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What Is a time series?

Repeated measurements taken over time

(1, X2, ..., TN)

(0, At,2At, ..., (N — 1)At)

Often the sampling rate is fixed:

seismology (e.qg., recordings of earthquake tremors)
biochemistry (e.g., cell potential fluctuations)
biomedicine (e.qg., recordings of heart rate dynamics)
ecology (e.g., animal population levels over time)
astrophysics (e.g., radiation dynamics)

meteorology (e.g., air pressure recordings)

economics (e.q., inflation rates variations)
human-machine interfaces (e.q., gesture recognition from
accelerometer data)

industry (e.g., quality control sensor measurements on a
poroduction line)



Many of our measurements of the world are in the form of
time series
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medical: normal sinus rhythm finance: oil prices
audio: brushing teeth

text: sentence lengths

| satellite position

climatology: sea level pressure noise

atmospheric CO; fluctuations

zooplankton growth
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Focus on univariate time series where a simple quantity is measured over time



Characterizing time series

How can | reduce complex time-varying patterns to informative summary statistics?

time-series data characterization methods
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Global features f:RY - R

Methods for characterizing time series can be represented as algorithms
that capture time-series properties as real numbers

time-series data o , ~ 1 2mikn /N
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Connects empirical dynamics to theoretical ideas




Large and diverse methodological literature

Static distribution

Quantiles Trimmed means

Fits to standard distributions

Outliers Moments

Entropy

Rank-orderings
Standard deviation

Stationarity

STAV Sliding window measures

Bootstraps Step detection

Distribution comparisons

Basis Functions

Wavelet transform

Peaks of power spectrum
Spectral measures

Power in frequency bands

the hctsa library

Correlation

Linear autocorrelation :
Decay properties

Additive noise titration

Nonlinear autocorrelations
Time reversal asymmetry
Generalized self-correlation

Recurrence structure
Autocorrelation robustness
Scaling and fluctuation analysis
Permutation robustness

Local extrem :
ocal extrema Seasonality tests

Zero crossing rates

Model Fitting

Local prediction
GARCH models

Fourier fits

. . AR models
Exponential smoothing

State space models

Hidden Markov models Biasedhwallker

Piecewise splines simulations

ARMA models Gaussian Processes

(Phys) Nonlinear

2D embedding structure TSTOOL
TISEAN Fractal dimension

. . . ’ q
Correlation dimension Taken’s estimator

Poincaré sections Surrogate data
Nonlinear prediction error

Lyapunov exponent estimate
False nearest neighbors

Information Theory

Sample Entropy
Automutual information

Entropy rate Approximate

Tsallis entropies Entropy

Others

Transition matrices Local motifs

Dynamical system coupling

Visibility graph
Y 8P Stick angle distribution

Extreme events
Singular spectrum analysis

Domain-specific techniques
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Time-series forecasting

model prediction,

model fitting ‘forecasting’
Q“
time-series data % % s
| | | | | | | | | |
2 4 6 8 10 12 14 16 18 20

Time

Well-suited to a feature-based representation?



Time-series classification

(also regression)

Classify new data
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Discriminative features tell you what to measure, and allow you to
interpret why.



Time-series classification

Many problems rely on a definition of similarity/distance between
pairs of time series

query by content: [ocate known patterns of interest in a time-series database;
anomaly detection: detect unusual patterns in a time-series database, such as unusual (possibly
fraudulent) patterns of credit card transactions
motif discovery: identity commonly recurring subsequences in a time series
clustering: time series are organized into groups;
classification: distinguish different labeled classes of time series from each other

A  Time-domain dissimilarity B Feature-based dissimilarity
X1 WWW X9 WVWW
time series time series
1. Convert time series ¢ ¢
to feature vector

interpretable features

£, WY AT

interpretable features
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2. Compute distance A AR A
between feature vectors f ::|Hf — 15 H

(or use subset of features) £, [T




“The crucial problem is not the classificator function
(linear or nonlinear), but the selection of well-
discriminating features. In addition, the features
should contribute to an understanding [...]”

—Timmer et al., 1997.

To improve performance:
(1) transform time series into useful (e.qg., feature-
based) spaces and use simple classifiers
(1) develop and apply new and complex ¢
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Selecting global features

Global features can be a useful way to represent time series, but
there are a huge variety of features...

So how do | pick methods for my data? it’s an art

"Do what | did during my PhD”

“Use standard analysis methods
from my field”

“Apply a hot new method
introduced in PNAS last week”

* |s your proposed method best, or can another (perhaps simpler) method outperform it

* Are ‘new’ methods really new, or do they reproduce the performance of existing methods
(e.g., from another field, or developed in the past)? Is any progress being made?

« Comparison required, but not done in practice (an average of 0.91 other methods, and

1.85 different datasets”™).
*Keogh, E. and Kasetty, S., Data Min. Knowl. Disc. 7, 349 (2003)



Competing interdisciplinary approaches

vast libraries of methods lead to diverse opinions

"l know

someone smart B “Everyone knows

who uses you can't apply

wavelets” AR models to

nonstationary
biomedical data!l”

5
"ARIMA models % . — ST,y

are a waste " s
of time” :
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Collect many scientific time series
Collect many scientific time-series analysis methods

Use performance of methods on data to
organize our methods

Use properties of data as measure by the methods to
organize our data

Learn the empirical structure of time series and their methods



A Time series B Operations

feature vectors AR sliding power nonlinear
model window spectrum  dimension distributional prediction wavelet Sample  fluctuation
stationarity ~ measure estimate moment error coefficients  Entropy analysis
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Fulcher, B. D., Little, M. A. & Jones, N. S. (2013). J. Roy. Soc. Interface 10, 20130048.



Empirical fingerprints

A flexible, powerful, and data-driven means of comparing time
series, and analysis methods.

= time series of type ‘green’

= operation of type ‘blue’

captures properties measured captures behaviour across a range
by diverse scientific methods of empirical time series




Organizing our methods

Which time-series analysis methods
are similar to the methods | use?

a pair of similar methods
L g from a distant literature

an unexpected
method with similar
behaviour

my favourite
analysis method

Connects scientific methods using
their empirical behaviour
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“hello, I am
SampleEntropy(1,0.2)”

/ZOOMING IN



Shannon
Entropy

ApEn(2,0.2)

O

Discover
interdisciplinary
connections
between our methods
for time-series
analysis



(a)

n=20

sine wave
(longer period)

Jerk system

Hadley flow

sine wave
(longer period)
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noisy sine wave
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noisy sine wave
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and models
closer
together



Highly comparative time-series analysis for classification

system —P» time-series dataset ——P» massive feature extraction using hctsa —P statistical learning

Systems producing What analysis should | use Use hctsa to compare " Extract interpretable
time-series to find differences between over 7700 time-series features insights to diagnose
phenotype data phenctypes Aand B? 7ot Gistribution correlation properties ) disease, deduce gene
) . . : autocorrelation i ]
model organism | /\’ ! med:newneee ~ f’\ automutual information function, ot
movement data : : autliers M v power spectral properties
WYY Y= " Y time-series entropy ..
Yy data values T e discriminalive
genolype A - features?
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< < honlinear models stationanty
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clectrophysiological S
measurements . 1
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fow dimensional
structure?
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W control
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X X
Parkinson’s % e x O tvoe B
Disease S ) cC o
. £ X
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control time > — ' o m . y

> 7700 features o dimension 1

A very general problem: what method should | use’



Highly comparative time-series analysis

|. Compute and compare

thousands of analysis dataset. |
methods
2. Select methods that / entropy ./ long-range \/ARMA model

scaling behavior coefficients

perform well on your data

“Signals from the patient group are less predictable”

3. Interpret new methods
to gain Insights into your
data

“Single neuron recordings from the frontal lobe have more
outliers and intermittent fluctuations”

control

BD Fulcher, MA Little, and NS Jones.J. R. Soc. Interface, 10:83 (2013), DOI: 10.1098/rsif.2013.0048

EEG entropy in pre-frontal cortex



Conventional

Inspect data

motivate,
<— develop
methods

interpretable results

Highly comparative

apply many methods to data

UL

what box l behavior of

IS best? ensemble of boxes?

inspection,
interpretation,
understanding



e—series analysis 101:
)ys look at your data




N
time-series analysis

we trust



time-series data

Mapping to features opens
algorithmic possibilities
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Converts to a static problem; access to trac
for statistical learning: regression, class

tional algorithms

fication, ...



time series feature matrix =~ €X0ge€NOUS

variable
VW ol
> VYWV feature E M .
wVv\’/\/'\'"extractio)n 3 ;'
WVMM -

learn mapping, M, using
multivariate statistical methods

On arXiv next week:

Regression of Exogenous Variables from Time
Series.
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* Seismology

e Heart rate intervals

e Fetal heart rates

 Emotional speech
e Parkinsonian speech
» Epileptic EEG
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Learning feature spaces for time-series classification

1-NN DTW

test

Test set linear misclassification rate (%)

"Q_ training
O~

2 4 6 8 10 12 14
Number of features selected

systematic, automatic, data-driven

massive dimensionality
reduction

fast classification of new examples

diverse, interpretable features

B. D. Fulcher & N.S. Jones, Highly comparative feature-based time-series classification. [EEE Trans. Knowl. Data Eng. 26, 3026—-3037 (2014)
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New, interactive compEngine website out this month!
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l Drag your data
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We'll compute
time series
properties
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similar data
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Beyond global features. ..

Interval features

simple features measured
In sub-interval

Pattern dictionaries

characteristic repeating motifs
(e.g., organism movement)

trend variance mean
difference difference difference

Value

class 1
class 2

Time

Class 1

Value

Class 2

Value




Beyond global features. ..

@ class 1 B class 2
low distance, d(s, x) higher distance, d(s, x)
Shapelets
matching
predictive
subsequences shapelet

candidate

distance to shapelet

d(s,x)



—1ybrid approaches

* Define distance metrics containing multiple distance terms

* E.g., Reweight time-series distances by global feature values

e Define features as the set of time-domain distances to a set of
training time series.



So what representation to use?

SO0 many to choose from! Ideally methods are motivated by a
specific question asked of data (quantifiable outcome metric).

* Ensemble methods developing to combine myriad representations
(e.qg., COTE, Flat-COTE, HIVE-COTE)...

time-series data

DTW
. . . Fuclidean
time-domain distances

Fourier power
olobal features Entropy

iNnterval features

shapelets < <

pattern dictionaries




~eature-based forecasting

* Do time-series display characteristic patterns from the past that
help us to predict its values in the future?

o Are some types of time series suited to different types of
forecasting algorithms®

g’ #
-4
4 ¥
!
g W
-1
-2 Inermational journal of Forxcasting 33 (2017 345358
- ? Contents lists svailible st ScenceDirect
International Journal of Forecasting
! i journal horrepage: www.esevier.com/locate’forecast
g ¢

Visualising forecasting algorithm performance using time
series instance spaces

Yanfei Kang**, Rob J. Hyndman ®, Kate Smith-Miles®

* School of Ecomomics md Menagement, fethang University. Bejing. 100197, (hine
* Deporsmvenx of > and X Ustversioy, CIEyTos VU MO0, Auarolio
* School of Mathematial Sclences, Monash Universiy, Clayron WC 3800, Awstrode




Iwo Major lake Homes

The most useful methods tor a given task are determined by the
structure of the data (e.g., whether time series are of the same
length, are phase-aligned, or whether class differences are global
or restricted to specific intervals), and the context of the problem
(e.qg., whether accuracy or interpretability is more important, and
what type of understanding would best address the domain
guestion of interest).

Modern statistical methods can help us to leverage decades of
interdisciplinary research on algorithm development to tailor our
methods to our data. Feature-based learning allows analysts to
leverage the power and sophistication of diverse interdisciplinary
methods to glean interpretable understanding from their data.



VWhat Next!

Algorithm development requires comparison to demonstrate
progress. We need to properly structure combined research efforts.

How to construct optimal (reduced) feature spaces? [e.g., to classity
data, to understand which algorithms suit which types of data]

How best to compare multiple data representations? [COTE]

We should be focusing our efforts on developing methods for the
types of data we see in the world — are we applying the right types
of methods to our data” Are we studying sufficiently diverse data?
Can we generate new types of time series?

Can we leverage large scientific feature libraries to learn more about
the processes underlying a time-series dataset”

Can we apply similar methods developed (lessons learned) for time
series/sequential to other data objects” — multivariate time series,
unevenly-sampled time series, complex networks, point clouds,
Images, etc.
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