Probabilistic programming still matters

Rob Zinkov

Why probabilistic modeling matters

Uncertainty in exploration

0.5

Probability

0.0 i) E‘M—

Return

Modeling uncertainty

Modeling uncertainty

—

(a) Input Image (b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty

Exploring models

k =0.15 km/s, T=350 days, e=0.3, w = —90.0°, T=87.5 days

0.3 A

| 0.148 +0

2
> 360 1 | 35343
s &
g 350F %%
o "
=
8
0.4}
—— best fit .
-—- e=0.0 o F
=037 ¢ data 0.3
0 100 200 300 400 500 600 0.13

Time (days)

Figure 8

Left: Radial velocity as a function of time for a star in a binary system. The parameters of the
binary system are listed on the top. The green line is the best fit solution obtained using an
MCMC simulation. The red and the green curves are generated from Equation (84) and differ
only in the eccentricity e. The plot shows that the shape of the radial velocity curve depends
sensitively upon the eccentricity e of the orbit. Right: The posterior probability distribution of
parameters obtained using the MCMC simulation.

Wh%re and what for is Probabilistic programming
use

Forecasting at Facebook

I 1 1 I I 1
2009 2011 2013 2015 2017 2019

Predicting elections

YouGov election model seats estimate vs election result

YouGov 2017 election model 2017 general election result
(Mid-point estimate, GB only, 7 June) (GB only, 631/632 constituencies called)
302 318
269 261
I o 1 2 I o 1 4
Con Lab LD UKIP Grn SNP PC Oth Con Lab LD UKIP Grn SNP PC Oth

You

Result

Predicting elections

Conservative

0 10 20 30 40 50

Pre—election estimate

60

70

Result

Labour

Pre—election estimate

Used in detecting graviational waves (LIGO)

The posterior on counts is proportional to the product
of the likelihood from Eq. (2) and the prior from Eq. (4):

p(Al,A{}I{LUj j = 1,,M})
(M
X < H [A1p1 (z5) + Aopo (z;)]
i=1

1
. (D
A (5)
We use the Stan and emcee Markov-Chain Monte Carlo
samplers (Foreman-Mackey et al. 2013; Stan Develop-

ment Team 2015b,a) to draw samples from the poste-
rior in Eq. (5) for the two pipelines. For the pycbc set

x exp [—A1 — Ao]

PyMC3 testimonials

"At Quantopian we use PyMC3 to track uncertainty in the performance of a trading algorithm." - Thomas Wiecki

"We use PyMC3 to evaluate A/B test performance. Works great with very little code!" - Thomas Hunger, We Are Wizards

"PyMC3 is used at VoiceBox Technologies to compare algorithm performances using Kruschke's BEST algorithm. More is in development.”
"Used in research code at Channel 4 for developing internal forecasting tools." - Peader Coyle

"At Managed by Q, we use PyMC3 for all of our statistical modeling, including A/B test analysis, sales forecasting, and churn prediction.” -
Daniel Weitzenfeld

e "PyMC3is my primary tool for statistical modeling at Salesforce. | use it to combine disparate sources of information and pretty much
anywhere that quantifying uncertainty is important. For example, we build hierarchical models to evaluate varying effects in web
experiments and then to build meta-analyses that quantify the expected returns of a subsequent experiment. We've also been
experimenting with gaussian processes to model time series data for forecasting." - Eddie Landesberg. Manager, Data Scientist </small>

Definition of a probabilistic programming language

A programming language with

1. a mechanism to take draws from a probability distribution
2. amechanism to condition on parts of program on data

Taxonomy of probabilistic programming languages

There are roughly two kinds of probabilistic programming languages.

1. Those where we statically know the number of latent variables
2. Those we have don't

Languages in category 2 are sometimes called universal probabilistic programming languages

Languages where we statically know the number of latent variables in the model

Stan

BUGS / JAGS
PyMC3
Infer.Net
Hakaru

Birch

Nimble
Augur
Edward

Languages where we don’t

Church / WebPPL
Pyro
MonadBayes
Turing

Anglican

Main algorithms in probabilistic programming systems

Exact Inference
Importance Sampling
Trace Metropolis Hastings
Sequential Monte Carlo
Hamiltonian Monte Carlo
Variational Inference

Exact inference

¢ Oftenintractable
¢ Still common in discrete domains
¢ Most effort goes into reusing computation

Importance Sampling

Main idea: generate samples from a program with the same return type. Then reweigh the samples based on the probability of the actual program generating
these samples

Sequential Monte Carlo

Main idea: we maintain a population of samples as we run a program. Routinely, cull the population of low-probability samples and make extra copies of high-
probability samples.

N

Trace Metropolis Hastings

Main idea: run the program to generate a trace. Modify the trace and rerun the program from the point of modification

Hamiltonian Monte Carlo and NUTS

Algorithm 1 Hamiltonian Monte Carlo
Given 6%, ¢, L, £, M:
for m =1 to M do
Sample 70 ~ N(0,I).
Set 0™ « M1 § + g1 F 0,
for i =1to L do
Set 6, 7 + Leapfrog(f, 7, €).

end for
9)— L7 ~ B
With probability e = min {17 exp(f{xﬁp({efn(ez)f;ro}.r()}} Cset O §, 1 — —F.
end for

function Leapfrog(f,r, €)
Set 7 <—r + (€/2)VgL(0).
Set 0 < 0 + €F.

Set 7+ 7 + (¢/2)Vo.L(D).

return 0,7.

where £ is the logarithm of the joint density of the variables of interest € (up to a normalizing
constant) and x - y denotes the inner product of the vectors x and y. We can interpret this

Hamiltonian Monte Carlo and NUTS

Metropolis Gibbs NUTS Independent

T T
15 -10 -

Figure 7:

Samples generated by random-walk Metropolis, Gibbs sampling, and NUTS. The plots
compare 1,000 independent draws from a highly correlated 250-dimensional distribu-
tion (right) with 1,000,000 samples (thinned to 1,000 samples for display) generated by
random-walk Metropolis (left), 1,000,000 samples (thinned to 1,000 samples for display)
generated by Gibbs sampling (second from left), and 1,000 samples generated by NUTS
(second from right). Only the first two dimensions are shown here.

Variational inference
Approximate p(z|z) with approximate distribution g(2)

This is done by minimizing the KL divergence

2)|lp(z]z)) = N z)lo ﬂdz
Dy, (9(2)|p(z]z)) /_OO a(2) gp(z\:c)

encode > decode >

Current challenges

Hard to add inference algorithms to a system
Posteriors are expensive to obtain for problems
Lack of big applications

Lack of tooling for diagnostics and debugging

Hard to add inference algorithms

Most systems built to support a particular inference algorithm

Hard to add new inference algorithms

Systems end up over-specialized

Newer systems suffer less from this problem (Hakaru, MonadBayes, Pyro, etc)

Lack of big applications

¢ Many of these languages are very expressive
¢ Few applications actually use this expressivity
e Larger probabilistic models don't often use PPLs

Debugging probabilistic programs

We need tools to help answer questions

Are these samples from the true posterior?
Is this a good model for my data?

Is there a bug in my inference algorithm?
Do I need to reparameterize my model?

Future directions

Integration into deep learning frameworks
Extending into Decision theory

Causal Inference

Extending into Bayesian Experimental Design

Integrating into deep learning frameworks

¢ Many inference algorithms can be posed as first-order optimization problems (require a gradient)
¢ Deep learning great for posing and computing gradients
e For example: Edward, Pyro, Probtorch

Integration into deep learning frameworks

Learning proposal distributions

Compilation Inference
Training data Test data
X(m)7y(m)} - y
Probabilistic program l
p(x,y)
NN architecture _\

\
Q.0 SIS
00D < Compilation artifact "

< o0 P C%iﬁﬁly;zb) l

Training — Posterior
Dy, (p(x[y) || p(xly)
a(x|y; ¢))
Expensive / slow Cheap / fast

Figure 7.1: An outline of an approach to inference compilation for amortized in-
ference for probabilistic programs. Re-used with permission from [Le et al., 2017a]

Experimental Design

* We have some model of our data, we would like to collect data in a way to maximally improve our model

()

Count

0.00 0.03 0.06 0.09
Expected information gain

Experiment
. Optimal
M

Other

£

<

0.6

5

= Experiment
g 04 —— Optimal
o

£ —— MS

— 02

[}

2

Q

<004

0 20 40 60
Number of participants

Figure 4: (a) Distribution of expected information gain for all possible category learning experiments
for a single participant. MS has low expected information gain. (b) Actual information gain versus
number of experimental participants included in analysis (error bars are 95% bootstrapped confidence
intervals). MS requires three times as many participants to achieve maximum actual information

gain.

Further references

o Stanreference (https:/github.com/stan-dev/stan/releases/download/v2.17.0/stan-reference-2.17.0.pdf)
¢ Stan case studies (http://mc-stan.org/users/documentation/case-studies.html)
¢ Practical Probabilistic Programming (https://www.manning.com/books/practical-probabilistic-programming)

https://github.com/stan-dev/stan/releases/download/v2.17.0/stan-reference-2.17.0.pdf
http://mc-stan.org/users/documentation/case-studies.html
https://www.manning.com/books/practical-probabilistic-programming

Main takeaways

Probabilistic programming is already in use

Inference algorithms are not blackbox yet

Big applications still are needed

Statistical correctness and diagnostics still developing

