Functional Data & Time Series — A Brief Introduction —

ALEXANDER AUE

aaue@ucdavis.edu

Department of Statistics & Graduate Group of Applied Mathematics, UC Davis

A. FUNCTIONAL DATA

- What they are and where they show up
- How they are observed
- Adding time series context

A. FUNCTIONAL DATA

- What they are and where they show up
- How they are observed
- Adding time series context

B. ANALZYING FUNCTIONAL TIME SERIES

- Mean function and (auto)covariance operator
- Functional principal components
- Projections of functional autoregressive and moving average processes

A. FUNCTIONAL DATA

- What they are and where they show up
- How they are observed
- Adding time series context

B. ANALZYING FUNCTIONAL TIME SERIES

- Mean function and (auto)covariance operator
- Functional principal components
- Projections of functional autoregressive and moving average processes

C. PREDICTION AND ESTIMATION METHODOLOGY

- Predictions with functional autoregressive processes
- Estimation with functional moving average processes
- Illustrations with empirical results

A. FUNCTIONAL DATA

- What they are and where they show up
- How they are observed
- Adding time series context

B. ANALZYING FUNCTIONAL TIME SERIES

- Mean function and (auto)covariance operator
- Functional principal components
- Projections of functional autoregressive and moving average processes

C. PREDICTION AND ESTIMATION METHODOLOGY

- Predictions with functional autoregressive processes
- Estimation with functional moving average processes
- Illustrations with empirical results

D. FUTURE DIRECTIONS

A. FUNCTIONAL DATA

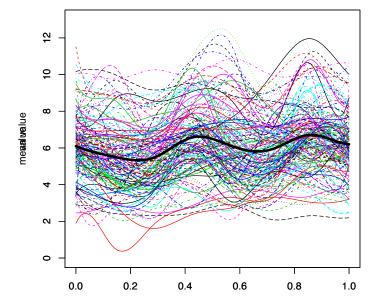
A realization of a (typically smooth) random object that takes values in an abstract function space

They often naturally arise in a times series context

WHERE THEY SHOW UP: ENVIRONMENTAL SCIENCE

• Particulate matter:

- Daily PM10 curves recorded in Graz, Austria, during a winter season
- Curves are volatile but display on average a diurnal pattern



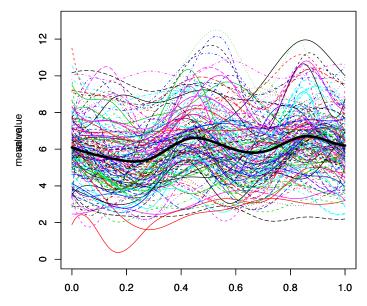
WHERE THEY SHOW UP: ENVIRONMENTAL SCIENCE

• Particulate matter:

- Daily PM10 curves recorded in Graz, Austria, during a winter season
- Curves are volatile but display on average a diurnal pattern

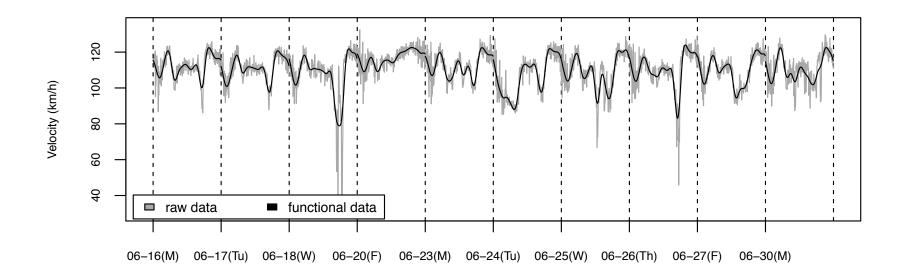
• Statistical Importance: Prediction problem

- High PM10 concentrations cause adverse health effects (cardiovascular diseases)
- Local and EU regulation sets pollution limits, requires (local) policies to be implemented



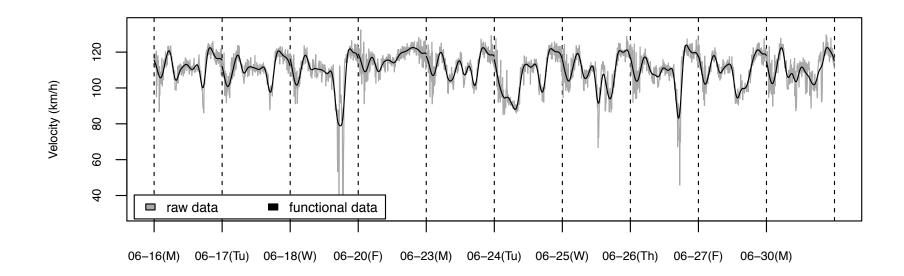
WHERE THEY SHOW UP: CIVIL ENGINEERING

- Traffic volume:
 - Recorded is average velocity per minute on each of three lanes
 - Average velocities are averaged over the lanes, weighted by number of vehicles per lane



WHERE THEY SHOW UP: CIVIL ENGINEERING

- Traffic volume:
 - Recorded is average velocity per minute on each of three lanes
 - Average velocities are averaged over the lanes, weighted by number of vehicles per lane
- Importance: Estimation problem
 - Input for macroscopic highway traffic flow model
 - Used to determine necessity of speed limits and specifics of their implementation



- Stylized facts:
 - Data are typically sampled from some continuous "time" process
 - The sampled curves are envisioned as smooth [underlying low-dimensional structure?]
 - Denote a functional observation by $(x(t): t \in T)$
 - Set T = [0, 1]
 - Important: T may not be time or univariate: * x(t) could be the concentration of a pollutant at altitude t * x(t) could be gray level of an image at spatial location $t \in T \subset \mathbb{R}^2$

- Stylized facts:
 - Data are typically sampled from some continuous "time" process
 - The sampled curves are envisioned as smooth [underlying low-dimensional structure?]
 - Denote a functional observation by $(x(t): t \in T)$
 - Set T = [0, 1]
 - Important: T may not be time or univariate: * x(t) could be the concentration of a pollutant at altitude t * x(t) could be gray level of an image at spatial location $t \in T \subset \mathbb{R}^2$
- Definition:
 - A random element X is a functional variable if it takes values in a function space F
 - Therefore $X = (X(t) : t \in T)$
 - A realization of X is denoted by $x = (x(t): t \in T)$

- Examples of (normed) function spaces:
 - F = C[0, 1], the continuous functions on the unit interval
 - $F = L^2[0, 1]$, the square-integrable functions on the unit interval
 - $\bullet~F$ could be a reproducing kernel Hilbert space, RKHS
 - $\bullet~F$ could be a Sobolov space

- Examples of (normed) function spaces:
 - F = C[0, 1], the continuous functions on the unit interval
 - $F = L^2[0, 1]$, the square-integrable functions on the unit interval
 - $\bullet~F$ could be a reproducing kernel Hilbert space, RKHS
 - F could be a Sobolov space
- Convention for this talk:
 - Focus on $F = L^2[0, 1] = L^2$
 - Under this convention, X has values in L^2
 - Formally, there is a probability space (Ω, \mathcal{A}, P) such that

 $X\colon\Omega\to L^2$

is \mathcal{A} - \mathcal{B} -measurable, where \mathcal{B} is the Borel σ -algebra generated by the open sets in L^2

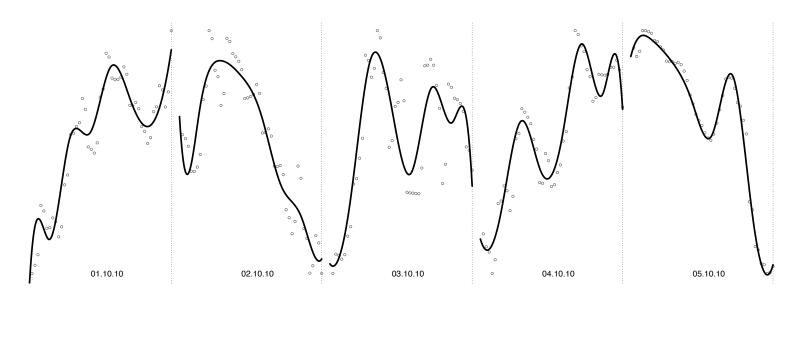
• Note: Pointwise interpretation of functions is lost

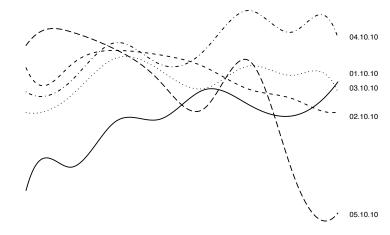
- More stylized facts:
 - Typically one has more than one observation
 - In many applications, functional observations are not independent
 - Often they are sampled in time
 - Leads to functional data x_j as realization of functional variable X_j , j = 1, ..., n
 - There are two clocks: $X_j(t)$ has calendar time j and intra-day time t

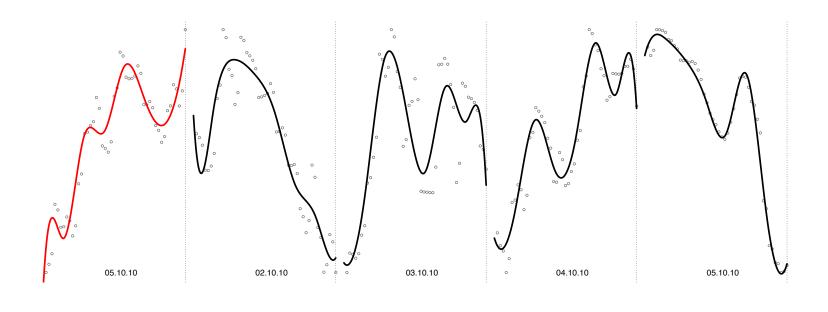
- More stylized facts:
 - Typically one has more than one observation
 - In many applications, functional observations are not independent
 - Often they are sampled in time
 - Leads to functional data x_j as realization of functional variable X_j , j = 1, ..., n
 - There are two clocks: $X_j(t)$ has calendar time j and intra-day time t

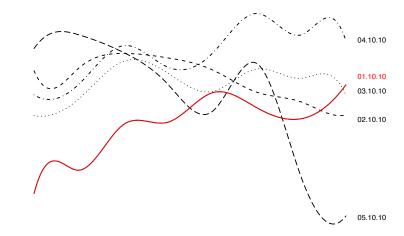
• How they are observed

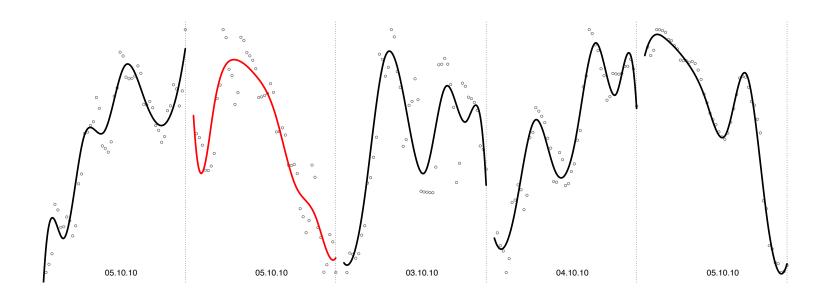
- There are no continuous measurements
- Any realization x is observed at discrete points only: $x(t_1), \ldots, x(t_K)$ for some K
- Measurements can be exact or contaminated with measurement error
- \bullet High sampling frequency scheme leads to dense functional data
- Low sampling frequency scheme leads to *sparse functional data*

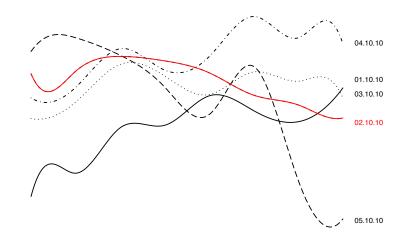












The Functional Time Series Context

- Univariate and multivariate linear time series have been studied extensively
 - Rather complete picture of strength and weaknesses of ARMA models
 - Many extensions available
 - Ready-to-use computer packages

The Functional Time Series Context

- Univariate and multivariate linear time series have been studied extensively
 - Rather complete picture of strength and weaknesses of ARMA models
 - Many extensions available
 - Ready-to-use computer packages
- If observations are functions
 - Increased complexity as infinite-dimensional objects enter
 - Some theory available
 - Much more limited time series tool box

The Functional Time Series Context

- Univariate and multivariate linear time series have been studied extensively
 - Rather complete picture of strength and weaknesses of ARMA models
 - Many extensions available
 - Ready-to-use computer packages

• If observations are functions

- Increased complexity as infinite-dimensional objects enter
- Some theory available
- Much more limited time series tool box

• Literature

- Focus has often been on special cases
- First-oder functional autoregression dominates
- Many more results are becoming available

B. ANALYZING FUNCTIONAL TIME SERIES

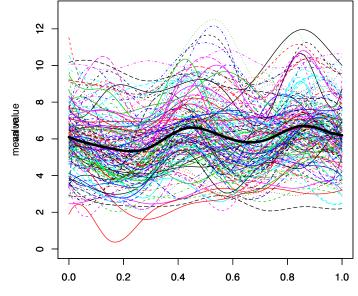
Two of the most important objects/summary statistics in multivariate statistics are the sample mean and sample covariance matrix

How can these objects be defined and analyzed in the functional context?

MEAN FUNCTION

- How to define sample and population mean functions?
 - Forego technical definitions and background
 - Natural definition of sample mean function is $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$
 - Definition of *population mean function* is

$$\mu = E[X] = ((E[X])(t) \colon t \in [0,1]) = (E[X(t)] \colon t \in [0,1])$$



• Definition

• The covariance operator $C \colon L^2 \to L^2$ is defined by

$$C(y) = E\left[\langle X - \mu, y \rangle (X - \mu)\right] = \int_0^1 c(s, \cdot) y(s) ds, \qquad y \in H$$

with covariance kernel $c(s,t) = E[\{X(s) - \mu\}\{X(t) - \mu\}]$

• c(s,t) is symmetric and non-negative definite and describes all cross-covariances of X

• Definition

• The covariance operator $C \colon L^2 \to L^2$ is defined by

$$C(y) = E\left[\langle X - \mu, y \rangle (X - \mu)\right] = \int_0^1 c(s, \cdot) y(s) ds, \qquad y \in H$$

with covariance kernel $c(s,t) = E[\{X(s) - \mu\}\{X(t) - \mu\}]$

- c(s,t) is symmetric and non-negative definite and describes all cross-covariances of X
- Spectral decomposition
 - The kernel c(s, t) allows for the spectral decomposition

$$c(s,t) = \sum_{\ell=1}^{\infty} \lambda_{\ell} e_{\ell}(s) e_{\ell}(t),$$

where $(\lambda_{\ell} \colon \ell \in \mathbb{N})$ are the increasing eigenvalues with associated eigenfunctions $(e_{\ell} \colon \ell \in \mathbb{N})$

• Karhunen–Loève representation:

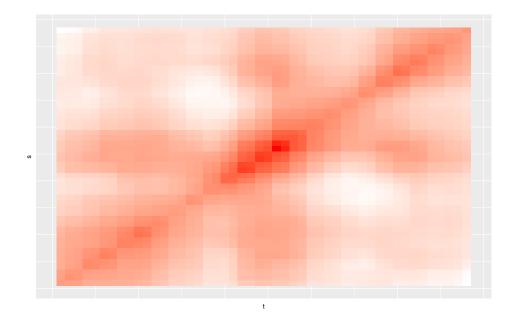
$$X_j = \sum_{\ell=1}^{\infty} \langle X_j, e_\ell \rangle e_\ell$$

• Definition

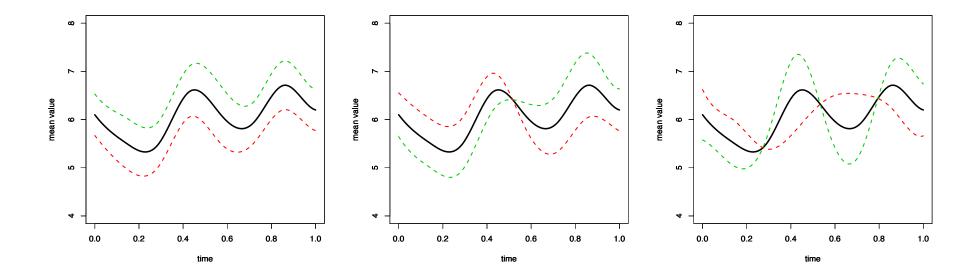
• The sample covariance operator $\hat{C}_n \colon L^2 \to L^2$ is defined by

$$\hat{C}_{n}(y) = \frac{1}{n} \sum_{j=1}^{n} \langle X_{j} - \hat{X}_{n}, y \rangle (X_{j} - \hat{X}_{n}) = \int_{0}^{1} \hat{c}_{n}(s, \cdot) y(s) ds, \qquad y \in H,$$

with sample covariance kernel $\hat{c}_n(s,t) = \frac{1}{n} \sum_{j=1}^n \{X_j(s) - \bar{X}_n\} \{X_j(t) - \bar{X}_n\}$



- Spectral decomposition
 - \hat{C}_n has at most *n* non-zero eigenvalues $\hat{\lambda}_{\ell}$ with associated sample eigenfunctions \hat{e}_{ℓ}
 - Therefore only a limited number of eigenvalues and eigenfunctions can be estimated
 - Plots show effect of first three eigenfunctions for particulate matter data on mean function



CONSISTENCY RESULTS

- Theory in Hörmann & Kokoszka (2010)
 - Results for wide range of stationary functional time series
 - Consistency of the mean function:

$$\sqrt{n}\|\hat{X}_n - \mu\| = \mathcal{O}_P(1)$$

• Consistency of the covariance operator:

$$\sqrt{n}\|\hat{C}_n - C\| = \mathcal{O}_P(1)$$

• Consistency of eigenvalues and eigenfunctions:

$$\sqrt{n} \max_{1 \le \ell \le d} \left\{ \left\| \hat{c}_{\ell} \hat{e}_{\ell} - e_{\ell} \right\| + \left| \hat{\lambda}_{\ell} - \lambda_{\ell} \right| \right\} = \mathcal{O}_{P}(1)$$

- Random signs $\hat{c}_{\ell} = \operatorname{sign}(\langle e_{\ell}, \hat{e}_{\ell} \rangle)$ needed as e_{ℓ} is unique only up to the sign
- But \hat{c}_{ℓ} cannot be determined from the sample
- Any estimator or test based on eigenfunctions must not depend on signs

- Linear dependence
 - Important concept in univariate and multivariate time series analysis
 - In functional context captured by *autocovariance operators*

$$C_h(y) = E[\langle X_0 - \mu, y \rangle (X_h - \mu)], \qquad h \in \mathbb{Z}, \ y \in H$$

• Note: $C = C_0$

- Linear dependence
 - Important concept in univariate and multivariate time series analysis
 - In functional context captured by *autocovariance operators*

$$C_h(y) = E[\langle X_0 - \mu, y \rangle (X_h - \mu)], \qquad h \in \mathbb{Z}, \ y \in H$$

- Note: $C = C_0$
- Sample autocovariance estimators
 - C_h can be estimated by

$$\hat{C}_{h,n}(y) = \frac{1}{n} \sum_{j=1}^{n-h} \langle X_j - \hat{X}_n, y \rangle (X_{j+h} - \hat{X}_n), \qquad h \in \mathbb{Z}, \ y \in H$$

• Here only h = 1 will be used

- Functional PCA
 - Idea: If complete function is too complicated work with fPC scores
 - What happens to linear dependence after projection?

PROJECTIONS ONTO PRINCIPAL COMPONENTS

- Functional PCA
 - Idea: If complete function is too complicated work with fPC scores
 - What happens to linear dependence after projection?
- First-order functional autoregression
 - $X_j = \Phi X_{j-1} + \varepsilon_j$ with

$$\Phi(x) = a(\langle x, e_1 \rangle + \langle x, e_2 \rangle)e_1 + a\langle x, e_1 \rangle e_2, \qquad x \in H,$$

where $a \in (0, 1)$ and $e_1, e_2 \in H$ orthonormal

- Assume that $E[\langle \varepsilon_j, e_1 \rangle^2] > 0$ but $E[\langle \varepsilon_j, e_2 \rangle^2] = 0$
- Then, the first fPC score series satisfies

$$\langle X_j, e_1 \rangle = a \langle X_{j-1}, e_1 \rangle + a^2 \langle X_{j-2}, e_1 \rangle + \langle \varepsilon_j, e_1 \rangle$$

PROJECTIONS ONTO PRINCIPAL COMPONENTS

- Functional PCA
 - Idea: If complete function is too complicated work with fPC scores
 - What happens to linear dependence after projection?
- First-order functional autoregression
 - $X_j = \Phi X_{j-1} + \varepsilon_j$ with

$$\Phi(x) = a(\langle x, e_1 \rangle + \langle x, e_2 \rangle)e_1 + a\langle x, e_1 \rangle e_2, \qquad x \in H,$$

where $a \in (0, 1)$ and $e_1, e_2 \in H$ orthonormal

- Assume that $E[\langle \varepsilon_j, e_1 \rangle^2] > 0$ but $E[\langle \varepsilon_j, e_2 \rangle^2] = 0$
- Then, the first fPC score series satisfies

$$\langle X_j, e_1 \rangle = a \langle X_{j-1}, e_1 \rangle + a^2 \langle X_{j-2}, e_1 \rangle + \langle \varepsilon_j, e_1 \rangle$$

• Projection of this FAR(1) process is VAR(2) process

C. PREDICTION AND ESTIMATION METHODOLOGY

C. PREDICTION AND ESTIMATION METHODOLOGY

A FIRST EXAMPLE

- First-order functional autoregression
 - The most often applied zero-mean functional time series model is

$$X_j = \Phi X_{j-1} + \varepsilon_j, \qquad j \in \mathbb{Z}$$

• $(\varepsilon_j : j \in \mathbb{Z})$ are centered iid innovations and Φ a bounded linear operator satisfying $\|\Phi\|_{\mathcal{L}} < 1$

A FIRST EXAMPLE

- First-order functional autoregression
 - The most often applied zero-mean functional time series model is

$$X_j = \Phi X_{j-1} + \varepsilon_j, \qquad j \in \mathbb{Z}$$

- $(\varepsilon_j: j \in \mathbb{Z})$ are centered iid innovations and Φ a bounded linear operator satisfying $\|\Phi\|_{\mathcal{L}} < 1$
- Functional Yule–Walker equations; Bosq (2000)
 - Apply $E[\langle \cdot, x \rangle X_{j-1}]$ to the model equations to obtain the functional Yule–Walker equations

 $E[\langle X_j, x \rangle X_{j-1}] = E[\langle \Phi(X_{j-1}), x \rangle X_{j-1}] + E[\langle \varepsilon_j, x \rangle X_{j-1}] = E[\langle \Phi(X_{j-1}), x \rangle X_{j-1}]$

- Let Φ' be the adjoint operator of Φ , given by $\langle \Phi(x), y \rangle = \langle x, \Phi'(y) \rangle$
- This gives the operator equation $C_1(x) = C(\Phi'(x))$ and therefore

$$\Phi(x) = C_1' C^{-1}(x)$$

• Can be estimated by smoothing techniques, gives predictor function $\tilde{X}_{n+1} = \hat{\Phi}_n X_n$

- Univariate and multivariate prediction methods; Hyndman & Shang (2009)
 - This prediction technique avoids estimating operators directly

- Univariate and multivariate prediction methods; Hyndman & Shang (2009)
 - This prediction technique avoids estimating operators directly
 - **STEP 1:** Fix *d*. Use the data X_1, \ldots, X_n to compute the vectors

$$\boldsymbol{X}_{j}^{e} = (x_{j,1}^{e}, \dots, x_{j,d}^{e})',$$

containing the first *d* empirical FPC scores $x_{j,\ell}^e = \langle X_j, \hat{e}_\ell \rangle$

METHODS BASED ON FPC SCORES

- Univariate and multivariate prediction methods; Hyndman & Shang (2009)
 - This prediction technique avoids estimating operators directly
 - **STEP 1:** Fix *d*. Use the data X_1, \ldots, X_n to compute the vectors

$$\boldsymbol{X}_{j}^{e} = (x_{j,1}^{e}, \dots, x_{j,d}^{e})',$$

containing the first *d* empirical FPC scores $x_{j,\ell}^e = \langle X_j, \hat{v}_\ell \rangle$

• **STEP 2:** Fix *h*. Use X_1^e, \ldots, X_n^e to determine the *h*-step ahead prediction

$$\hat{\boldsymbol{X}}_{n+h}^{e} = (\hat{y}_{n+h,1}^{e}, \dots, \hat{y}_{n+h,d}^{e})'$$

for \boldsymbol{X}_{n+h}^{e} with an appropriate multivariate algorithm

METHODS BASED ON FPC SCORES

- Univariate and multivariate prediction methods; Hyndman & Shang (2009)
 - This prediction technique avoids estimating operators directly
 - **STEP 1:** Fix *d*. Use the data X_1, \ldots, X_n to compute the vectors

$$\boldsymbol{X}_{j}^{e} = (x_{j,1}^{e}, \dots, x_{j,d}^{e})',$$

containing the first *d* empirical FPC scores $x_{j,\ell}^e = \langle X_j, \hat{v}_\ell \rangle$

• STEP 2: Fix h. Use X_1^e, \ldots, X_n^e to determine the h-step ahead prediction

$$\hat{\boldsymbol{X}}_{n+h}^{e} = (\hat{y}_{n+h,1}^{e}, \dots, \hat{y}_{n+h,d}^{e})^{\prime}$$

for \boldsymbol{X}_{n+h}^{e} with an appropriate multivariate algorithm

• **STEP 3:** Use the functional object

$$\hat{X}_{n+h} = \hat{y}_{n+h,1}^e \, \hat{v}_1 + \ldots + \hat{y}_{n+h,d}^e \, \hat{v}_d$$

as *h*-step ahead prediction for X_{n+h}

- Remarks on algorithm
 - Gives best linear prediction (in mean square sense) of the *population* FPC scores
 - It does not assume an FAR(p) structure or any other functional time series specification
 - Standard methods such as the Durbin–Levinson and innovations algorithm can be applied
 - Alternatives include exponential smoothing and nonparametric prediction algorithms
 - Covariates can be incorporated in the prediction process

- Remarks on algorithm
 - Gives best linear prediction (in mean square sense) of the *population* FPC scores
 - It does not assume an FAR(p) structure or any other functional time series specification
 - Standard methods such as the Durbin–Levinson and innovations algorithm can be applied
 - Alternatives include exponential smoothing and nonparametric prediction algorithms
 - Covariates can be incorporated in the prediction process
- Remarks on numerical implementation
 - Is convenient in **R**
 - In **STEP 1**, FPC score matrix and sample eigenfunctions with **fda**
 - In STEP 2, forecasting of the FPC scores with vars, in case VAR models are employed
 - In STEP 3, combine fda and vars to obtain X_{n+h}

- Model selection 1; A, Dubart Norinho & Hörmann (2015)
 - Assume $X_j = \Phi_1 X_{j-1} + \dots \Phi_p X_{j-p} + \varepsilon_j$
 - (ε_j) i.i.d. and Φ_1, \ldots, Φ_p Hilbert–Schmidt

• Then

$$E[\|X_{n+1} - \hat{X}_{n+1}\|^2] \le \sigma^2 + \gamma_d, \tag{1}$$

where

$$\gamma_d = \left(1 + \left[\sum_{j=1}^p \phi_{j;d}\right]^2\right) \sum_{\ell=d+1}^\infty \lambda_\ell \quad \text{and} \quad \phi_{j;d} = \left(\sum_{\ell=d+1}^\infty \|\Phi_j(e_\ell)\|^2\right)^{1/2}$$

METHODS BASED ON FPC SCORES

- Model selection 1; A, Dubart Norinho & Hörmann (2015)
 - Assume $X_j = \Phi_1 X_{j-1} + \dots \Phi_p X_{j-p} + \varepsilon_j$
 - (ε_j) i.i.d. and Φ_1, \ldots, Φ_p Hilbert–Schmidt

• Then

$$E[\|X_{n+1} - \hat{X}_{n+1}\|^2] \le \sigma^2 + \gamma_d, \tag{2}$$

where

$$\gamma_d = \left(1 + \left[\sum_{j=1}^p \phi_{j;d}\right]^2\right) \sum_{\ell=d+1}^\infty \lambda_\ell \quad \text{and} \quad \phi_{j;d} = \left(\sum_{\ell=d+1}^\infty \|\Phi_j(e_\ell)\|^2\right)^{1/2}$$

- The constant γ_d bounds the additional prediction error due to dimension reduction
- Note that $\phi_{j;d} \leq \|\Phi_j\|_{\mathcal{S}}$ for all $d \geq 0$ and $\sigma^2 = E[\|\varepsilon_{n+1}\|^2]$
- As a simple consequence, the error in (2) tends to σ^2 for $d \to \infty$
- Needed is a criterion to select order p and dimension d simultaneously

- Model selection 2; A, Dubart Norinho & Hörmann (2015)
 - Since the eigenfunctions e_{ℓ} are orthogonal and the FPC scores $x_{n,\ell}$ are uncorrelated, it follows

$$E[\|X_{n+1} - \hat{X}_{n+1}\|^2] = E\left[\left\|\sum_{\ell=1}^{\infty} x_{n+1,\ell} e_\ell - \sum_{\ell=1}^{d} \hat{x}_{n+1,\ell} e_\ell\right\|^2\right]$$
$$= E[\|\boldsymbol{Y}_{n+1} - \hat{\boldsymbol{Y}}_{n+1}\|^2] + \sum_{\ell=d+1}^{\infty} \lambda_\ell$$

(For vectors, $\|\cdot\|$ denotes Euclidean norm)

METHODS BASED ON FPC SCORES

- Model selection 2; A, Dubart Norinho & Hörmann (2015)
 - Since the eigenfunctions e_{ℓ} are orthogonal and the FPC scores $x_{n,\ell}$ are uncorrelated, it follows

$$E[\|X_{n+1} - \hat{X}_{n+1}\|^2] = E\left[\|\sum_{\ell=1}^{\infty} x_{n+1,\ell} e_\ell - \sum_{\ell=1}^{d} \hat{x}_{n+1,\ell} e_\ell\|^2\right]$$
$$= E[\|\boldsymbol{Y}_{n+1} - \hat{\boldsymbol{Y}}_{n+1}\|^2] + \sum_{\ell=d+1}^{\infty} \lambda_\ell$$

(For vectors, $\|\cdot\|$ denotes Euclidean norm)

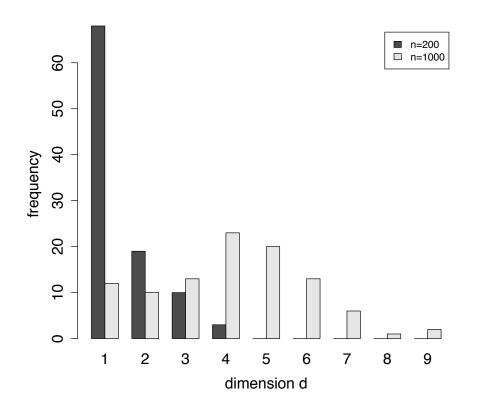
• To minimize the prediction error, set up the fFPE model selection criterion:

$$(\hat{p}, \hat{d}) = \arg\min_{p, d} \left\{ \frac{n + pd}{n - pd} \operatorname{tr}(\Sigma) + \sum_{\ell = d+1}^{\infty} \lambda_{\ell} \right\},$$

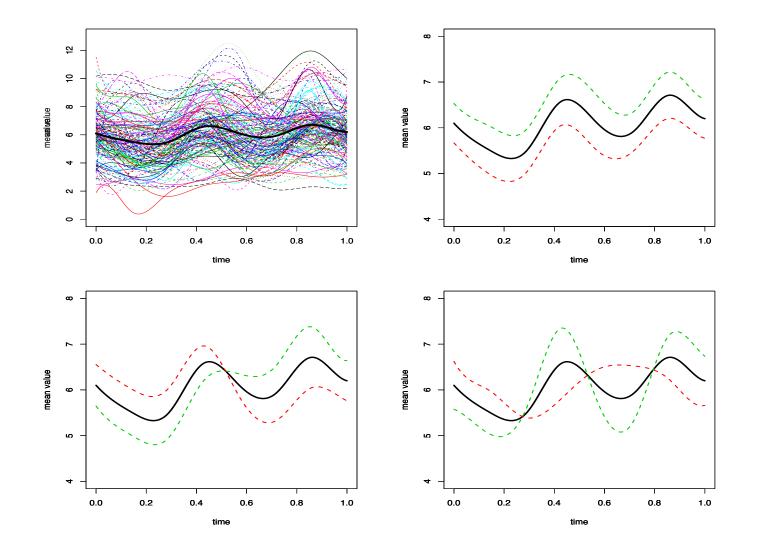
where Σ is the covariance matrix of the residuals from a VAR(p) fit to X_1, \ldots, X_n

- Note that the multivariate FPE criterion uses the determinant instead of the trace
- To get a fully automatic procedure, replace all population with sample quantities

- Effect on dimension reduction
 - Frequencies of the dimension d chosen by in 100 simulation runs for FAR(1) process
 - Plot shows that fFPE adapts to sample size

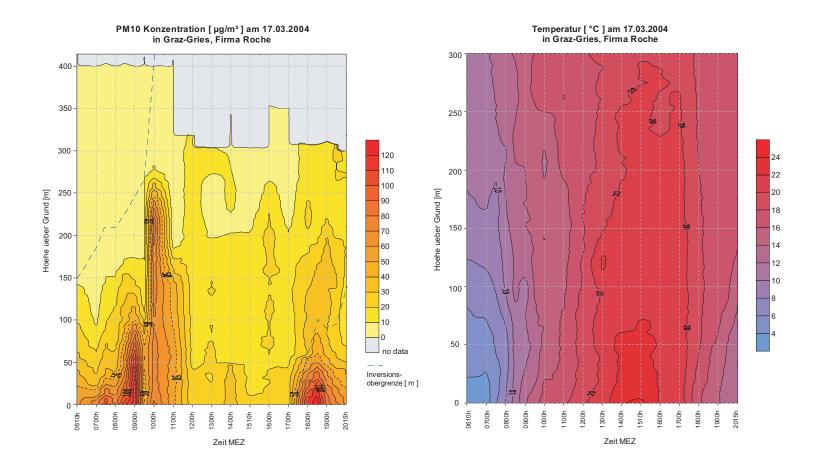


• 175 PM10 functional observations, mean function and effect of first three fPCs (90% TVE)



• Temperature difference as important covariate

- High PM10 concentrations are related to temperature inversions
- Temperature difference between Graz (350 m) and Kalkleiten (710 m)



- Including covariates in the prediction algorithm
 - Include temperature difference as covariate function
 - \bullet The first two FPCs describe about 92% of the variance
 - Leads to the inclusion of a two-dimensional regressor in the second step of the algorithm
 - Fit d-variate VARX(p) model to the data
 - Select d and p with covariate-adjusted fFPE criterion

$$\text{fFPE}(p,d) = \frac{n+pd+r}{n-pd-r} \operatorname{tr}(\hat{\Sigma}_{\boldsymbol{Z}}) + \sum_{\ell > d} \hat{\lambda}_{\ell}$$
(3)

- r is the dimension of the regressor vector (here, r = 2)
- $\hat{\Sigma}_{\mathbf{Z}}$ is the covariance matrix of the residuals when a model of order p and dimension d is fit

- Comparison of three prediction methods
 - Subscript a (b, c) corresponds to method FPE (multiple testing, FPEX)
 - Choose five blocks of functional observations $X_{j+1}, \ldots, X_{j+100}$ for k = 0, 15, 30, 45, 60
 - Fit the models for the different methods
 - Make one-step ahead predictions for the functions $X_{j+100+\ell}$ and for $\ell = 1, \ldots, 15$
 - Compare through mean (MSE) and median (MED) of the 15 predictions from each block
 - Report values of p and d chosen by the respective methods

k	p_a	p_b	p_c	d_a	d_b	d_c	MSE_a	MSE_b	MSE_c	MED_a	MED_b	MED_c
0	1	1	2	3	3	3	1.33	1.28	1.32	1.28	1.23	0.88
15	3	1	3	3	3	3	2.69	5.23	2.50	2.38	5.34	1.45
30	4	1	3	3	2	3	2.05	4.05	1.93	1.33	2.56	1.26
45	3	1	3	3	2	3	2.25	2.44	1.83	1.34	1.67	1.14
60	2	1	1	3	2	5	1.22	1.82	1.05	1.12	1.60	0.89

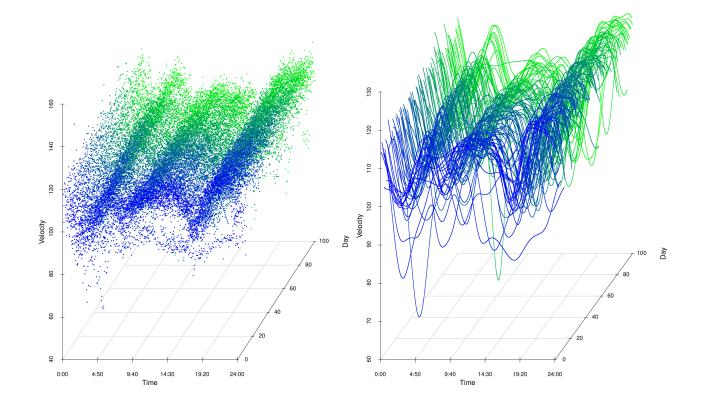
C. PREDICTION AND ESTIMATION METHODOLOGY

- What is there
 - Estimation can be done for several special cases
 - FAR models are covered
 - * First-order case is thoroughly developed
 - Some techniques for first-order FMA models are available; Turbillon et al. (2008)
 - \ast Procedures use restrictive assumptions

- What is there
 - Estimation can be done for several special cases
 - FAR models are covered
 - * First-order case is thoroughly developed
 - Some techniques for first-order FMA models are available; Turbillon et al. (2008)
 * Procedures use restrictive assumptions
- Extension to more general setting
 - Describe a principled way to estimate *invertible* functional time series
 - Would like to use projections but need to take into account their properties
 - Look at innovations algorithm for vector time series
 - Use concept in functional context, and for estimation

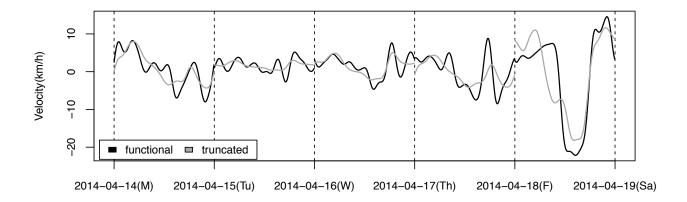
- What is there
 - Estimation can be done for several special cases
 - FAR models are covered
 - * First-order case is thoroughly developed
 - Some techniques for first-order FMA models are available; Turbillon et al. (2008)
 * Procedures use restrictive assumptions
- Extension to more general setting
 - Describe a principled way to estimate *invertible* functional time series
 - Would like to use projections but need to take into account their properties
 - Look at innovations algorithm for vector time series
 - \bullet Use concept in functional context, and for estimation
- For multivariate time series see Mitchell & Brockwell (1997)

- Traffic volume data: Functional time series point of view
 - Raw data organized in days (left) and corresponding functions (right)
 - Indicated periodicity in days
 - Due to double averaging process, smoothness is generated



- Functional PCA
 - Works for "approximable" functional time series; Hörmann & Kokoszka (2010)
 - Know: Have to be careful with description of functional and multivariate dynamics
 - Know: Invertibility is preserved under projections; Klepsch & Klüppelberg (2017)

- Functional PCA
 - Works for "approximable" functional time series; Hörmann & Kokoszka (2010)
 - Know: Have to be careful with description of functional and multivariate dynamics
 - Know: Invertibility is preserved under projections; Klepsch & Klüppelberg (2017)
- Traffic velocity data
 - Registered centered functions (black) and four-term KL-representation (grey)
 - Use compressed functions for estimation/prediction, assess error



- Theorem, technical conditions suppressed; A & Klepsch (2017)
 - $(X_j: j \in \mathbb{Z})$ stationary, causal and invertible functional time series
 - Causal representation with operators $(\Psi_{\ell} : \ell \in \mathbb{N}_0)$ given by

$$X_j = \sum_{\ell=1}^{\infty} \Psi_{\ell} \epsilon_{j-\ell}, \qquad j \in \mathbb{Z}$$

• Invertible representation with operators $(\Pi_{\ell} \colon \ell \in \mathbb{N})$ given by

$$X_j = \sum_{\ell=1}^{\infty} \prod_{\ell} X_{j-\ell} + \varepsilon_j, \qquad j \in \mathbb{Z}$$

- Theorem, technical conditions suppressed; A & Klepsch (2017)
 - $(X_j: j \in \mathbb{Z})$ stationary, causal and invertible functional time series
 - Causal representation with operators $(\Psi_{\ell} : \ell \in \mathbb{N}_0)$ given by

$$X_j = \sum_{\ell=1}^{\infty} \Psi_\ell \epsilon_{j-\ell}, \qquad j \in \mathbb{Z}$$

• Invertible representation with operators $(\Pi_{\ell} \colon \ell \in \mathbb{N})$ given by

$$X_j = \sum_{\ell=1}^{\infty} \prod_{\ell} X_{j-\ell} + \varepsilon_j, \qquad j \in \mathbb{Z}$$

 \bullet Recursively determine with the functional innovations algorithm the coefficients $\Theta_{k,i}$ in

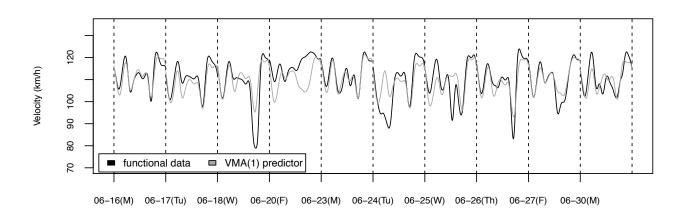
$$\hat{X}_{n+1,k} = \sum_{i=1}^{k} \Theta_{k,i} (X_{d_{k+1-i},n+1-i} - \hat{X}_{n+1-i,k-i})$$

• Then, as $k \to \infty$,

 $\left\|\Theta_{k,\ell} - \Psi_\ell\right\| \to 0$

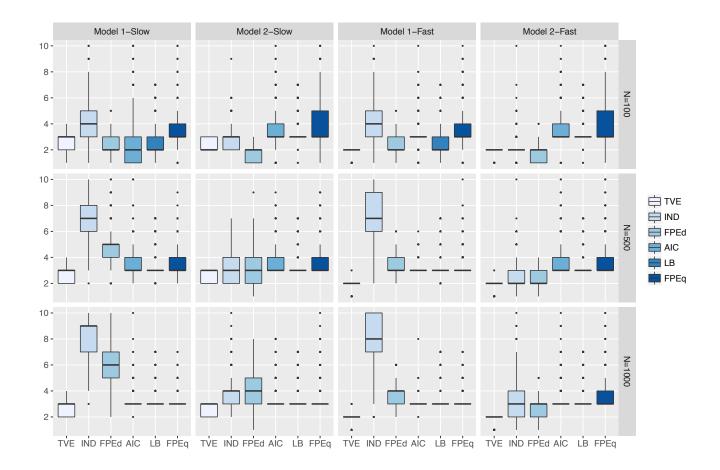
- Sample version
 - There is a sample version of this result as well
 - Operators in both causal and invertible representation are consistently estimable

- Sample version
 - There is a sample version of this result as well
 - Operators in both causal and invertible representation are consistently estimable
- Traffic velocity data
 - One-step predictions obtained from functional innovations algorithm
 - Observed functions (black) and predictors from 10-term KL expansion

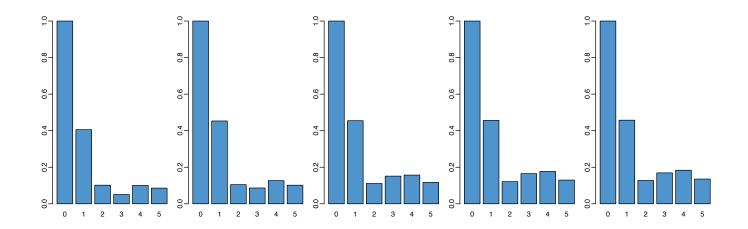


MODEL SELECTION

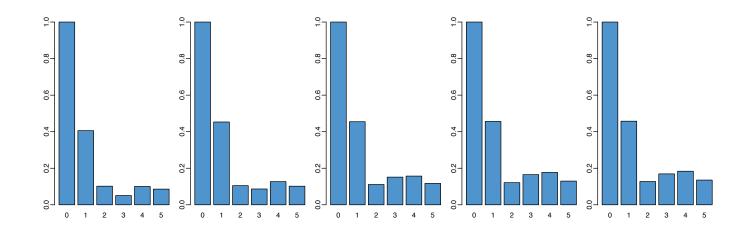
- Estimating an FMA(3) process
 - Left three boxplots are on selection of d
 - \bullet Right three boxplots on selection of q



- Time series structure
 - Spectral norm of estimated cross-correlation matrices for lags $h = 1, \ldots, 5$
 - Vector model based on principal subspaces of dimension d = 1 to d = 5 (left to right)

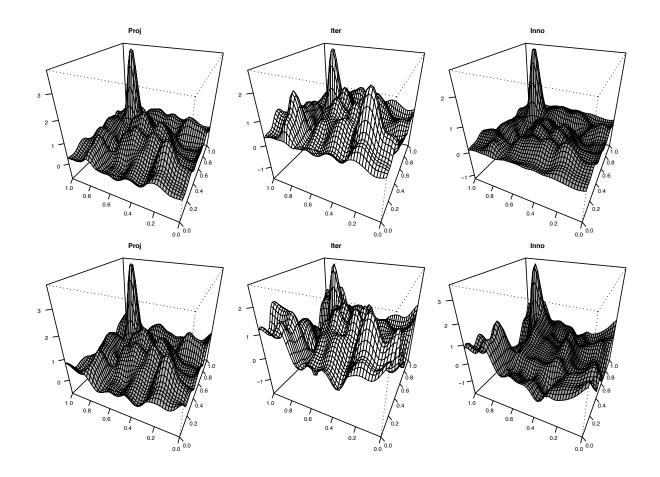


- Time series structure
 - Spectral norm of estimated cross-correlation matrices for lags $h = 1, \ldots, 5$
 - Vector model based on principal subspaces of dimension d = 1 to d = 5 (left to right)



- Model selection
 - Methods choose d between 3 and 5
 - Methods choose q = 1
 - This seems reasonable given the spectral norm plots

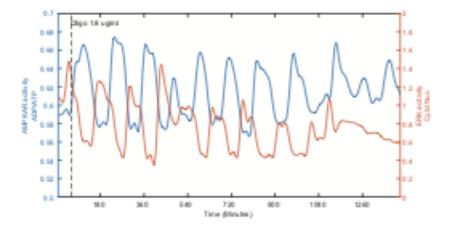
- Estimating the moving average operator
 - FMA(1) kernel estimated with three available methods; Turbillon et al. (2008)
 - d = 3 (first row) and d = 4 (second row)

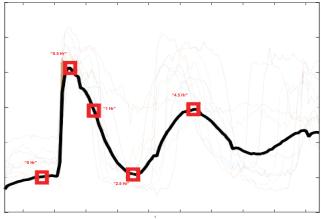


D. FUTURE DIRECTIONS

• Data from single cell biology experiment

- Stimulating cell growth with EGF leads to "pulsing" ERK activity (red)
- Stimulates cell metabolism measured through ATP level (blue)





FUTURE DIRECTIONS

• Data from single cell biology experiment

- Stimulating cell growth with EGF leads to "pulsing" ERK activity (red)
- Stimulates cell metabolism measured through ATP level (blue)
- Functional time series approaches
 - High-dimensional graphs show one of thousands of cells ("signaling pathway")
 - \bullet Warping individual cells have their own clocks
 - Co-integration groups of cells (but not all cells) seem to move together

