prison population across Australia.
 - Nowcasting with temporal hierarchies.
 - Working on a panel setting.
- Forecasting restaurant bookings. The case of Taiwan.
- Macroeconomic forecasting
 - for Australia using a large number of predictors <u>ausmacrodata.org</u>.
 - R package for EC-VARMA models
- Supervision of Thiyanga Thalagala

Alexander Aue

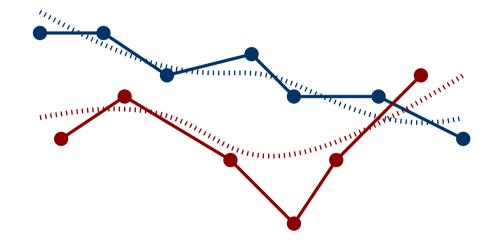
Department of Statistics Graduate Group of Applied Mathematics University of California, Davis aaue@ucdavis.edu


VERY SHORT BIO

2000 Diplom in Mathematics, Marburg 2004 PhD in Applied Mathematics, Köln Since 2007 at UC Davis

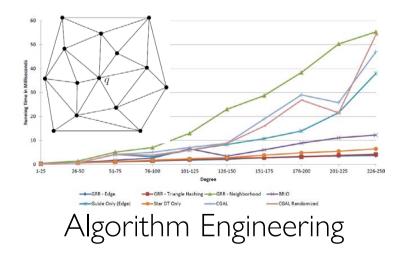

Research Interests

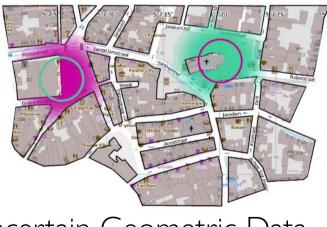
Functional time series (more in survey talk) Random matrix theory in statistics High-dimensional time series



Maike Buchin Technical University Dortmund

Computational Geometry: Curves and Surfaces Computational Movement Analysis


Kevin Buchin, TU Eindhoven – Geometric Algorithms



Movement Data

Motion Planning

Uncertain Geometric Data

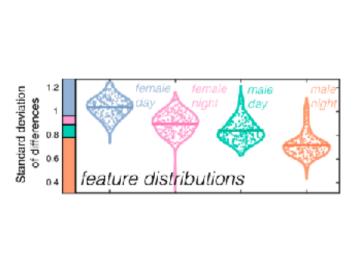
Anne Driemel

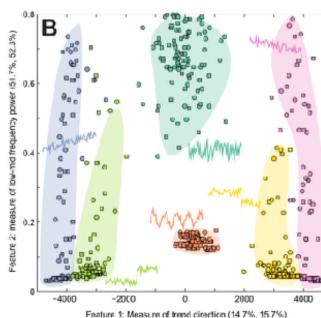
Assistant professor TU Eindhoven, the Netherlands

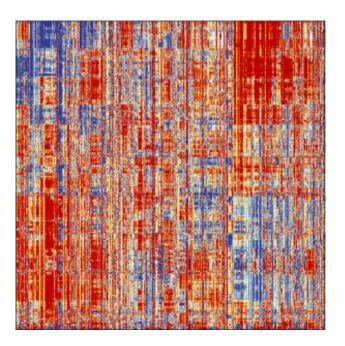
Research topics:

Computational Geometry Algorithms and Complexity High-dimensional data structuring

for


Clustering Classification Density estimation Outlier detection

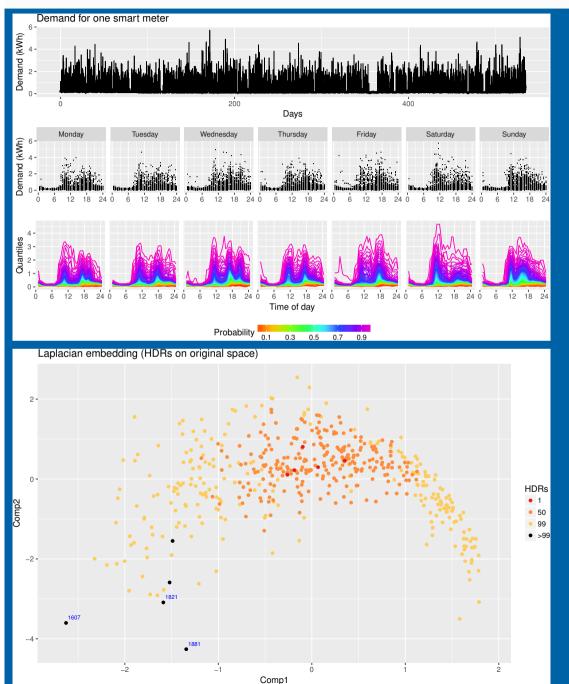

Time Series / Trajectories Non-Euclidean distance measures Fréchet distance Statistical divergence


Ben Fulcher

Physics Department, The University of Sydney

- Background in physics & brain modeling (Sydney)
- PhD in feature-based time-series analysis, involved assembling large and diverse libraries of time-series data (>30K) and algorithms for time-series feature extraction (>7K) (Oxford)
- Biological/medical applications postdoc working with brain-imaging and other neuroscience data (Monash)
- Recent appointment to complex systems group in physics allows more theoretical work on feature-based time-series analysis.

Jie Gao, Stony Brook University


- Bio: Faculty at Stony Brook, CS department.
- Research Interests: Sensing + Motion + Algorithms
- Problems to work on
 - Trajectory clustering
 - Distributed sensing and anonymization of trajectories
 - Privacy in sensing and learning

Michael Horton – The University of Sydney

- Short Bio
 - Postdoctoral Researcher at School of Information Technologies
- Research Interests
 - Computational Geometry
 - Machine Learning
 - Particular focus on spatio-temporal data
 - Sports analysis

Rob J Hyndman

Monash University, Australia robjhyndman.com

Theorem 1 Given a set \mathcal{D} of n connected regions in \mathcal{R}^d , and a trajectory T,

- there is a randomized strategy for the online tracking problem that achieves a competitive ratio of O(log Δ); and
- there are deterministic strategies for the online tracking problem that achieve a competitive ratio of $O(\log \Delta)$ when d = 1 or $O(\Delta)$ when d > 1.

Each of these strategies may be implemented in polynomial time.

Theorem 2 Let \mathcal{D} be a set of ndisjoint unit disks in \mathcal{R}^2 . We can build a data structure that stores \mathcal{D} , of size O(n), in $O(n\log n)$ expected time, such that given a sample P of \mathcal{D} , we can compute onion(P) in $O(n\log k)$ time, where k is the number of layers in onion(P).

Theorem 3 Let P be a planar point set and T be a compressed quadtree or a c-cluster quadtree for P. Then DT(P)can be computed in time O(|P|). **Theorem 4** Let \mathscr{R} be a set of unit disks in \mathscr{R}^2 , and let p and q be two points. We can compute in $O(2^{f(\Delta,\varepsilon,\beta)}n^7)$ time a path π between p and q, whose resilience is at most $\leq (1+\varepsilon)r(p,q)$, for some polynomial function $f(\Delta,\varepsilon,\beta)$ of constant degree.

Theorem 5 The homotopic median of *m* trajectories with *n* edges can be computed in $O(nm\log^2(nm) + (nm + k)\alpha(nm)\log(nm))$ expected time, where *k* is the size of the output, if the

k is the size of the output, if the sampling assumption is satisfied. **Theorem 6** Algorithm minimisePly

with *n* entities that have been last queried, on average, at time $t^0 - \ell$ and have intrinsic ply Δ at time $t^* = t^0 + \tau$ yields uncertainty regions at time t^* with ply $O(1)\Delta$, if $\tau \ge 2n$, $O(\min\{n/\Delta, \lambda, \alpha^{d+1}\}^{d/(d-\Delta)})$, if $\tau = n + n/\alpha$ and $1 < \alpha \le 1$

(d+1)

 $O(\min\{n/\Delta\})$

Theorem 7 A set of n disjoint polygonal δ -wide objects of constant

combinatorial complexity in \Re^2 can be maintained in a $O(\delta n)$ size data structure that supports insertion, deletion and point location queries in $O(\delta \log n)$ time, and ρ -similar updates in $O(\delta \log \log n + \log(\delta \rho))$ time. All time bounds are worst-case, and the data structure can be implemented on a real-valued pointer machine.

Theorem 8 If G is connected, there exists \mathscr{S} s.t. routing works and $md(\mathscr{S}) = O((diam(G) + \log(n))^2).$

Theorem 9 Approximation algorithm A is a $(\frac{1}{2}\rho + 1)$ -approximation of the minimum RBP spanning graph, where ρ is the Steiner ratio. The approximation is not a c-approximation

for any constant $c < 1 + \frac{1}{\sqrt{3}}$.

Theorem 10 There exists a set P of points in the plane such that the Delaunay trongulation of P has a anning rat o of 1.5846.

Universiteit Utrecht

Julie Novak

<u>Bio</u>

- Currently, streaming experimentation at Netflix- focus on developing statistical methodology for A/B tests on Quality of Experience metrics
- Research staff member at IBM Research- focus on forecasting IBM revenue at all levels of its organizational hierarchy
- PhD in Statistics- focus on Bayesian hierarchical modeling with applications to missing data in marketing

Research Interests

- Hierarchical forecasting, forecast reconciliation
 - Missing data
 - Covariance matrices
 - Bayesian priors
 - Application areas
- Bayesian nonparametric methodology applied to A/B experimentation

Visualising the economy

Australian Macro Database	
Categories National Accounts, Flow of Funds & International Trade national accounts: national > national accounts: state > flow of funds > balance of paymer	ents and international finance
Labour Statistics labour force» weekly earnings vacancies Industry (excluding series found in national accounts)	10- 0- -10-
industry capital expenditure building and construction housing finance business indicators retail trade	
vehicle sales	
Money, Credit, Interest rates and Exchange Rates monetary aggregates lending and credit aggregates bank lending debt securities int monetary statistics (imf framework) exchange rates Prices & Inflation	Real gross national income add to list narrow category: key aggregates and analytical series, annual intial category: australian national accounts: national income, expenditure and product Initial Date: Jun-1960 Latest Date: Jun-2017 Freq: Annual Unit: \$ Millions Series Type: Original Prices: Real ID: rgnickaasaoa ID: rgnickaasaoa
cpi inflation expectations house prices ppi trade price indices wage price index	
Other demography rba's monthly indicators (includes consumer and business sentiment)	Real net national disposable income add to list narrow category: key national accounts aggregates broad category: australian national accounts: national income, expenditure and product
MONASH University	Initial Date: Sep-1959 Latest Date: Sep-2017 Freq: Quarter Unit: \$ Millions Series Type: Trend Prices: Real ID: rnndicknaatq Page 1 of 190 Page 1 of 190 1 2 3 4 5 6 7 189 190 Next Last

Nalini Ravishanker, Dept. of Statistics, UConn, USA

Interests: Time series analysis; Times-to-events analysis; Bayesian dynamic modeling; Signal processing; Predictive inference.

Interdisciplinary Research Areas: biology, biomedicine, climate, finance, marketing, and transportation engineering.

Current Research Focus - Interest.

• Clustering and Classification of Time Series. Frequency domain methods - Explore use of TDA.

- High-frequency, High-dimensional Time series. Estimating Function (EF) approach Explore use with streaming data.
- Bayesian Hierarchical Dynamic Modeling of Time Series. MCMC and INLA Explore divide and combine schemes.

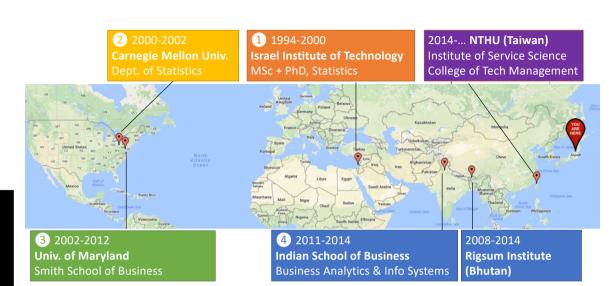
Introduction, Open problems

- Hanlin Shang is an Associate Professor of Statistics at the Australian National University
- Obtained a First Class Honours degree in Statistics from LaTrobe University in 2006
- Obtained a Ph.D. with Mollie Holman medal from Monash University in 2010
- His main research interest is functional time series inference, modeling and forecasting
- From the seminar, I hope to learn some latest work in the field of functional time series analysis
- 3 The open problems I would like to work on are: non-linear time series modeling and forecasting; various dimension reduction methods for functional time series

Galit Shmueli (徐茉莉)

www.galitshmueli.com

Research in Time Series Disease/Bio-surveillance


- Burkom et al (*Stat in Med* 2007), Automated time series forecasting for biosurveillance
- Goldenberg et al (PNAS 2002), Early statistical detection of Anthrax outbreaks by tracking over-thecounter medication sales

Functional Data Analysis in Online Auctions

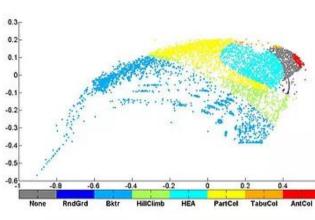
- Wang et al (JBES 2008), Explaining and forecasting online auction prices and their dynamics using FDA
- Jank & Shmueli (Stat Sci 2006), Functional data analysis in electronic commerce research

Visualization

- Shmueli et al. (DSS 2006), Exploring auction databases through interactive visualization
- Shmueli & Jank (JCGS 2005), Visualizing online auctions

Research

'Entrepreneurial' statistical & data mining modeling


- Interdisciplinary
- Info Systems, healthcare
- Behavioral big data

Statistical Strategy

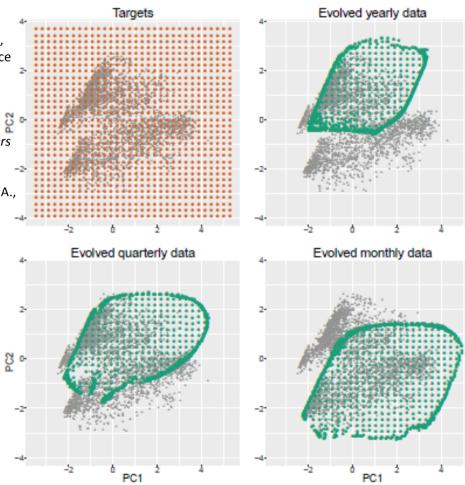
- To Explain or To Predict?
- Information Quality
- Data Mining for Causality
- Predicting with Causal models

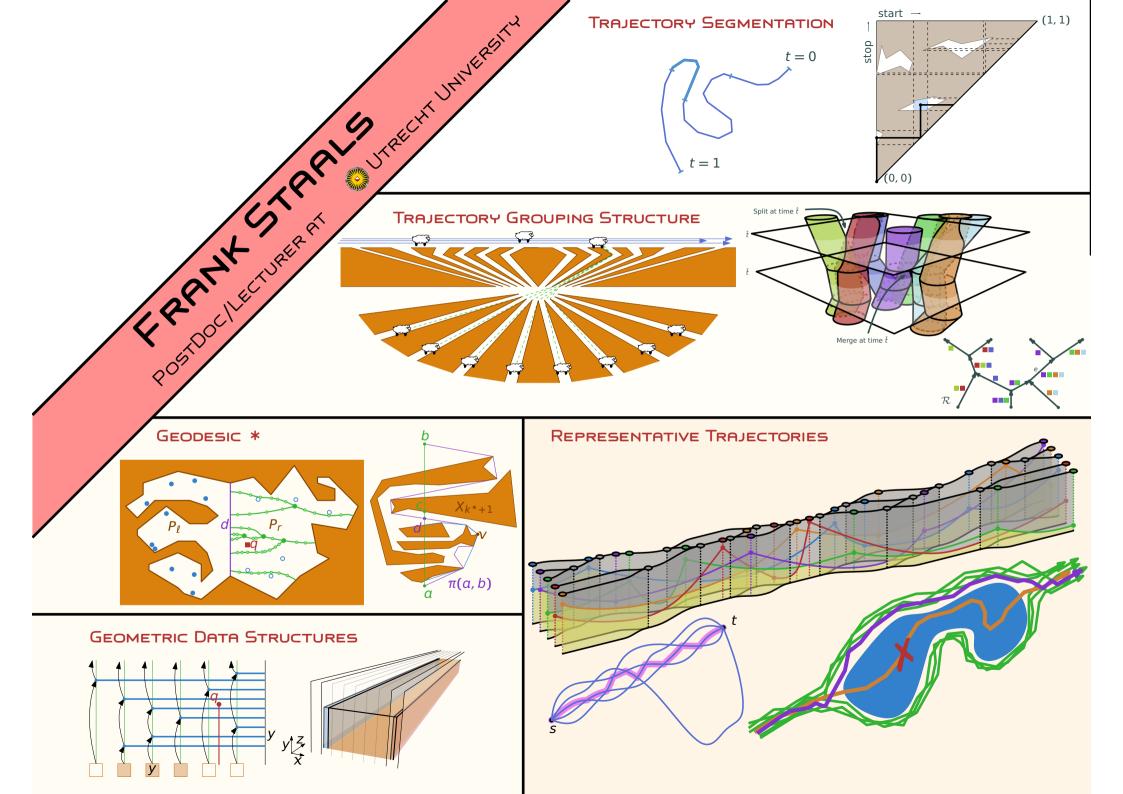
<complex-block>

- Kate Smith-Miles, The University of Melbourne http://katesmithmiles.wixsite.com/home
- ARC Australian Laureate Fellowship (2014-2019) "Stress-testing algorithms: generating new test instances to elicit insights"
 Targets
 Evolved yearly data

Smith-Miles, K. A., Baatar, D., Wreford, B. and Lewis, R., "Towards Objective Measures of Algorithm Performance across Instance Space", *Computers & Operations Research*, vol. 45, pp. 12-24, 2014.

Smith-Miles, K. A. and Bowly, S., "Generating New Test Instances by Evolving in Instance Space", *Computers* & *Operations Research*, vol. 63, pp. 102-113, 2015.

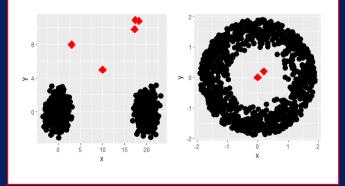

Muñoz, M. A., Villanova, L., Baatar, D., Smith-Miles, K. A., "Instance Spaces for Machine Learning Classification", *Machine Learning*, vol. 107, no. 1, pp. 109-147, 2018.

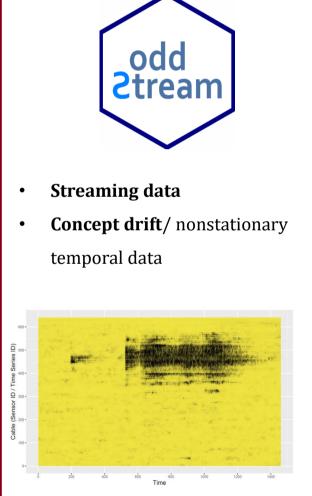

Kang, Y., Hyndman, R. and Smith-Miles, K., "Visualising Forecasting Algorithm Performance using Time Series Instance Spaces", *International Journal of Forecasting*, vol. 33, no. 2, pp. 345-358, 2017.

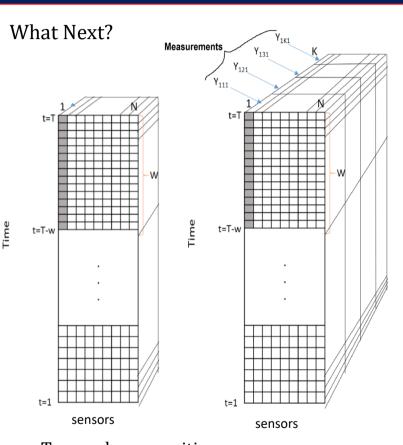
Wang, X., Smith, K. A., and Hyndman, R., "Rule induction for forecasting method selection: meta-learning the characteristics of univariate time series", *Neurocomputing*, vol. 72, no. 10-12, pp. 2581-2594, 2009.

Wang, X., Smith, K. A., Hyndman, R., "Characteristic-based Clustering for Time Series Data", *Data Mining & Knowledge Discovery*, vol. 13, no. 3, pp. 335-364, 2006.

Also interested in anomaly detection in noisy time series ... (weather, security, pollution, etc.) Kang, Y., Belusic, D. and Smith-Miles, K., "Detecting and Classifying Events in Noisy Time Series", *Journal of the Atmospheric Sciences*, vol. 71, pp. 1090-1104, 2014.

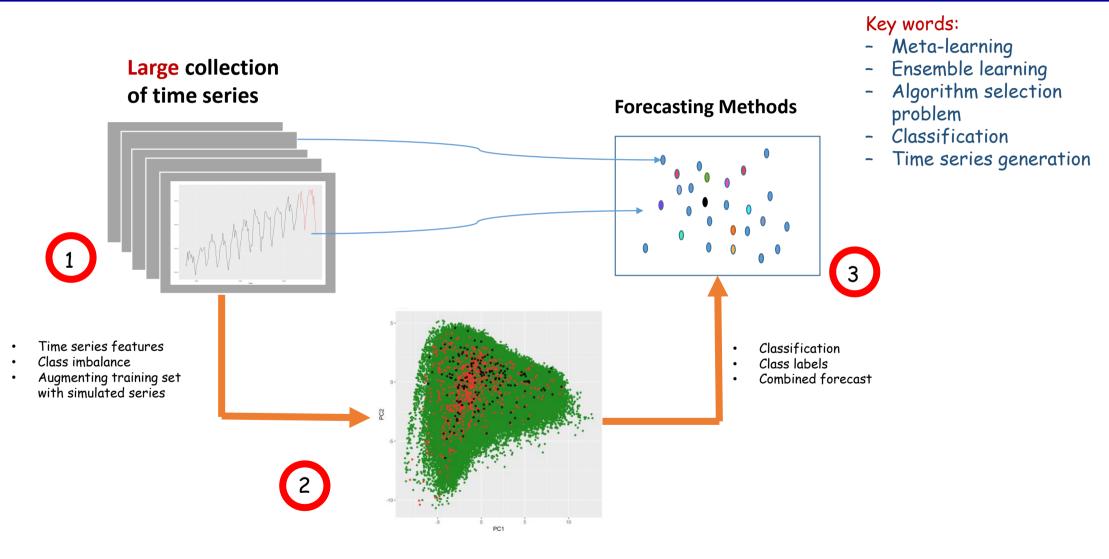

Dilini Talagala


PhD Candidate, Monash University, Australia

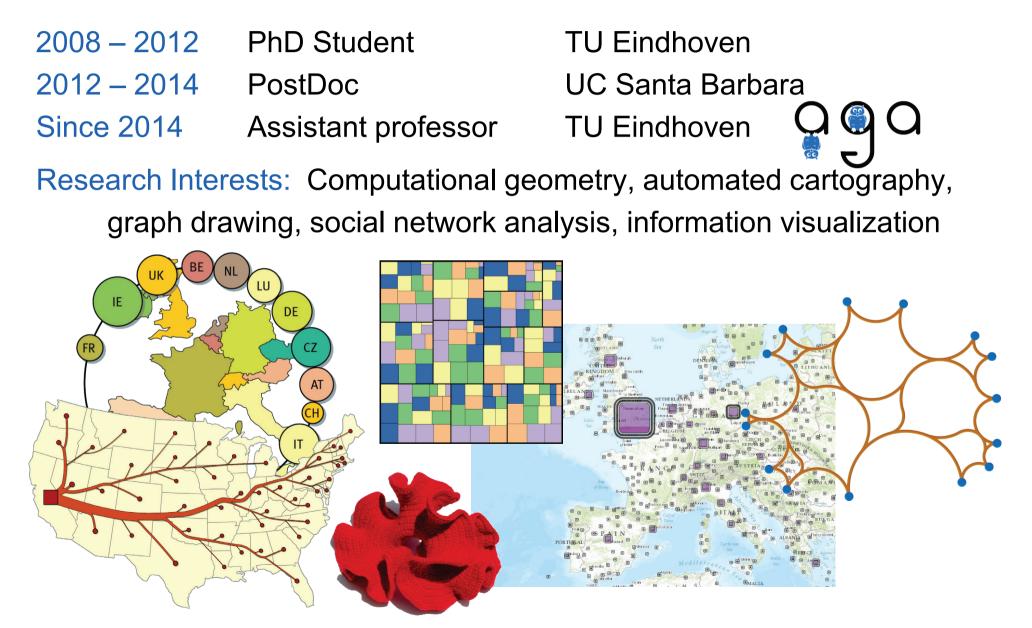


Ztray

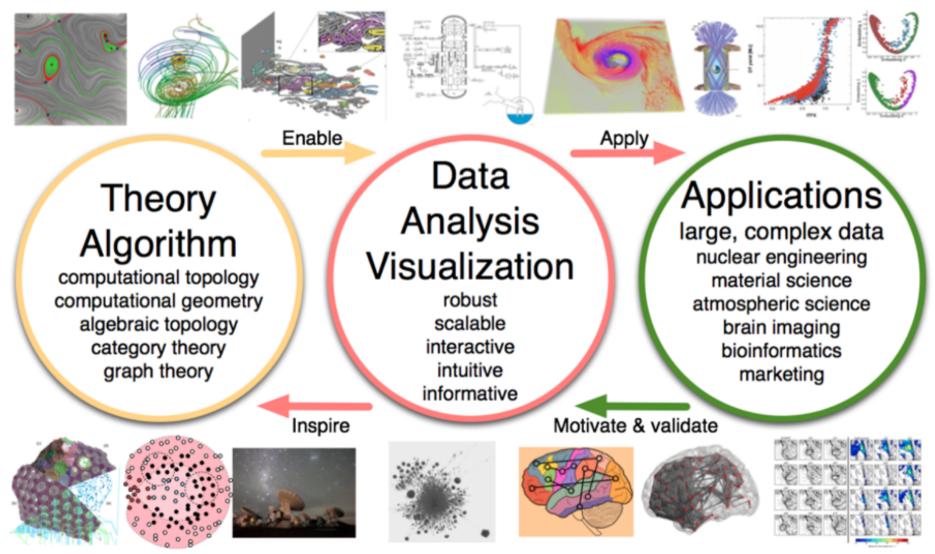
- High Dimensional Data
- Deal with masking problem
- Multimodal typical classes
- Streaming temporal data



- Tensor decomposition
- Nonstationary streaming temporal data
- Time series features


Thiyanga Talagala PhD Candidate – Monash University, Australia

github: thiyangt twitter: @thiyangt


Introduction

Name: Kevin Verbeek

Topological Data Analysis and Visualization

Combine topological, geometric, data analysis and visualization techniques to **study** large and complex data that require rich structural descriptions

Bei Wang, University of Utah, http://www.sci.utah.edu/~beiwang/

Qiwei Yao, Department of Statistics, London School of Economics

- Factor modelling: $y_t = Ax_t + \varepsilon_t$, A is $p \times d$, $d \ll p$, ε_t is WN.
 - ♦ high-D volatility processes
 - high-D high-frequency modelling
 - ♦ high-D spatio-temporal modelling
 - \diamond functional TS
- TS-PCA: $y_t = Ax_t$, A is invertible, $Corr(x_{ti}, x_{sj}) = 0 \forall i \neq j$. Also applicable to high-D volatility processes
- Tests for high-D white noise
 - ◊ normal approximation
 - ◊ random matrix theory

Current/Future research

- ▲ Complex TS: network, space, tensor
- ▲ Beyond linear dependence/correlation