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Outline

e Challenges in high-dimensional forecasting.

o Example from IBM revenue forecasting.
e Overview of the forecast reconciliation problem.
e Future directions and open questions.



Motivation: IBM Revenue Forecasting

e Automated predictive analytics solution for IBM.

o Revenue assessments for current and next quarter by market, division, and revenue type.
e Provide assessments for all levels of the hierarchy.
e Why? To aid both high level executives and lower level managers with

decision making.

o Objective system of revenue assessment.
o Aggregate consistent.



Criteria for a “Successful” Solution

All these criteria are equally important for the solution.

Accuracy at all levels of the hierarchy.

Robustness to outliers.

Smoothness over weeks (for aiding data-driven decision making).
Interpretability of week to week changes.



Hierarchical Structure of IBM
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Hierarchical Structure of IBM.. from a Different
Perspective
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Challenge: Weekly Updates

o For 26 weeks (13 ‘ S
‘positive’, 13 ‘negative’),
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Challenge: Forecast Reconciliation

Examples of multi-frequency data coming from

different sources
Data sources are updated at different i
Data sources have different resolutions
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It would make sense to forecast
each node of the hierarchy
separately... but how to we
ensure aggregate consistency?



Method for “Within Node Forecasting”

e For each node, the forecast is an ensemble of forecasts from
different submodels
o Time series models, regression models
e \Weights for each forecast
o Change every week (for 26 weeks)
o Given weight O if they are considered outliers
o Smoothed to prevent high variability in week to week
changes



What Should We Do To Make the Forecasts
Aggregate Consistent?



Methods for “Across Node Forecasting’/Forecast
Reconciliation

Bottom-up: forecast series at the lowest level of the
hierarchy and simply aggregate up.
Top-down: forecast the completely aggregated

series (top level) and disaggregate based on ®
historical proportions.
Hyndman et al. (2011, CSDA): standard least @ &

squares to ‘constrain’ forecasts to add up properly.

Hyndman et al. (2016. CSDA): weighted least ) @ e e e @ .
squares to aggregate forecasts (e.g. weights

based on one step ahead forecast accuracy).

Bayesian Hierarchical Forecasting: Bayesian

regression perspective

And more...




Model Setup

Suppose we are provided with a vector of forecasts Y, for each of the N nodes in

a hierarchy graph: R
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Model Setup

S, the aggregation matrix, combines the lowest level to give the higher level

forecasts.
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Model Setup

We need to find a set of forecasts [~3t at the lowest level such that they add up
properly and are as "similar’ as possible to our given forecasts, Y.

The equation is written in this way to highlight the similarities to a standard
linear regression model.



One Solution

Hyndman et al. (2011) proposes the least squares solution to the forecasting
problem.

B: =(STS)71sTy,

Y =SB =S(STS)"1STy,

This solution gives forecasts that are closest in the “least squares sense'’.



Weighted Least Squares Solution

Hyndman et al. (2016) extended this work to a weighted least squares solution.
B; = (STAS) 1STAY,
Yi = S /Bt

where A is the diagonal matrix of weights (which take into account the
variability of the base forecasts).



A Bayesian Approach

Another strategy to tackle this problem is as a Bayesian regression and infer the
posterior for the forecasts.

e Assume the errors are independent (initially)

p({Ye}Bt) = p( Yi1 )p( Yt 2|/@t) .p( Yt N|/6t)

e Assume a Gaussian distribution for the errors, (Y; = S8, deal)

(tl Ytl) (Ytn Ytn)z

P( Yt,l Yt,2 Yt N) = Cez"t 1

e \We now write
Yt s N(Sﬁtaﬂt)



Posterior Distributions

e Place noninformative priors on 3, and the variance

e Posterior for Bt: B”g?“’Yt ~ N(ﬁt,VBtUg)

e Posterior for otz:
oYy ~ Inv — x*(m — mg, s°)



Loss Function
We are looking for an optimal f/; such that

Yt = argmin E[£(SB:, py,)]
Bt Epgt

e The practitioner defines the loss given the context
e The uncertainty in the posterior of each of the nodes (both from prior
knowledge and the data) is incorporated



Uncertainties in the Posterior Distributions
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Future Directions

e Applications: hierarchies occur everywhere.
e (Covariance matrix
o Block diagonal
o Best way to borrow information across the nodes?
e Missing data in certain nodes
e Priors from a Bayesian perspective






