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INTRODUCTION TO MACHINE LEARNING

MACHINE LEARNING TASKS

» Supervised learning:

Given examples with inputs/outputs (X, y), learn a function to map Xto y, i.e. f(X)=y
Goal is to learn f from training data, and evaluate it on new (test) data.

» Classification: y is discrete (y are class labels, X refers to attributes)
» Regression: y is continuous

» Unsupervised learning:
Given examples with only inputs X, learn a function f(X) to simplify the data and map to unknown y

» Clustering: y is discrete (y are cluster memberships)

» Matrix factorization: y are continuous (y are embeddings)



PREDICTIVE MODELING: INTRODUCTION

DESCRIPTIVE VS. PREDICTIVE MODELING

» Descriptive models summarize the data
» Provide insights into the domain
» Focus on modeling joint distribution P(X)

» May be used for classification, but prediction is not the primary goal

» Predictive models predict the value of one variable of interest given known values of other variables

» Focus on modeling the conditional distribution P(Y | X)) or on modeling the decision boundary forY
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KNOWLEDGE REPRESENTATION (AKA MODEL FAMILY)

» Underlying structure of the model or patterns that we seek from the data
» Specifies the models/patterns that could be returned as the results of the machine learning algorithm

» Defines space of possible models/patterns for algorithm to search over

» Examples:

» If-then rule » Decision tree
If short closed car
then toxic chemicals

» Regression model

Y =PX; + PrX,...+ Py
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LEARNING TECHNIQUE

» Method to construct model or patterns from data
» Model space
» Choice of knowledge representation defines a set of possible models or patterns
» Objective function
» Associates a numerical value (score) with each member of the set of models/patterns
» Search technique

» Defines a method for generating members of the set of models/patterns, determining their score, and
identifying the ones with the “best” score
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OBJECTIVE FUNCTION

» A numeric score assigned to each possible model in a search space, given a reference/input dataset

» Used to judge the quality of a particular model for the domain

» Score function are statistics —estimates of a population parameter based on a sample of data
» Examples:

» Misclassification

» Squared error

» Likelihood
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EXAMPLE LEARNING PROBLEM
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representation:
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OBJECTIVE FUNCTION OVER MODEL SPACE
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WHAT SPACE ARE WE SEARCHING?

Learned model ~ (6y = 0.8,0; = 0.4)
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Alex Holehuse, Notes from Andrew Ng’s Machine Learning Class, http://www.holehouse.org/miclass/01_02_Introduction_regression_analysis_and_gr.html
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SEARCHING OVER MODELS/PATTERNS

» Consider a space of possible models M={M, M, ..., M} with parameters O
» Search could be over model structures or parameters, e.qg.:

» Parameters: In a linear regression model, find the regression
coefticients (B) that minimize squared loss on the training data

» Model structure: In a decision trees, find the tree structure that
maximizes accuracy on the training data
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OPTIMIZATION OVER SCORE FUNCTIONS

» Smooth functions:

» If a function is smooth, it is differentiable and the derivatives are continuous, then we can use
gradient-based optimization

» If function is convex, we can solve the minimization problem in closed form: VS(0) using
convex optimization

» If function is smooth but non-linear, we can use iterative search over the surface of S to find
a local minimum (e.g., hill-climbing)

» Non-smooth functions:

» If the function is discrete, then traditional optimization methods that rely on smoothness are
not applicable. Instead we need to use combinatorial optimization
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EXAMPLE: NEURAL NETWORKS
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NEURON

» First learning algorithm in 1959 (Rosenblatt)
» Perceptron learning rule

» Provide target outputs with inputs for a
single neuron

» Incrementally update weights to learn to
produce outputs

Offset

. ?Mk
L)f
|

Input weight  weighted Activation
vector x vector w sum function

output y
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PERCEPTRON

™m
Model: f(z) ; wizi +b,
y = sign[f(z)]
Activation
function
Dot product is product of:
(i) projection of x onto w (i.e., ||x|| cos 6), and (ii) the length of w Figure: C. Bishop

Dot product is O if x is perpendicular to w

Add b, it >0 then positive class, if <0 then negative class
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PERCEPTRON

Learning: if y(i)(Q_ wizi(j) +b) <0

1=1

then w «— w4+ ny(j)x(7)

Figure: C. Bishop

ITERATE OVER TRAINING EXAMPLES FOR FIXED NUMBER OF ITERATIONS OR UNTIL ERROR IS BELOW A PRE-SPECIFIED THRESHOLD
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TWO LAYERED NEURAL NETWORK

» Combine multiple perceptrons into
ensemble

» Each perceptron outputis a hidden
unit, which are then aggregated into a
final output

» Objective function: squared error,
cross entropy

Output units  ©,

Hidden units « i

Input units 7,

Output O; = Q(Z W a;)

Hidden a; =
units

J
g(> Wi ;li)
k

Figure: M. Velosa
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LEARNING NEURAL NETWORKS

» Backpropagate error to each of the units in the network

» Assume activation function (g) is differentiable,

then take partial derivative of the error with respect to each weight
(using the chain rule)

» Update weights in similar way as for perceptron, e.g.,

If A; = Errig’(in;) then W, ; < W, + a X a; x A;
Aj=g'(ing) p_; Wi
W’k,j — I/Vk,j +a X I X Aj
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FROM NEURAL NETWORKS TO DEEP LEARNING

ADDING LAYERS IN NEURAL NETWORKS GIVES THE MODEL MORE FLEXIBILITY —TRIED IN 1980S BUT DID NOT IMPROVE PERFORMANCE
SUBSTANTIALLY BECAUSE BACK PROP ESTIMATION WOULD GET STUCK IN (SUBPAR) LOCAL MAXIMA
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EXAMPLE: NAIVE BAYES CLASSIFIER
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NAIVE BAYES CLASSIFIER

Assumption: Attributes are conditionally independent given the class
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MAXIMUM LIKELIHOOD ESTIMATION

» Widely used method of parameter estimation

» “Learn” the best parameters by finding the values of 6 that maximizes
likelihood:

QAMLE — al'g mgxx L(@)

» Often easier to work with loglikelihood:
10| D) log L(0]D)

= log ][ pe(i)l®)

= Z logp(z(i)|6)
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GRAPHICAL MODELS
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BAYESIAN NETWORKS

P(B) P(E)
Burglary 001 Earthqu@ 002
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P(X =x) = H P(X;|parents(X;))
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MARKOV NETWORKS

. 1 -
oo P =a) = gean) /wféfi\@))

Weight of Feature|IFeature |

f1(Smoking, Cancer) = {1 tf~Smoking V C’ancer}

0 otherwaise
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OBJECTIVE FUNCTION

Using Bayes rule: — —
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INFERENCE

» Bayesian networks (and Markov networks) are compact representations of
probability distributions

» Each network describes a unique probability distribution P
» How do we answer queries about P?

» We use inference to refer to the process of computing answers to such queries
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QUERIES

» There are many types of queries we might ask
» Most of these involve evidence

» An evidence e is an assignment of values to a set of E variables in the
domain

» Simplest query: compute the probability of observing the evidence
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QUERIES

» We also may be interested in the conditional probability of a variable given the

evidence P(X, 6)
P(e)

P(Xle) =

» It is used for:

» Prediction: what is the probability of an outcome given the starting condition? (target
is descendant)

» Diagnosis: what is the probability of disease given the symptoms? (target is ancestor)

» Direction between the variables does not restrict the directions of the queries
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INFERENCE ALGORITHMS

» Exact inference methods
» Variable elimination
» Belief propagation (aka sum-product algorithm, message passing)
» Clique tree propagation
» Junction tree algorithm
» Approximate inference methods
» Stochastic sampling and Markov Chain Monte Carlo (MCMC)
» Variational methods

» Loopy belief propagation
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INFERENCE BY STOCHASTIC SIMULATION

» Core idea
» Draw samples from a sampling distribution defined by the network

» Compute an approximate posterior probability in a way that converges to the true probability

» Methods
— Simple sampling from an empty network
— Rejection sampling — reject samples that don’t agree with the evidence
— Likelihood weighting — weight samples based on evidence

— Markov chain Monte Carlo — sample from a stochastic process whose stationary distribution is
the true posterior
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EXAMPLE
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GENERATE EMPIRICAL SAMPLING DISTRIBUTION
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WHAT IF WE HAVE EVIDENCE OBSERVED IN SOME NODES?
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REJECTION SAMPLING

» Sample the network as before...
» ...but discard samples that don’t correspond with the evidence.
» Similar to real-world estimation procedures, which use observation

» However, it is hopelessly expensive for large networks where P(e) is small
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LIKELIHOOD WEIGHTING

» Do simple sampling as before...
» But only generate samples that are consistent with the evidence
» And weight the likelihood of each sample based on the evidence

» More efficient than rejection-based sampling since we use all the samples
generated

» ... but performance degrades as number of evidence variables increases
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MCMC

» The “state” of the system is the current assignment of all variables

» Algorithm
» Initialize all variables randomly

» Generate next state by sampling one variable given its Markov blanket

» Sample each variable in turn, keeping evidence fixed

» After "burn-in” the samples will be drawn from the posterior, use set of
samples to determine probabilities of interest
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MARKQV CHAIN
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VARIATIONAL INFERENCE

» In variational inference, the posterior distribution over a set of query variables X given
some evidence E is approximated by a variational distribution:

P(X|E) =~ Q(X)
» The variational distribution Q(X) is restricted to belong to a family of distributions of

simpler form than P(X | E)

» The difference between Q and the true posterior is measured in terms of a dissimilarity
function d(Q;P) and hence inference is performed by selecting the distribution Q that
minimizes d.

» Example: for a multiply-connected network consider polytrees over same variables
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CONNECTION TO PROBABILISTIC PROGRAMMING
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HOW TO WRITE A BAYESIAN MODELING PAPER

1. Write down a generative model in an afternoon
2. Get 2 grad students to implement inference for a month

3. Use technical details of inference to pad half of the paper

Slide: David Duvenaud and James Llyod, University of Cambridge
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CAN WE DO BETTER?

Example: Graphical Models

Application Papers

1. Write down a graphical model
2. Perform inference using general-purpose software

3. Apply to some new problem

Inference papers

1. Identify common structures in graphical models (e.g. chains)
2. Develop efficient inference method

3. Implement in a general-purpose software package

Modeling and inference have been disentangled

Slide: David Duvenaud and James Llyod, University of Cambridge
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EX: INDIAN BUFFET HAWKES PROCESSES (TAN, RAO, N UAI"18)

Initialize the F' uniform particle weights.
Factor View

1 ][ 2] s |[ 4] 5][8].-

for each observationy; = {t;,T;},1=1,...,n Observation View
do

for each particle z;f ={K;.V;}of

observationy;, f € {1,...,F} do

Dependency Tree View

Tapics

- Sample the auxiliary variables w;, ¢; and
latent factor particles z,{ = {K;, V;}.

- Sample the model parameters
© = {Xo, {F}, {m}}-

- Update the triggering kernels.

- Update the particle weights u?

2'0

end

Normalize the particle weights.
if |w;||5* < threshold, i.e., the effective

number of particles is too low then ‘ " " IBHP Matrix
Resample particles with replacement Tme ¥ ' ' ' K
based on the particle weights. y b 0
end
end

Algorithm 2: SMC inference algorithm for IBHP.

Inference: sequential Monte Carlo using particle filtering
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EX: CONSTRAINED SAMPLING OF ATTRIBUTED GRAPHS (ROBLES, MORENO, N KDD16)

r
o
l.-l
a

4 ] L ] = » L4

Figure 1: mKPGM sampling process with b =2, £ = 3, K = 5.
PO is generated as a KPGM. Left: Matrices of probabilities P!
(white: P;; = 0 black: P;; = 1). Right: Adjacency matrices
B0 ... BIK~#-1 Eopyr (black = block/edge sampled).

Algorithm GraphSampling

[a—
<

ok
b =

Input: G;n = (V,E), node attrs X; n, GNM M, error ¢
Ouput: Gouy, Xovr,pour
[T, 8, ©%, ©F] < LearnParameters(Gpn, X )
Sample X from P(X|0X)
Initialize popr — oo and [, = K—£—1
while (|prN POUT| > (—.) AND (lo 2 O) do
Sample BL’;,LWM»M(QG) using basic sampling 2
forl=1l,11to K ¢ 1do
Bl+1 «LPBlockSearch(M, ©F, Bl

sarnple sernaple?

v,48)
. G plK+4£-1]

Covr + MEEdgeSampling(M,0%,B; " " 0, §)

Calculate porrr using Gorrr and Xour

lo — zo - 1

Sampling: Two-stage constrained process,
maximum entropy + linear programming

Algorithm LPBlockScarch

. . : plf i
1: Input: M,06,B @3
2: Ouput: Bfr:l]pm sampled blocks in [ + 1:
3: (U, T)=getUniquePr_BLocations(M, 8, BE{]1 mple)
4: for v — 1 to |U| do

:  Draw ny, ~ Bin(|Ty|, mu) {# of blocks to sample per 7, }
for j =1 to |¥| do

e; = 35 X ny {Iraction of possible edges leading to pra}

Determine Ajp {# of descendent edges of type ¢; € ¥ per
position #; € T,,}
9: for j=1to Np do

10: ub; =3 ::li Aji {max # of sampled blocks per A}
11:  Solve the LP of eq 1: find min x using ., e, A, and ub
12 for 3=1to N do

PIASS

13: B ampie— Randomly sample x,; blocks from ub; places
: ] gl
14: Baa'mpZe_Baa.m,ple L ]B’.qam.ple

Algorithm MEEdgcSampling

v K
1: Input: M.OY, BL;mm;], [\
2: Output: Gy .
3: (U, T) =get UniquePr_ELocations(M, OF, Bgémp‘e, v)
4: for =1 to |U| do
H: Draw ny ~ B3in(|Ty.|,m,) {# edges per unique probabil}
6:  Set Ne = N¢  ny {Total # edges to be sample}
7. Draw I' = [y1,...,7w/] ~ Mult (Ng; 3) {# edges per edge-

type to match pyn }
8: for v — 1 to |U| do

9: DrawY=[Yi,.., Yg||~Mult (nu; .::) {# edges per edge-

type for 7.}
10: for j=1to |¥ do

11: E’ = Sampling Y edges at random from T,,; locations.
12: Eour =Eour UE’
13: vi = v — Y; {Adaptative process to match the mo-

ments}

14: }\orc == ANTc K}
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EX: SUBGRAPH PATTERN NEURAL NETWORKS (MENG, MOULI, RIBEIRO, N AAAI'18)
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Implemented in Theano: challenge is dynamic construction of model architecture,

but also need to modify optimization to use distributions rather than independent samples



INTRODUCTION TO MACHINE LEARNING

MACHINE LEARNING 101

(1)Data
~ represen{afion
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(3 )objective
~ tunction

(4 ) Searcn
" algorithm

SAMPLING WITH EVIDENCE
SAMPLING WITH CONSTRAINTS

SAMPLING COMPLEX DISTRIBUTIONS
EFFICIENTLY (SPACE OR TIME)

APPROXIMATE VS EXACT INFERENCE
(CORRECTNESS/EFFICIENCY TRADEQFF.
FOR BOTH CONTINUOUS&DISCRETE)

OPTIMIZATION OVER SETS

SAMPLING FROM NON-GENERATIVE
DISTRIBUTIONS




