
CORESETS FOR SIGNAL
PROCESSING
Dan Feldman

Assistant Professor

Motivation

New computation models

- Big Data

- Streaming real-time data

- Distributed data

Limited hardware

- Computation: IoT, GPU

- Energy: smartphones, drones

Common solution

- New optimization algorithms

Big Data
• Volume: huge amount of data points

• Variety: huge number of sensors

• Velocity: data arrive in real-time streaming

Need:

• Streaming algorithms (use logarithmic memory)

• Parallel algorithms (use networks, clouds)

• Simple computations (use GPUs)

• No assumption on order of points

Big Data Computation model
• = Streaming + Parallel computation

• Input: infinite stream of vectors

• 𝑛 = vectors seen so far

• ~log 𝑛 memory

• M processors

• ~log (n)/M insertion time per point

(Embarrassingly parallel)

4

Focus on optimization summarization

f() f()

Less:

CPU Time

Dev. Time

Memory

Energy

Comm.

$$$, …

Challenge:
Find RIGHT data from Big Data

6

Given data D and Algorithm A with A(D)

intractable, can we efficiently reduce

D to C so that A(C) fast and A(C)~A(D)?

Provable guarantees on approximation with

respect to the size of C

7

Let
• 𝑋 be a set, called points set
• 𝑄 be a set, called query set
• cost: 2𝑋 × 𝑄 → 0,∞ be a function that maps every set 𝑃 ⊆ 𝑋

and query 𝑞 ∈ 𝑄 into a non-negative number cost(𝑃, 𝑞)

For a given 𝜖 > 0 and 𝑃 ⊆ 𝑋,
the set 𝐶 ⊆ 𝑋 is a corset if
for every 𝑞 ∈ 𝑄 we have

cost 𝑃, 𝑞 ~𝑐𝑜𝑠𝑡 𝐶, 𝑞

Up to 1 ± 𝜖 multiplicative error

Generic Coreset definition

Naïve Uniform Sampling

8

9

Naïve Uniform Sampling

Small cluster
is missed

Sample a set U of m points uniformly

Importance Weights

WeightsSampling distribution
10

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑝
1

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑝

11

Coreset for Image Denoising
[F, Feigin , Sochen [SSVM’13]

Uniform sample=
only green/white points

First Provable Latent Semantic Analysis on
Wikipedia (now Twitter)
[SDM’16, with Artem Barger,
NIPS’16, with Prof. Daniela Rus]

12

13

Example Coresets

▪ Deep Learning [F, E. Tolichensky, submitted]
▪ Logistic Regression [F, Sedat, Murad, submitted]
▪ Mixture of Gaussians [F, Krause, etc JMLR’17]
▪ PCA/SVD [F, Rus, and Volkob, NIPS’16]
▪ k-Means [F, Barger, SDM’16]
▪ Non-Negative Matrix Factorization [F, Tassa,

KDD15]
▪ Pose Estimatoin [F, Cindy, Rus, ICRA’15]
▪ Robots Coverage [F, Gil, Rus, ICRA’13]
▪ Signal Segmentation [F, Rosman, Rus, NIPS’14]
▪ ….
▪ k-Line Means [F, Fiat, Sharir, FOCS’06]

Coreset
Techniques

Computational Geometry
𝜖-nets, Caratheodory, MVEE
F, Sharir, Fiat, Langberg, …

[STOC'11, FOCS'06, SoCG'14/07]

Compressed Sensing
Sketches

F, Woodruf, Sohler, …
[SODA’10]

Computer Vision
𝑅𝐴𝑁𝑆𝐴𝐶++

F, Rus, Sochen, …
[ICRA’15, JMIV’15, IROS’12]

Matrix Approximation
SVD/PCA, Random Proj.

F, Sohler, Tassa,…
[SODA’13, KDD’15]

Robotics
𝑅𝑅𝑇++ sampling

F, Nasser, Jubran, …
[IPSN’12/15/17, ICRA’13/14/15]

Statistics
Importance Sampling, Suff. Stat

F, Shulman, Sung, Rus, …
[SODA’12, SenSys’13, GIS’12]

Machine Learning
PAC/Active learning

F, Krause, J. W. Fisher,…
[JMLR’17, NIPS’16/14/11]

Graph Theory
Sparsifiers, Property Testing

F, Barger, Rus, …
[ICML’17, SDM’16]

To appear:
Deep Learning

Related techniques
• Sketch matrix

• Random projections (JL Lemma, compressed sensing)

• Usually lost sparsity of input

• Cons: usually points on a grid

• Pros: Support update of entries

• Sparse approximations (e.g. Frank-Wolfe)

• Not composable coreset (does not support streaming)

• Property testing:

• Construction takes sub-linear time

• Binary answer (testing)

16

Epsilon-nets

Sensitivity
Framework

Total Sensitivity

Uniform
sample

Deterministic

Convex optimization

Frank-Wolfe
Gradient
Descent

Approx.
Caratheodory

Theorem

SVD/PCA

Small
“VC-Dim”?

Ellipsoid-
method

De-randomization

Convex Kernel
functions

Bi-criteira
approximations

PTAS on
epsilon-net

Geometric Shapes

PAC-
Learning

Quadratic
Programming

Pessimistic
Estimators

Coresets

Yes No

Reformulate
Problem

+Assumptions

On model

On data

Lower bounds

Communication
channels

…

No
John Ellipsoid

On coreset

Projection
methods

Weighted
facilities

Negative
Weights

Sensitivity
Sum

𝐿2 − 𝐿∞
Reduction

Weak coresets

Prior
Distribution

Techniques

Example: k-means clustering

Matousek,’00

Har-Peled,
Mazumdar,’04

Ke-Chen’06

Barger, F, ‘16

F, Sohler…’07

𝑘 log𝑛

𝜀

𝑂(𝑑)

Coreset Size Authors

Solution Set,
40 pages

𝑘

𝜀

𝑂(𝑑)
Har-Peled,
Kushal,’05

𝑑𝑘 log 𝑛

𝜀

𝑂 1

𝑑𝑘

𝜀

𝑂 1

𝑘

𝜀

𝑂(1)
F, Sohler,

Schmidt,’13

𝑘𝑂(𝑘/𝜖)

𝑘𝑂(1/𝜖
2)

F, Sedat,
Rus’17

10

𝜀2
, 𝑘 = 1

F, Sohler,
Schmidt,’13

F, Tassa

Indyk,
Woodruf,…

F, Gil, RusDynamic Data

F, Schulman

Weak coresets for
k-Median

Sketches

Outliers Handling

Arguably most common clustering technique in academy and industry
State of the art uses coreset in theory and practice

Coreset,
4 pages

State of
the art:
theory

and
practice

Deterministic

Random

AuthorsExtension

𝑛 log 𝑛
𝑑𝑘
𝜀

𝑂(1)

▪Exact coreset: 𝐶 is an exact coreset (usually 𝐶 in 𝑃), if for every
𝑞 in 𝑄 we have that the sum of the cost function on 𝑃 with query 𝑞
is the same as the sum of the cost function on 𝐶 with query 𝑞.

∀𝒒 ∈ 𝑸:෍

𝒑∈𝑷

𝒇(𝒑, 𝒒) =෍

𝒄∈𝑪

𝒇(𝒄, 𝒒)

▪ Input:

▪Queries set:

▪Cost function:

𝑃 in 𝑅𝑑 (usually finite)

𝑓: 𝑃 × 𝑄 → [0,∞)

𝑄 (possibly infinite)

▪ Given a set of 𝑛 points P in 𝑅𝑑, find the point 𝑥 ∈ 𝑅𝑑 that minimizes:

𝒇𝒂𝒓 𝑷, 𝒙 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝒙

x

Motivation:
Where should we place an antenna if the price paid is the

antenna’s distance to the farthest customer?

▪ Input:

▪ Query:

▪ Result:

𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑛 in 𝑅𝑑

𝒇𝒂𝒓 𝑷, 𝒙 = 𝐦𝐚𝐱
𝒑∈𝑷

𝒑 − 𝒙 𝟐

a point 𝑥 ∈ 𝑅𝑑

Exact coreset for 𝟏-𝒄𝒆𝒏𝒕𝒆𝒓 queries when 𝑷 in 𝑹 and 𝒙 ∈ 𝑹𝒅:

x

The farthest point from every query 𝒙 ∈ 𝑹𝒅 is one of the edge points!

▪ Input:

▪Query:

▪Cost:

𝑃 in 𝑅𝑑

𝒅𝒊𝒔𝒕𝟐 𝑷, 𝒙 = ෍

𝒑∈𝑷

𝒑 − 𝒙 𝟐

a point 𝑥 ∈ 𝑅𝑑

෍

𝒑∈𝑷

𝒑 − 𝒙 𝟐 = ෍

𝑝∈𝑃

𝑝 2 + 𝑥 2 − 2𝑝𝑇𝑥 = ෍

𝑝∈𝑃

𝑝 2 +෍

𝑝∈𝑃

𝑥 2 − 2෍

𝑝∈𝑃

𝑝𝑇𝑥

= ෍

𝑝∈𝑃

𝑝 2 + 𝒏 ⋅ 𝒙 𝟐 − 𝟐 ෍

𝑝∈𝑃

𝑝𝑇 𝒙

Exact coreset for 𝟏-𝒎𝒆𝒂𝒏 queries using 3 first moments:

Store those in memory!

▪ Input:

▪Query:

▪Cost:

𝑃 in 𝑅𝑑

𝒅𝒊𝒔𝒕𝟐 𝑷, 𝒙 = ෍

𝒑∈𝑷

𝒑 − 𝒙 𝟐

a point 𝑥 ∈ 𝑅𝑑

෍

𝒑∈𝑷

𝒑 − 𝒙 𝟐 = ෍

𝑝∈𝑃

𝑝 2 + 𝒏 ∗ 𝒙 𝟐 − 𝟐 ෍

𝑝∈𝑃

𝑝𝑇 𝒙

Solution #3:

1) Build new vectors in 𝑅𝑑+2:

𝒑𝒊
′ =

𝒑𝒊
𝒑𝒊

𝟐

𝟏

2) Use 𝐶𝑎𝑟𝑎𝑡ℎ𝑒𝑜𝑑𝑜𝑟𝑦′𝑠 𝑡ℎ𝑒𝑜𝑟𝑒𝑚 to compute a weighted subset 𝐶′ of the

vectors that has the same 3 𝑓𝑖𝑟𝑠𝑡 𝑚𝑜𝑚𝑒𝑛𝑡𝑠.

▪ A 𝑐𝑜𝑛𝑣𝑒𝑥 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is a linear combination of
points where all coefficients are non-negative and
sum to 1.

▪ A 𝑐𝑜𝑛𝑣𝑒𝑥 𝑟𝑒𝑔𝑖𝑜𝑛 is a region where, for every pair
of points within the region, every point on the
straight line segment that joins the pair of points is
also within the region.

▪ A 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 of a set 𝑃 is is the smallest convex
set that contains 𝑃.

▪ Every point 𝑥 in a convex hull of a set of points 𝑃
can be written as a convex combination of a finite
number of points in 𝑃.

𝑥

𝑝1 𝑝2

𝑝5

𝑝4𝑝3

𝑝6

𝜆1 𝜆2

𝜆3 𝜆4

𝑥 = ෍

𝑖=1

5

𝜆𝑖𝑝𝑖 ,

𝜆𝑖 ≥ 0,෍

𝑖=1

5

𝜆𝑖 = 1

𝜆5

▪ “If a point 𝑥 ∈ 𝑅𝑑 lies in the convex hull of a set 𝑃, there is a
subset 𝑃′of 𝑃 consisting of 𝑑 + 1 or fewer points such that 𝑥 lies in the
convex hull of 𝑃′.”

𝑥 = ෍

𝑖=1

3

𝜆𝑖𝑝𝑖 ,

𝜆𝑖 ≥ 0,෍

𝑖=1

3

𝜆𝑖 = 1

𝑥

𝑝4𝑝3

𝑝6

𝜆1 𝜆2

𝜆3

𝑝1 𝑝2

𝑝5𝑝5

𝜆1𝑝1

𝑥

Assume that 𝑥
is the origin.

𝜆2𝑝2

𝜆3𝑝3

𝜆4𝑝4

𝜇4𝑝4

𝜇1𝑝1

𝜇2𝑝2

𝜇3𝑝3

𝝀𝟏
′ = 𝝀𝟏 − 𝜶𝝁𝟏=0

𝛼𝜇2𝑝2

𝛼𝜇3𝑝3

𝛼𝜇4𝑝4

෍𝜆𝑖 = 1,෍𝜇𝑖 = 0,෍𝜇𝑖𝑝𝑖 = 0.

→෍𝛼𝜇𝑖𝑝𝑖 = 𝛼෍𝜇𝑖𝑝𝑖 = 0

→෍𝜆𝑖′ =෍ 𝜆𝑖 − 𝛼𝜇𝑖

=෍𝜆𝑖 − 𝛼෍𝜇𝑖 = 1

▪ Input:

▪Query:

▪Result:

𝑃 in 𝑅𝑑 - inserted one at a time!

𝒅𝒊𝒔𝒕 𝑷, 𝒙 = ෍

𝒑∈𝑷

𝒑 − 𝒙 𝟐

a point 𝑥 ∈ 𝑅𝑑

Solution:

𝐶𝑎𝑟𝑎𝑡ℎ𝑒𝑜𝑑𝑜𝑟𝑦′𝑠 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 – the streaming version.

- Step 1: Read new point 𝑝.

- Step 2: Compress using black box.

- Step 3: Repeat.

Input: 𝑛 points

Output: (𝑑 + 1) points

𝑪𝒂𝒓𝒂𝒕𝒉𝒆𝒐𝒅𝒐𝒓𝒚

𝑶 𝒏− 𝒅 − 𝟏 𝒏𝒅𝟐 = 𝑶 𝒏𝟐𝒅𝟐

Black Box

Caratheodory Streaming

Input Output
𝑪𝒂𝒓𝒂𝒕𝒉𝒆𝒐𝒅𝒐𝒓𝒚

(𝒅 + 𝟏) points

𝑶(𝒅𝟑)

#𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝐸𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

At each iteration we reduce

number of points from 𝑘 → 𝑘 − 1
start: 𝑘 = 𝑛, finish: 𝑘 = 𝑑 + 1

To compute the

linear combination

𝒅 + 𝟏

𝑶 (𝒏− 𝒅 − 𝟏) ∗ 𝒅𝟑 = 𝑶 𝒏𝒅𝟑

Cloud

Data generator

Processing unit 1

Processing unit 2

𝑝2

𝑝3

𝐶𝑎𝑟𝑎𝑡ℎ𝑒𝑜𝑑𝑜𝑟𝑦
𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔

𝐶𝑎𝑟𝑎𝑡ℎ𝑒𝑜𝑑𝑜𝑟𝑦
𝑆𝑡𝑟𝑒𝑎𝑚𝑖𝑛𝑔

𝑝1

Input: 2 ⋅ (𝑑 + 1) points

Output: (𝑑 + 1) points

𝑪𝒂𝒓𝒂𝒕𝒉𝒆𝒐𝒅𝒐𝒓𝒚

Coreset

𝑑 + 1

𝒅 + 𝟐 → (𝒅 + 𝟏)

𝒅 + 𝟐 → (𝒅 + 𝟏)

▪Input:

▪Query space:

▪Output:

𝐴 =

−𝑎1 −
⋮

−𝑎𝑛 −
∈ 𝑅𝑛×𝑑 (𝑛 points in 𝑅𝑑)

𝑓 𝐴, 𝑥 = 𝐴𝑥 2

𝑆 = {𝑥|𝑥 ∈ 𝑅𝑑} (Hyperplanes in 𝑅𝑑)

▪Factorization 𝑨 = 𝑸𝑹 where 𝑸𝑇𝑸 = 𝐼,

▪𝑸 ∈ 𝑅𝑛×𝑑 , 𝑹 ∈ 𝑅𝑛×𝑑 , 𝐴 = 𝑈 𝐷𝑉𝑇 = 𝑄 𝑅

▪For every 𝑥 ∈ 𝑆 it holds that:

𝒇 𝑨, 𝒙 = 𝑨𝒙 𝟐 = 𝑸𝑹𝒙 𝟐 = 𝑹𝒙 𝟐

= 𝒇(𝑹, 𝒙)

▪∀𝑥 ∈ 𝑆: 𝐴𝑥 2 = 𝑅𝑥 2

𝐴 = 𝑄𝑅 𝑄𝑇𝑄 = 𝐼

• First text search application on GPS data
• Other GPS managers:

➢ Foursquare: manual check-ins
➢ Google Latitude: no text search

Text mining: Rishabh Kabra
Web-site: A. Sugaya
GPUs: Micha Feigin

Co-authors:
Privacy: E. Zhang
Server Code: C. Sung
Smartphone Code: M. Vo-Thanh

Robots code: S. Gil
Kuka Robots: R. Knepper
Quadrobots: B. Julian

GPS tracking using coreset

Data collection Data reduction Sent results to cloud

GPS Hat for Raspberry Pi Raspberry Pi Zero W
IoT Device
•1GHz, Single-core CPU.

•512MB RAM

T2.micro AWS instance
Collecting data

No additional computational

power needed

Original data size: 5000
Compressed with our technique data size: 107
Compression ratio: 0.021 (0.02% from original)

Results:

GPS core-set

Big Data Big Noise

Input

• GPS-point = (latitude, longitude, time)

latitude longitude time
1.295783 103.7816 8:44:57

1.295785 103.7816 8:44:59

1.295782 103.7816 8:45:00

1.295782 103.7816 8:45:01

1.29579 103.7817 8:45:04

1.295802 103.7817 8:45:05

1.295915 103.7818 8:45:08

1.29598 103.7819 8:45:09

1.296015 103.7819 8:45:10

1.296057 103.782 8:45:11

… … …

Output

Begin time End time

Location

ID Speed

8:44:57 8:48:57 c 30

8:49:59 8:51:59 d 24

8:52:00 8:54:00 g 24

8:54:01 8:55:01 q 11

8:56:57 8:57:57 r 120

8:58:57 8:59:57 m 55

… … … 65

Location

ID Begin Point End Point

a (42.374,-71.120) (42.374,-71.120)

b (42.386, -71.130) (42.386,-71.130)

c (42.391,-71.128) (42.391,-71.128)

d (42.393,-71.130) (42.394,-71.129)

… … …

m locationsk trajectories

Location

ID Begin Point End Point

(42.374,-71.120) (42.374,-71.120)

2 (42.386, -71.130) (42.386,-71.130)

3 (42.391,-71.128) (42.391,-71.128)

4 (42.393,-71.130) (42.394,-71.129)

5 (42.385,-71.132) (42.384,-71.130)

6 (42.358, -71.091) (42.358,-71.098)

… … …

From Semantic Database Text Mining

m locations Reverse Geo-coding

Starbucks, Harvard Square

225 Walden St.

Peabody Preschool

55-92 Rice St.

128-157 Garden St.

130-169 Vassar St, Cambridge

...

Google
maps,
mapQuest
…

Latent Semantic Analysis (PCA) on Yelp reviews
[SODA’13, with Sohler and Schmit]

47

Now we can use traditional algorithms…

• String Compression (e.g. zip files)

• Data mining (decision tree, k-means, NN)

• Motion Prediction (e.g. to save Battery life)

• Social Network analysis on User/Locations matrix

a b c d e f

𝑘-Segment mean

The 𝑘-segment 𝑓∗that minimizes the fitting cost
from points to a d-dimensional signal

𝑘 = 5

𝑑 = 1

1 2 3 4 5 6 7 8 9 10 11
t

10 11p 

10 10|| (10) ||p f

9

5

11

y

(10)f

෍

𝑡

|| 𝑝𝑡 − 𝑓(𝑡)|| 2

Related Work
Provable Guarantee:

• Exact solution in 𝑂(𝑛2𝑘) time and 𝑂 𝑛2 space

[Bellman’68]

• For monotonic sequences
[Abam, De-berg, Hachenberg, 2010]

Numerous heuristics:

• Off-line [Douglas, Peucker’73, Kaminka et al.’10]

• Streaming [Cao, O. Wolfson, and G. Trajcevski.]

• In Matlab, Oracle, …

Theorem [with Sung &Rus, GIS’12]

A 1 + 𝜖 approximation to the
𝑘-segment mean w.h.p. in the
big data computation model

• ~log 𝑛 memory

• M processors

• ~log (n)/M insertion time per point

Big Data Big Noise

53

𝑘-Segment mean

The 𝑘-piecewise linear function 𝑓∗that minimizes
the fitting cost from points to a d-dimensional signal

𝑘 = 5

𝑑 = 1

1 2 3 4 5 6 7 8 9 10 11
t

10 11p 

10 10|| (10) ||p f

9

5

11

y

(10)f

𝑐𝑜𝑠𝑡 𝑃, 𝑓 =෍

𝑡

|| 𝑝𝑡 − 𝑓(𝑡)|| 2

𝑘 − Segment Queries

Input: d-dimensional signal P over time

1 2 3 4 5 6 7 8 9 10 11
t

10

9

5

11

y

Input: d-dimensional signal P over time
Query: k segments over time

1 2 3 4 5 6 7 8 9 10 11
t

10

9

5

11

y

𝑘 − Segment Queries

k-Piecewise linear function f over t

Input: d-dimensional signal P over time
Query: k segments over time
Output: Sum of squared distances from P

𝑘 − Segment Queries

1 2 3 4 5 6 7 8 9 10 11
t

10 11p 

10 10|| (10) ||p f

9

5

11

y

(10)f

(1 + 𝜖)-Corset for k-segment queries

A weighted set 𝐶 ⊆ 𝑃 such that
for every k-segment f :

cost 𝑃, 𝑓 ~ costw 𝐶, 𝑓

1 2 3 4 5 6 7 8 9 10 11
t

10

9

5

11

y

1 2 3 4 5 6 7 8 9 10 11
t

10 11p 

10 10|| (10) ||p f

9

5

11

y

(10)f

~

1 ± 𝜖
෍

𝑝𝑡∈𝐶

𝑤 𝑝𝑡 ⋅ 𝑓 𝑡 − 𝑝𝑡෍

𝑡

𝑓 𝑡 − 𝑝𝑡

From Big Data to Small Data

Suppose that we can compute such a corset 𝐶 of size
1

𝜖
for every set 𝑃 of n points

• in time 𝑛5,
• off-line, non-parallel, non-streaming algorithm

1 2 3 4 5 6 7 8 9 10 11
t

10

9

5

11

y

1 2 3 4 5 6 7 8 9 10 11
t

10 11p 

10 10|| (10) ||p f

9

5

11

y

(10)f

~

1 ± 𝜖

Read the first
2

𝜖
streaming points and reduce them

into
1

𝜖
weighted points in time

2

𝜖

5

1 + 𝜖 corset for 𝑃1

Read the next
2

𝜖
streaming point and reduce them

into
1

𝜖
weighted points in time

2

𝜖

5

1 + 𝜖 corset for 𝑃21 + 𝜖 corset for 𝑃1

Merge the pair of 𝜖-coresets into an 𝜖-corset

of
2

𝜖
weighted points

1 + 𝜖-corset for 𝑃1 ∪ 𝑃2

Delete the pair of original coresets from memory

1 + 𝜖-corset for 𝑃1 ∪ 𝑃2

Reduce the
2

𝜖
weighted points into

1

𝜖
weighted

points by constructing their coreset

1 + 𝜖-corset for 𝑃1 ∪ 𝑃2

1 + 𝜖-corset for

Reduce the
2

𝜖
weighted points into

1

𝜖
weighted

points by constructing their coreset

1 + 𝜖-corset for 𝑃1 ∪ 𝑃2

1 + 𝜖-corset for

= 1 + 𝜖 2-corset for 𝑃1 ∪ 𝑃2

1 + 𝜖 2-corset for 𝑃1 ∪ 𝑃2

1 + 𝜖 -corset for 𝑃3

1 + 𝜖 2-corset for 𝑃1 ∪ 𝑃2

1 + 𝜖 -corset for 𝑃3 1 + 𝜖 -corset for 𝑃4

1 + 𝜖 2-corset for 𝑃1 ∪ 𝑃2 1 + 𝜖 -corset for 𝑃3 ∪ 𝑃4

1 + 𝜖 2-corset for 𝑃1 ∪ 𝑃2 1 + 𝜖 2-corset for 𝑃3 ∪ 𝑃4

1 + 𝜖 2-coreset for

𝑃1 ∪ 𝑃2 ∪ 𝑃3 ∪ 𝑃4

1 + 𝜖 3-coreset for

𝑃1 ∪ 𝑃2 ∪ 𝑃3 ∪ 𝑃4

Parallel Computation

Parallel Computation

Parallel Computation
Run off-line
algorithm
on corset
using single
computer

77

Parallel+ Streaming Computation

78ICRA’14 (With Rus, Paul and Newman)

Coreset

A weighted set 𝐶 such that for every k-segment f :
cost 𝑃, 𝑓 ~ costw 𝐶, 𝑓

1 2 3 4 5 6 7 8 9 10 11
t

10

9

5

11

y

1 2 3 4 5 6 7 8 9 10 11
t

10 11p 

10 10|| (10) ||p f

9

5

11

y

(10)f

~

1 ± 𝜖

80

Let
• 𝑋 be a set, called points set
• 𝑄 be a set, called query set
• cost: 2𝑋 × 𝑄 → 0,∞ be a function that maps every set 𝑃 ⊆ 𝑋

and query 𝑞 ∈ 𝑄 into a non-negative number cost(𝑃, 𝑞)

For a given 𝜖 > 0 and 𝑃 ⊆ 𝑋,
the set 𝐶 ⊆ 𝑋 is a corset if
for every 𝑞 ∈ 𝑄 we have

cost 𝑃, 𝑞 ~𝑐𝑜𝑠𝑡 𝐶, 𝑞

Up to 1 ± 𝜖 multiplicative error

Generic Coreset definition

Theorem [Feldman, Langberg, STOC’11]

A sample 𝐶 ⊆ 𝑃 from the distribution

sensitivity p = max
𝑞∈𝑄

𝑑𝑖𝑠𝑡(𝑝, 𝑞)

σ𝑝′𝑑𝑖𝑠𝑡(𝑝′, 𝑞)

is a coreset if 𝐶 ≥
dimension of 𝑄

𝜖2
⋅ σ𝑝 sensitibity(𝑝)

Suppose that

cost 𝑃, 𝑞 ≔ ෍

𝑝∈𝑃

𝑤 𝑝 dist 𝑝, 𝑞

where dist: 𝑃 × 𝑄 → 0,∞ .

No small coreset 𝐶 ⊂ 𝑃 exists

No corset for k-segment:
If 𝑘 > 3 there is a set 𝑃 such that
every weighted (1 + 𝜖)-coreset
must be of size |𝑃|

Input P: n points on the x-axis

1 2 3 4 6 7 8 9 10 11
t5

1 2 3 4 6 7 8 9 10 11
t5

Coreset C: all points except one

Input P: n points on the x-axis

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

1 2 3 4 6 7 8 9 10 11
t5

1 2 3 4 6 7 8 9 10 11
t

5|| (5) ||p f

5

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

Cost(𝑃, 𝑓) > 0

Cost(𝐶, 𝑓) = 0

Input P: n points on the x-axis

Coreset C: all points except one

Query f: covers all except this one

Cost(𝑃, 𝑓) > 0 Unbounded factor
approximation

1 2 3 4 6 7 8 9 10 11
t

5|| (5) ||p f

5

Cost(𝐶, 𝑓) = 0

Observation:
Points on a segment can be stored by
the two indexes of their end-points

1 2 3 4 6 7 8 9 10 11
t5

1 2 3 4 5 6 7 8 9 10 11
t

Observation:
Points on a segment can be stored by
the two indexes of their end-points
and the slope of the segment

1 2 3 4 5 6 7 8 9 10 11
t

Observation:
Points on a segment can be stored by
the two indexes of their end-points
and the slope of the segment

new Coreset definition

A weighted set 𝐶 ⊂ 𝑃 such that
for every k-segment f :

cost 𝑃, 𝑓 ~ costw 𝐶, 𝑓

1 2 3 4 5 6 7 8 9 10 11
t

10

9

5

11

y

1 2 3 4 5 6 7 8 9 10 11
t

10 11p 

10 10|| (10) ||p f

9

5

11

y

(10)f

~

෍

𝑡

𝑓 𝑡 − 𝑝𝑡 ෍

𝑝𝑡∈𝐶

𝑤 𝑝𝑡 ⋅ 𝑓 𝑡 − 𝑝𝑡

100-segment mean on GPS traces from taxi-cabs in San-Francisco

Runtime: ~ week

Runtime: ~ 1 min

93

Results on GPS data from 500 Taxi Cabs

94

k=
95

Big Data Big Noise

96

(k,m)- Hidden Markov Model.
Chain of length k, between m states

abcdefghihgfedcba…
97

(𝑘,𝑚)-Hidden Markov Model

Minimizes cost over every 𝑘-segments

whose projection is only m segments

98

(𝑘,𝑚)-Hidden Markov Model

Minimizes cost over every 𝑘-segments

whose projection is only m segments

99

Observation: We can use the same coreset for k-segments !

Apply Heuristics for NP-hard problems on Coresets

100

Coreset For Deep Learning

- Use existing coreset for the sigmoid active

function: 𝑓 𝑝, 𝑥 =
1

1+𝑒𝑝𝑥

- Technique: Improve each neuron independently

102

IMPROVED existing state-of-the-
art using core-sets

Summary Unified Coreset Framework

Solve central open problems in:
TCS, CG, ML, DL, HE, DP, …

software

Problems
(functions)

Coreset
Types

Solutions
(techniques)

streaming dynamicdistributed kinematicData Models

Hierarchies
Class

Boost performance of existing systems

Theory

Practice/
Industry

Computation
Models

Privacy H. Encryption GPU Active Learning

Novel practical solutions with provable guarantees

Open
Implementation

Applications

hardware systems

Open Problems

• More Coresets

- Deep learning, Decision trees, Sparse data

• More Applications

- Signals, Robotics, FFT, Computer Vision, DL

• Private Coresets
[STOC’11, with Fiat, Nissim and Kaplan]

• Homomorphic Encryption: [F, Akavia, Kaplan]

• Generic software library

- Coresets on Demand on the cloud

• Sensor Fusion (GPS+Video+Audio+Text+..) 104

