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A. Functional Data



What is a Functional Observation?

A realization of a (typically smooth) random object

that takes values in an abstract function space

They often naturally arise in a times series context



Where They Show Up: Environmental Science

• Particulate matter:

• Daily PM10 curves recorded in Graz, Austria, during a winter season

• Curves are volatile but display on average a diurnal pattern

bullet Importance:

bullet High PM10 concentrations cause adverse health e↵ects

bullet Local and EU regulation sets pollution limits, requires policies
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Where They Show Up: Environmental Science

• Particulate matter:

• Daily PM10 curves recorded in Graz, Austria, during a winter season

• Curves are volatile but display on average a diurnal pattern

• Statistical Importance: Prediction problem

• High PM10 concentrations cause adverse health e↵ects (cardiovascular diseases)

• Local and EU regulation sets pollution limits, requires (local) policies to be implemented

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

time

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

time

m
ea

n 
va

lu
e



Where They Show Up: Civil Engineering

• Tra�c volume:

• Recorded is average velocity per minute on each of three lanes

• Average velocities are averaged over the lanes, weighted by number of vehicles per lane

bullet Importance:

bullet Are intra-day returns predictable?

bullet Notice: Nonstationarity of the daily functions
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Where They Show Up: Civil Engineering

• Tra�c volume:

• Recorded is average velocity per minute on each of three lanes

• Average velocities are averaged over the lanes, weighted by number of vehicles per lane

• Importance: Estimation problem

• Input for macroscopic highway tra�c flow model

• Used to determine necessity of speed limits and specifics of their implementation
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What They Are

• Stylized facts:

• Data are typically sampled from some continuous “time” process

• The sampled curves are envisioned as smooth [underlying low-dimensional structure?]

• Denote a functional observation by (x(t) : t 2 T )

• Set T = [0, 1]

• Important: T may not be time or univariate:

⇤ x(t) could be the concentration of a pollutant at altitude t

⇤ x(t) could be gray level of an image at spatial location t 2 T ⇢ R2

bullet Definition:

bullet A random element X is a functional variable if it takes values in a function space F

bullet Therefore X = (X(t) : t 2 T )

bullet A realization of X is denoted by x = (x(t) : t 2 T )
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What They Are

• Examples of (normed) function spaces:

• F = C[0, 1], the continuous functions on the unit interval

• F = L2[0, 1], the square-integrable functions on the unit interval

• F could be a reproducing kernel Hilbert space, RKHS

• F could be a Sobolov space

bullet Convention:

bullet Focus on F = L2[0, 1] = L2

bullet Under this convention, X has values in L2

bullet Formally, there is a probability space (⌦,A, P ) such that

X : ⌦! L2

is A-B-measurable, where B is the Borel �-algebra generated by the open sets in L2

bullet Note: Pointwise interpretation of functions is lost
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• More stylized facts:

• Typically one has more than one observation

• In many applications, functional observations are not independent

• Often they are sampled in time

• Leads to functional data xj as realization of functional variable Xj, j = 1, . . . , n

• There are two clocks: Xj(t) has calendar time j and intra-day time t



What They Are

• More stylized facts:

• Typically one has more than one observation

• In many applications, functional observations are not independent

• Often they are sampled in time

• Leads to functional data xj as realization of functional variable Xj, j = 1, . . . , n

• There are two clocks: Xj(t) has calendar time j and intra-day time t

• How they are observed

• There are no continuous measurements

• Any realization x is observed at discrete points only: x(t1), . . . , x(tK) for some K

• Measurements can be exact or contaminated with measurement error

• High sampling frequency scheme leads to dense functional data

• Low sampling frequency scheme leads to sparse functional data



Example: Particulate Matter Data
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Example: Particulate Matter Data
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The Functional Time Series Context

• Univariate and multivariate linear time series have been studied extensively

• Rather complete picture of strength and weaknesses of ARMA models

• Many extensions available

• Ready-to-use computer packages
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The Functional Time Series Context

• Univariate and multivariate linear time series have been studied extensively

• Rather complete picture of strength and weaknesses of ARMA models

• Many extensions available

• Ready-to-use computer packages

• If observations are functions

• Increased complexity as infinite-dimensional objects enter

• Some theory available

• Much more limited time series tool box

• Literature

• Focus has often been on special cases

• First-oder functional autoregression dominates

• Many more results are becoming available



B. Analyzing Functional Time Series



Mean Function and Covariance Operator

Two of the most important objects/summary statistics in multivariate statistics

are the sample mean and sample covariance matrix

How can these objects be defined and analyzed in the functional context?



Mean Function

• How to define sample and population mean functions?

• Forego technical definitions and background

• Natural definition of sample mean function is X̄n = 1
n

Pn
i=1Xi

• Definition of population mean function is

µ = E[X ] = ((E[X ])(t) : t 2 [0, 1]) = (E[X(t)] : t 2 [0, 1])

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

time

va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

time

m
ea

n 
va

lu
e



Covariance Operator and Spectral Decomposition

• Definition

• The covariance operator C : L2 ! L2 is defined by

C(y) = E
⇥hX � µ, yi(X � µ)

⇤

=

Z 1

0
c(s, ·)y(s)ds, y 2 H

with covariance kernel c(s, t) = E[{X(s)� µ}{X(t)� µ}]
• c(s, t) is symmetric and non-negative definite and describes all cross-covariances of X



Covariance Operator and Spectral Decomposition

• Definition

• The covariance operator C : L2 ! L2 is defined by

C(y) = E
⇥hX � µ, yi(X � µ)

⇤

=

Z 1

0
c(s, ·)y(s)ds, y 2 H

with covariance kernel c(s, t) = E[{X(s)� µ}{X(t)� µ}]
• c(s, t) is symmetric and non-negative definite and describes all cross-covariances of X

• Spectral decomposition

• The kernel c(s, t) allows for the spectral decomposition

c(s, t) =
1
X

`=1

�` e`(s)e`(t),

where (�` : ` 2 N) are the increasing eigenvalues with associated eigenfunctions (e` : ` 2 N)

• Karhunen–Loève representation:

Xj =
1
X

`=1

hXj, e`ie`



Covariance Operator and Spectral Decomposition

• Definition

• The sample covariance operator Ĉn : L2 ! L2 is defined by

Ĉn(y) =
1

n

n
X

j=1

hXj � X̂n, yi(Xj � X̂n) =

Z 1

0
ĉn(s, ·)y(s)ds, y 2 H,

with sample covariance kernel ĉn(s, t) =
1

n

n
X

j=1

{Xj(s)� X̄n}{Xj(t)� X̄n}]

t

s



Covariance Operator and Spectral Decomposition

• Spectral decomposition

• Ĉn has at most n non-zero eigenvalues �̂` with associated sample eigenfunctions ê`

• Therefore only a limited number of eigenvalues and eigenfunctions can be estimated

• Plots show e↵ect of first three eigenfunctions for particulate matter data on mean function
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Consistency Results

• Theory in Hörmann & Kokoszka (2010)

• Results for wide range of stationary functional time series

• Consistency of the mean function:

p
nkX̂n � µk = OP (1)

• Consistency of the covariance operator:

p
nkĈn � Ck = OP (1)

• Consistency of eigenvalues and eigenfunctions:

p
n max

1`d

n

kĉ`ê` � e`k + |�̂` � �`|
o

= OP (1)

• Random signs ĉ` = sign(he`, ê`i) needed as e` is unique only up to the sign

• But ĉ` cannot be determined from the sample

• Any estimator or test based on eigenfunctions must not depend on signs



Autocovariance Operators

• Linear dependence

• Important concept in univariate and multivariate time series analysis

• In functional context captured by autocovariance operators

Ch(y) = E[hX0 � µ, yi(Xh � µ)], h 2 Z, y 2 H

• Note: C = C0



Autocovariance Operators

• Linear dependence

• Important concept in univariate and multivariate time series analysis

• In functional context captured by autocovariance operators

Ch(y) = E[hX0 � µ, yi(Xh � µ)], h 2 Z, y 2 H

• Note: C = C0

• Sample autocovariance estimators

• Ch can be estimated by

Ĉh,n(y) =
1

n

n�h
X

j=1

hXj � X̂n, yi(Xj+h � X̂n), h 2 Z, y 2 H

• Here only h = 1 will be used



Projections onto Principal Components

• Functional PCA

• Idea: If complete function is too complicated work with fPC scores

• What happens to linear dependence after projection?



Projections onto Principal Components

• Functional PCA

• Idea: If complete function is too complicated work with fPC scores

• What happens to linear dependence after projection?

• First-order functional autoregression

• Xj = �Xj�1 + "j with

�(x) = a
�hx, e1i + hx, e2i

�

e1 + ahx, e1ie2, x 2 H,

where a 2 (0, 1) and e1, e2 2 H orthonormal

• Assume that E[h"j, e1i2] > 0 but E[h"j, e2i2] = 0

• Then, the first fPC score series satisfies

hXj, e1i = ahXj�1, e1i + a2hXj�2, e1i + h"j, e1i



Projections onto Principal Components

• Functional PCA

• Idea: If complete function is too complicated work with fPC scores

• What happens to linear dependence after projection?

• First-order functional autoregression

• Xj = �Xj�1 + "j with

�(x) = a
�hx, e1i + hx, e2i

�

e1 + ahx, e1ie2, x 2 H,

where a 2 (0, 1) and e1, e2 2 H orthonormal

• Assume that E[h"j, e1i2] > 0 but E[h"j, e2i2] = 0

• Then, the first fPC score series satisfies

hXj, e1i = ahXj�1, e1i + a2hXj�2, e1i + h"j, e1i

• Projection of this FAR(1) process is VAR(2) process



C. Prediction and Estimation Methodology
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A First Example

• First-order functional autoregression

• The most often applied zero-mean functional time series model is

Xj = �Xj�1 + "j, j 2 Z

• ("j : j 2 Z) are centered iid innovations and � a bounded linear operator satisfying k�kL < 1



A First Example

• First-order functional autoregression

• The most often applied zero-mean functional time series model is

Xj = �Xj�1 + "j, j 2 Z

• ("j : j 2 Z) are centered iid innovations and � a bounded linear operator satisfying k�kL < 1

• Functional Yule–Walker equations; Bosq (2000)

• Apply E[h·, xiXj�1] to the model equations to obtain the functional Yule–Walker equations

E[hXj, xiXj�1]= E[h�(Xj�1), xiXj�1] + E[h"j, xiXj�1]= E[h�(Xj�1), xiXj�1]

• Let �0 be the adjoint operator of �, given by h�(x), yi = hx,�0(y)i
• This gives the operator equation C1(x) = C(�0(x)) and therefore

�(x) = C 0
1C

�1(x)

• Can be estimated by smoothing techniques, gives predictor function X̃n+1 = �̂nXn



Methods Based on FPC Scores

• Univariate and multivariate prediction methods; Hyndman & Shang (2009)

• This prediction technique avoids estimating operators directly
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j = (xej,1, . . . , x

e
j,d)

0,

containing the first d empirical FPC scores xej,` = hXj, ê`i
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containing the first d empirical FPC scores xej,` = hXj, v̂`i
• Step 2: Fix h. Use Xe

1, . . . ,X
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e
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0

for Xe
n+h with an appropriate multivariate algorithm



Methods Based on FPC Scores

• Univariate and multivariate prediction methods; Hyndman & Shang (2009)

• This prediction technique avoids estimating operators directly

• Step 1: Fix d. Use the data X1, . . . , Xn to compute the vectors

Xe
j = (xej,1, . . . , x

e
j,d)

0,

containing the first d empirical FPC scores xej,` = hXj, v̂`i
• Step 2: Fix h. Use Xe

1, . . . ,X
e
n to determine the h-step ahead prediction

X̂
e

n+h = (ŷen+h,1, . . . , ŷ
e
n+h,d)

0

for Xe
n+h with an appropriate multivariate algorithm

• Step 3: Use the functional object

X̂n+h = ŷen+h,1 v̂1 + . . . + ŷen+h,dv̂d

as h-step ahead prediction for Xn+h



Methods Based on FPC Scores

• Remarks on algorithm

• Gives best linear prediction (in mean square sense) of the population FPC scores

• It does not assume an FAR(p) structure or any other functional time series specification

• Standard methods such as the Durbin–Levinson and innovations algorithm can be applied

• Alternatives include exponential smoothing and nonparametric prediction algorithms

• Covariates can be incorporated in the prediction process



Methods Based on FPC Scores

• Remarks on algorithm

• Gives best linear prediction (in mean square sense) of the population FPC scores

• It does not assume an FAR(p) structure or any other functional time series specification

• Standard methods such as the Durbin–Levinson and innovations algorithm can be applied

• Alternatives include exponential smoothing and nonparametric prediction algorithms

• Covariates can be incorporated in the prediction process

• Remarks on numerical implementation

• Is convenient in R

• In Step 1, FPC score matrix and sample eigenfunctions with fda

• In Step 2, forecasting of the FPC scores with vars, in case VAR models are employed

• In Step 3, combine fda and vars to obtain X̂n+h



Methods Based on FPC Scores

• Model selection — 1; A, Dubart Norinho & Hörmann (2015)

• Assume Xj = �1Xj�1 + . . .�pXj�p + "j

• ("j) i.i.d. and �1, . . . ,�p Hilbert–Schmidt

• Then

E
⇥kXn+1 � X̂n+1k2

⇤  �2 + �d, (1)

where

�d =

✓

1 +

 p
X

j=1

�j;d

�2◆ 1
X

`=d+1

�` and �j;d =

✓ 1
X

`=d+1

k�j(e`)k2
◆1/2



Methods Based on FPC Scores

• Model selection — 1; A, Dubart Norinho & Hörmann (2015)

• Assume Xj = �1Xj�1 + . . .�pXj�p + "j

• ("j) i.i.d. and �1, . . . ,�p Hilbert–Schmidt

• Then

E
⇥kXn+1 � X̂n+1k2

⇤  �2 + �d, (2)

where

�d =

✓

1 +

 p
X

j=1

�j;d

�2◆ 1
X

`=d+1

�` and �j;d =

✓ 1
X

`=d+1

k�j(e`)k2
◆1/2

• The constant �d bounds the additional prediction error due to dimension reduction

• Note that �j;d  k�jkS for all d � 0 and �2 = E[k"n+1k2]
• As a simple consequence, the error in (2) tends to �2 for d ! 1
• Needed is a criterion to select order p and dimension d simultaneously



Methods Based on FPC Scores

• Model selection — 2; A, Dubart Norinho & Hörmann (2015)

• Since the eigenfunctions e` are orthogonal and the FPC scores xn,` are uncorrelated, it follows

E
⇥kXn+1 � X̂n+1k2

⇤

= E

"

�

�

�

�

1
X

`=1

xn+1,`e` �
d

X

`=1

x̂n+1,`e`

�

�

�

�

2
#

= E
⇥kY n+1 � Ŷ n+1k2

⇤

+
1
X

`=d+1

�`

(For vectors, k · k denotes Euclidean norm)



Methods Based on FPC Scores

• Model selection — 2; A, Dubart Norinho & Hörmann (2015)

• Since the eigenfunctions e` are orthogonal and the FPC scores xn,` are uncorrelated, it follows

E
⇥kXn+1 � X̂n+1k2

⇤

= E

"

�

�

�

�

1
X

`=1

xn+1,`e` �
d

X

`=1

x̂n+1,`e`

�

�

�

�

2
#

= E
⇥kY n+1 � Ŷ n+1k2

⇤

+
1
X

`=d+1

�`

(For vectors, k · k denotes Euclidean norm)

• To minimize the prediction error, set up the fFPE model selection criterion:

(p̂, d̂) = argmin
p,d

(

n + pd

n� pd
tr(⌃) +

1
X

`=d+1

�`

)

,

where ⌃ is the covariance matrix of the residuals from a VAR(p) fit to X1, . . . ,Xn

• Note that the multivariate FPE criterion uses the determinant instead of the trace

• To get a fully automatic procedure, replace all population with sample quantities



Functional FPE Criterion

• E↵ect on dimension reduction

• Frequencies of the dimension d chosen by in 100 simulation runs for FAR(1) process

• Plot shows that fFPE adapts to sample size
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Predicting Daily Pollution Curves

• 175 PM10 functional observations, mean function and e↵ect of first three fPCs (90% TVE)
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Predicting Daily Pollution Curves

• Temperature di↵erence as important covariate

• High PM10 concentrations are related to temperature inversions

• Temperature di↵erence between Graz (350m) and Kalkleiten (710m)
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Predicting Daily Pollution Curves

• Including covariates in the prediction algorithm

• Include temperature di↵erence as covariate function

• The first two FPCs describe about 92% of the variance

• Leads to the inclusion of a two-dimensional regressor in the second step of the algorithm

• Fit d-variate VARX(p) model to the data

• Select d and p with covariate-adjusted fFPE criterion

fFPE(p, d) =
n + pd + r

n� pd� r
tr(⌃̂Z) +

X

`>d

�̂` (3)

• r is the dimension of the regressor vector (here, r = 2)

• ⌃̂Z is the covariance matrix of the residuals when a model of order p and dimension d is fit



Predicting Daily Pollution Curves

• Comparison of three prediction methods

• Subscript a (b, c) corresponds to method FPE (multiple testing, FPEX)

• Choose five blocks of functional observations Xj+1, . . . , Xj+100 for k = 0, 15, 30, 45, 60

• Fit the models for the di↵erent methods

• Make one-step ahead predictions for the functions Xj+100+` and for ` = 1, . . . , 15

• Compare through mean (MSE) and median (MED) of the 15 predictions from each block

• Report values of p and d chosen by the respective methods

k pa pb pc da db dc MSEa MSEb MSEc MEDa MEDb MEDc

0 1 1 2 3 3 3 1.33 1.28 1.32 1.28 1.23 0.88

15 3 1 3 3 3 3 2.69 5.23 2.50 2.38 5.34 1.45

30 4 1 3 3 2 3 2.05 4.05 1.93 1.33 2.56 1.26

45 3 1 3 3 2 3 2.25 2.44 1.83 1.34 1.67 1.14

60 2 1 1 3 2 5 1.22 1.82 1.05 1.12 1.60 0.89



C. Prediction and Estimation Methodology



Motivation

• What is there

• Estimation can be done for several special cases

• FAR models are covered

⇤ First-order case is thoroughly developed

• Some techniques for first-order FMA models are available; Turbillon et al. (2008)

⇤ Procedures use restrictive assumptions
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• Extension to more general setting

• Describe a principled way to estimate invertible functional time series

• Would like to use projections but need to take into account their properties

• Look at innovations algorithm for vector time series

• Use concept in functional context, and for estimation



Motivation

• What is there

• Estimation can be done for several special cases

• FAR models are covered

⇤ First-order case is thoroughly developed

• Some techniques for first-order FMA models are available; Turbillon et al. (2008)

⇤ Procedures use restrictive assumptions

• Extension to more general setting

• Describe a principled way to estimate invertible functional time series

• Would like to use projections but need to take into account their properties

• Look at innovations algorithm for vector time series

• Use concept in functional context, and for estimation

• For multivariate time series see Mitchell & Brockwell (1997)



Motivation

• Tra�c volume data: Functional time series point of view

• Raw data organized in days (left) and corresponding functions (right)

• Indicated periodicity in days

• Due to double averaging process, smoothness is generated



Motivation

• Functional PCA

• Works for “approximable” functional time series; Hörmann & Kokoszka (2010)

• Know: Have to be careful with description of functional and multivariate dynamics

• Know: Invertibility is preserved under projections; Klepsch & Klüppelberg (2017)



Motivation

• Functional PCA

• Works for “approximable” functional time series; Hörmann & Kokoszka (2010)

• Know: Have to be careful with description of functional and multivariate dynamics

• Know: Invertibility is preserved under projections; Klepsch & Klüppelberg (2017)

• Tra�c velocity data

• Registered centered functions (black) and four-term KL-representation (grey)

• Use compressed functions for estimation/prediction, assess error
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Main Result

• Theorem, technical conditions suppresed; A & Klepsch (2017)

• (Xj : j 2 Z) stationary, causal and invertible functional time series

• Causal representation with operators ( ` : ` 2 N0) given by

Xj =
1
X

`=1

 `✏j�`, j 2 Z

• Invertible representation with operators (⇧` : ` 2 N) given by

Xj =
1
X

`=1

⇧`Xj�` + "j, j 2 Z



Main Result

• Theorem, technical conditions suppresed; A & Klepsch (2017)

• (Xj : j 2 Z) stationary, causal and invertible functional time series

• Causal representation with operators ( ` : ` 2 N0) given by

Xj =
1
X

`=1

 `✏j�`, j 2 Z

• Invertible representation with operators (⇧` : ` 2 N) given by

Xj =
1
X

`=1

⇧`Xj�` + "j, j 2 Z

• Recursively determine with the functional innovations algorithm the coe�cients ⇥k,i in

X̂n+1,k =
k

X

i=1

⇥k,i(Xdk+1�i,n+1�i � X̂n+1�i,k�i)

• Then, as k ! 1,

k⇥k,` �  `k ! 0



Main Result

• Sample version

• There is a sample version of this result as well

• Operators in both causal and invertible representation are consistently estimable



Main Result

• Sample version

• There is a sample version of this result as well

• Operators in both causal and invertible representation are consistently estimable

• Tra�c velocity data

• One-step predictions obtained from functional innovations algorithm

• Observed functions (black) and predictors from 10-term KL expansion
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Model Selection

• Estimating an FMA(3) process

• Left three boxplots are on selection of d

• Right three boxplots on selection of q

Model 1−Slow Model 2−Slow Model 1−Fast Model 2−Fast
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Traffic velocity data

• Time series structure

• Spectral norm of estimated cross-correlation matrices for lags h = 1, . . . , 5

• Vector model based on principal subspaces of dimension d = 1 to d = 5 (left to right)
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Traffic velocity data

• Time series structure

• Spectral norm of estimated cross-correlation matrices for lags h = 1, . . . , 5

• Vector model based on principal subspaces of dimension d = 1 to d = 5 (left to right)
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• Model selection

• Methods choose d between 3 and 5

• Methods choose q = 1

• This seems reasonable given the spectral norm plots



Traffic velocity data

• Estimating the moving average operator

• FMA(1) kernel estimated with three available methods; Turbillon et al. (2008)

• d = 3 (first row) and d = 4 (second row)
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D. Future Directions



Future Directions

• Data from single cell biology experiment

• Stimulating cell growth with EGF leads to “pulsing” ERK activity (red)

• Stimulates cell metabolism measured through ATP level (blue)

bullet Functional time series approaches

bullet Warping — di↵erent from the many existing methods

bullet High-dimensional — graphs show one of thousands of cells

bullet Co-integration — groups of cells seem to move together
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Future Directions

• Data from single cell biology experiment

• Stimulating cell growth with EGF leads to “pulsing” ERK activity (red)

• Stimulates cell metabolism measured through ATP level (blue)

• Functional time series approaches

• High-dimensional — graphs show one of thousands of cells (“signaling pathway”)

• Warping — individual cells have their own clocks

• Co-integration — groups of cells (but not all cells) seem to move together
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