
A Promising Semantics for
Relaxed-Memory Concurrency

Jeehoon Kang
Chung-Kil Hur

Seoul National University
(Korea)

Ori Lahav
Viktor Vafeiadis
Derek Dreyer

MPI-SWS
(Germany)

May 2017
Shonan Meeting

/28

A Message Passing Example:

No Data Race

D = 42

LOCK(L)

F = 1

UNLOCK(L)

while (1) {

LOCK(L)

f = F

UNLOCK(L)

if (f) break

}

d = D

Initially: D = F = 0

Finally: d = 42

2

/28

Sequentially Consistent Concurrency

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

Initially: D = F = 0

Finally: d = 42

3

/28

Relaxed-Memory Concurrency

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

Initially: D = F = 0

Finally: d = 42 or 0

F = 1

D = 42

HW out of order exec

4

/28

Release & Acquire

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

Initially: D = F = 0

Finally: d = 42

[rel]

[acq]

5

/28

Release & Acquire

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

Initially: D = F = 0

Finally: d = 42

[rel]

[acq]

Run as if
in a single thread

5

/28

Release & Acquire with Tweak

D = 42

F = 1

f = F

if (f) {

d = D // d = 42?

}

D = 10

Initially: D = F = 0

[rel]

[acq]

6

/28

Concurrency Models

• Semantics of multi-threaded programs?

- Sequential consistency (SC): simple but expensive

• Relaxed memory model (C/C++, Java)

- Many consistency modes (cost vs. consistency tradeoff)

- Open problem: what is the “right” semantics?

7

/28

“Right” Concurrency Semantics?

Conflicting goals of compilers, hardware &
programmers

• Compiler/hardware: validating optimizations
(e.g. reordering, merging)

• Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

8

/28

“Right” Concurrency Semantics?

Conflicting goals of compilers, hardware &
programmers

• Compiler/hardware: validating optimizations
(e.g. reordering, merging)

• Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

Java memory model

8

/28

“Right” Concurrency Semantics?

Conflicting goals of compilers, hardware &
programmers

• Compiler/hardware: validating optimizations
(e.g. reordering, merging)

• Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

Java memory model

C/C++ memory model

8

/28

“Right” Concurrency Semantics?

Conflicting goals of compilers, hardware &
programmers

• Compiler/hardware: validating optimizations
(e.g. reordering, merging)

• Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

Java memory model

C/C++ memory model

8

/28

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(allowed: a=b=42)

9

/28

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(allowed: a=b=42)

Registers

9

/28

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(allowed: a=b=42)

Registers
Shared

Locations

9

/28

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(allowed: a=b=42)

Registers
Shared

Locations

C11
Relaxed

9

/28

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(allowed: a=b=42)

9

/28

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(allowed: a=b=42)

X = 42
b = Y

9

/28

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(allowed: a=b=42)

X = 42
b = Y

Read X,42

Write Y,42

Read Y,42

Write X,42

(X=Y=0)

(read-from)

(sequenced-
before)

9

/28

“Out-of-thin-air” problem (1/3)

Load-Buffering (LB)

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(allowed: a=b=42)

X = 42
b = Y

Read X,42

Write Y,42

Read Y,42

Write X,42

(X=Y=0)

(read-from)

(sequenced-
before)

Justification is
too loose!

9

/28

“Out-of-thin-air” problem (2/3)

Classical Out-of-thin-air (OOTA)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(forbidden: a=b=42)

10

/28

“Out-of-thin-air” problem (2/3)

Classical Out-of-thin-air (OOTA)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(forbidden: a=b=42)

Reasoning principles
(e.g. invariant a=b=X=Y=0)

10

/28

“Out-of-thin-air” problem (2/3)

Classical Out-of-thin-air (OOTA)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(forbidden: a=b=42)

Reasoning principles
(e.g. invariant a=b=X=Y=0)

Read X,42

Write Y,42

Read Y,42

Write X,42

(X=Y=0)

(read-from)

(sequenced-
before)

10

/28

“Out-of-thin-air” problem (2/3)

Classical Out-of-thin-air (OOTA)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(forbidden: a=b=42)

Reasoning principles
(e.g. invariant a=b=X=Y=0)

Read X,42

Write Y,42

Read Y,42

Write X,42

(X=Y=0)

(read-from)

(sequenced-
before)

What does
hardware do?

10

/28

“Out-of-thin-air” problem (3/3)

Tracking Syntactic Dependency?

11

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(a=b=42?)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(a=b=42?)

/28

“Out-of-thin-air” problem (3/3)

Tracking Syntactic Dependency?

11

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(a=b=42?)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(a=b=42?)

(dep)

/28

“Out-of-thin-air” problem (3/3)

Tracking Syntactic Dependency?

11

a = X
Y = a

b = Y
X = 42

Thread 1 Thread 2

(a=b=42?)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(a=b=42?)

(dep)

/28

“Out-of-thin-air” problem (3/3)

Tracking Syntactic Dependency?

12

a = X
Y = a

b = Y
X = b+42-b

Thread 1 Thread 2

(a=b=42?)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(a=b=42?)

(dep)

/28

“Out-of-thin-air” problem (3/3)

Tracking Syntactic Dependency?

12

a = X
Y = a

b = Y
X = b+42-b

Thread 1 Thread 2

(a=b=42?)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(a=b=42?)

(dep)

/28

“Out-of-thin-air” problem (3/3)

Tracking Syntactic Dependency?

12

a = X
Y = a

b = Y
X = b+42-b

Thread 1 Thread 2

(a=b=42?)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(a=b=42?)

(dep)

/28

“Out-of-thin-air” problem (3/3)

Tracking Syntactic Dependency?

12

a = X
Y = a

b = Y
X = b+42-b

Thread 1 Thread 2

(a=b=42?)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(a=b=42?)

(dep)

/28

“Out-of-thin-air” problem (3/3)

Tracking Syntactic Dependency?

12

a = X
Y = a

b = Y
X = b+42-b

Thread 1 Thread 2

(a=b=42?)

a = X
Y = a

b = Y
X = b

Thread 1 Thread 2

(a=b=42?)

(dep)

/28

Promising Semantics

• Solving the out-of-thin-air problem

• Supporting optimizations & reasoning principles

• Covering most C/C++ concurrency features

• Operational semantics w/o undefined behavior

• Most results are verified in Coq

http://sf.snu.ac.kr/promise-concurrency

13

http://sf.snu.ac.kr/promise-concurrency

/28

Key Idea 1: Messages & Views

• Memory: pool of messages (loc, val, timestamp)

• Per-thread view on the memory

14

Timestamp

Loc.

X

Y

0

0 37

85

42

42

/28

Thread 1

Key Idea 1: Messages & Views

• Memory: pool of messages (loc, val, timestamp)

• Per-thread view on the memory

14

Timestamp

Loc.

X

Y

0

0 37

85

42

42

/28

readable/writable

Thread 1

Key Idea 1: Messages & Views

• Memory: pool of messages (loc, val, timestamp)

• Per-thread view on the memory

14

Timestamp

Loc.

X

Y

0

0 37

85

42

42

/28

readable/writable

Thread 1 Thread 2

Key Idea 1: Messages & Views

• Memory: pool of messages (loc, val, timestamp)

• Per-thread view on the memory

14

Timestamp

Loc.

X

Y

0

0 37

85

42

42

/28

Example

Store Buffering

Y = 42
a = X

X = 42
b = Y

Timestamp

Loc.

X

Y

0

0

(allowed: a=b=0)Thread 1 Thread 2

15

/28

Example

Store Buffering

Y = 42
a = X

X = 42
b = Y

Timestamp

Loc.

X

Y

0

0

(allowed: a=b=0)Thread 1 Thread 2

b = Y
X = 42reorderable

(x86/Power/ARM)

15

/28

Example

Store Buffering

Y = 42
a = X

X = 42
b = Y

Timestamp

Loc.

X

Y

0

0 42

(allowed: a=b=0)Thread 1 Thread 2

b = Y
X = 42reorderable

(x86/Power/ARM)

15

/28

Example

Store Buffering

Y = 42
a = X

X = 42
b = Y

Timestamp

Loc.

X

Y

0

0

42

42

(allowed: a=b=0)Thread 1 Thread 2

b = Y
X = 42reorderable

(x86/Power/ARM)

15

/28

Example

Store Buffering

Y = 42
a = X

X = 42
b = Y

Timestamp

Loc.

X

Y

0

0

42

42

(allowed: a=b=0)Thread 1 Thread 2

b = Y
X = 42reorderable

(x86/Power/ARM)

15

/28

Example

Store Buffering

Y = 42
a = X

X = 42
b = Y

Timestamp

Loc.

X

Y

0

0

42

42

(allowed: a=b=0)Thread 1 Thread 2

b = Y
X = 42reorderable

(x86/Power/ARM)

15

/28

Example

Load Buffering (LB)

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2 (allowed: a=b=42)

16

/28

Key Idea 2: Promises

• A thread can promise to write X=V in the future,
after which other threads can read X=V.

• To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

• Until all its promises are fulfilled, the thread can
take certifiable steps only.

17

/28

Example

Load Buffering (LB)

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2 (allowed: a=b=42)

18

/28

Example

Load Buffering (LB)

42

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2 (allowed: a=b=42)

Thread 2’s
promise

18

/28

Example

Load Buffering (LB)

42

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2 (allowed: a=b=42)

Thread 2’s
promise

18

/28

Example

Certification

42

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 2

Thread 2’s
promise

19

/28

Example

Certification

42

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 2

Thread 2’s
promise

19

/28

Example

Certification

42

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 2

42

Thread 2’s
promise

19

/28

Example

Certification

42

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 2

42

Thread 2’s
promise

19

/28

Example

Load Buffering (LB)

42

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2

Thread 2’s
promise

(allowed: a=b=42)

20

/28

Example

Load Buffering (LB)

42

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2

Thread 2’s
promise

(allowed: a=b=42)

20

/28

Example

Load Buffering (LB)

42

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0 42

Thread 1 Thread 2

Thread 2’s
promise

(allowed: a=b=42)

20

/28

Example

Load Buffering (LB)

42

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0 42

Thread 1 Thread 2

Thread 2’s
promise

(allowed: a=b=42)

20

/28

Example

Load Buffering (LB)

42

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

42

42

Thread 1 Thread 2

Thread 2’s
promise

(allowed: a=b=42)

20

/28

Example

Load Buffering (LB)

42

a = X
Y = a

b = Y
X = 42

Timestamp

Loc.

X

Y

0

0

42

42

Thread 1 Thread 2

Thread 2’s
promise

b = Y
X = b+42-b

(allowed: a=b=42)

20

/28

Example

Classical Out-of-thin-air (OOTA)

a = X
Y = a

b = Y
X = b

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2
(forbidden: a=b=42)

21

/28

Example

Classical Out-of-thin-air (OOTA)

42

a = X
Y = a

b = Y
X = b

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2
(forbidden: a=b=42)

Thread 2’s
promise?

21

/28

Example

Classical Out-of-thin-air (OOTA)

42

a = X
Y = a

b = Y
X = b

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2
(forbidden: a=b=42)

Thread 2’s
promise?

21

/28

Example

Classical Out-of-thin-air (OOTA)

42

a = X
Y = a

b = Y
X = b

Timestamp

Loc.

X

Y

0

0

Thread 1 Thread 2
(forbidden: a=b=42)

Thread 2’s
promise?

21

/28

The Message Passing Example

22

Timestamp

Loc.

D

F

Thread 1 Thread 2

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

0

0

/28

The Message Passing Example

22

Timestamp

Loc.

D

F

Thread 1 Thread 2

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

0

0

42

/28

The Message Passing Example

22

Timestamp

Loc.

D

F

Thread 1 Thread 2

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

0

0

42

1

/28

The Message Passing Example

22

Timestamp

Loc.

D

F

Thread 1 Thread 2

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

0

0

42

1

/28

The Message Passing Example

22

Timestamp

Loc.

D

F

Thread 1 Thread 2

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

0

0

42

1

d = 0

/28

Timestamp

Loc.

D

F

Release & Acquire

Thread 1 Thread 2

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

0

0

[rel] [acq]

23

/28

Timestamp

Loc.

D

F

Release & Acquire

Thread 1 Thread 2

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

0

0

42

[rel] [acq]

23

/28

Timestamp

Loc.

D

F

Release & Acquire

Thread 1 Thread 2

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

0

0 1

42

[rel] [acq]

23

/28

Timestamp

Loc.

D

F

Release & Acquire

Thread 1 Thread 2

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

0

0 released at1

42

[rel] [acq]

23

/28

Timestamp

Loc.

D

F

Release & Acquire

Thread 1 Thread 2

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

0

0 released at1

42

[rel] [acq]

23

/28

Timestamp

Loc.

D

F

Release & Acquire

Thread 1 Thread 2

D = 42

F = 1

while (1) {

f = F

if (f) break

}

d = D

0

0 released at1

42

[rel] [acq]

d = 42

23

/28

Release & Acquire with Tweak

D = 42

F = 1

f = F

if (f) {

d = D // d = 42?

}

D = 10

Initially: D = F = 0

[rel]

[acq]

24

/28

[acq]

[acq][acq]

[rel] [rel][rel]

Re-Certification is Necessary

• A thread must re-certify during the execution
that it can write all its promises in isolation.

W=1 if (W) Y=1
else Z=1

if (X) Z=1

Thread 1 Thread 2

(forbidden: X=1)

if (Y && Z) X=1

Thread 3

25

/28

[acq]

[acq][acq]

[rel] [rel][rel]

Re-Certification is Necessary

• A thread must re-certify during the execution
that it can write all its promises in isolation.

W=1 if (W) Y=1
else Z=1

if (X) Z=1

Thread 1 Thread 2

(forbidden: X=1)

if (Y && Z) X=1

Thread 3

Z=1 promised

25

/28

[acq]

[acq][acq]

[rel] [rel][rel]

Re-Certification is Necessary

• A thread must re-certify during the execution
that it can write all its promises in isolation.

W=1 if (W) Y=1
else Z=1

if (X) Z=1

Thread 1 Thread 2

(forbidden: X=1)

if (Y && Z) X=1

Thread 3

Z=1 promised

Certified:
T2 in isolation

25

/28

[acq]

[acq][acq]

[rel] [rel][rel]

Re-Certification is Necessary

• A thread must re-certify during the execution
that it can write all its promises in isolation.

W=1 if (W) Y=1
else Z=1

if (X) Z=1

Thread 1 Thread 2

(forbidden: X=1)

if (Y && Z) X=1

Thread 3

Z=1 promised

Certified:
T2 in isolation

25

/28

[acq]

[acq][acq]

[rel] [rel][rel]

Re-Certification is Necessary

• A thread must re-certify during the execution
that it can write all its promises in isolation.

W=1 if (W) Y=1
else Z=1

if (X) Z=1

Thread 1 Thread 2

(forbidden: X=1)

if (Y && Z) X=1

Thread 3

Z=1 promised

Certified:
T2 in isolation

25

/28

[acq]

[acq][acq]

[rel] [rel][rel]

Re-Certification is Necessary

• A thread must re-certify during the execution
that it can write all its promises in isolation.

W=1 if (W) Y=1
else Z=1

if (X) Z=1

Thread 1 Thread 2

(forbidden: X=1)

if (Y && Z) X=1

Thread 3

Z=1 promised

Certified:
T2 in isolation

25

/28

[acq]

[acq][acq]

[rel] [rel][rel]

Re-Certification is Necessary

• A thread must re-certify during the execution
that it can write all its promises in isolation.

W=1 if (W) Y=1
else Z=1

if (X) Z=1

Thread 1 Thread 2

(forbidden: X=1)

if (Y && Z) X=1

Thread 3

Z=1 promised

Certified:
T2 in isolation

25

/28

[acq]

[acq][acq]

[rel] [rel][rel]

Re-Certification is Necessary

• A thread must re-certify during the execution
that it can write all its promises in isolation.

W=1 if (W) Y=1
else Z=1

if (X) Z=1

Thread 1 Thread 2

(forbidden: X=1)

if (Y && Z) X=1

Thread 3

Z=1 promised

Certified:
T2 in isolation

Z=1 fulfilled

25

/28

[acq]

[acq][acq]

[rel] [rel][rel]

Re-Certification is Necessary

• A thread must re-certify during the execution
that it can write all its promises in isolation.

W=1 if (W) Y=1
else Z=1

if (X) Z=1

Thread 1 Thread 2

(forbidden: X=1)

if (Y && Z) X=1

Thread 3

Z=1 promised

Certified:
T2 in isolation

25

/28

[acq]

[acq][acq]

[rel] [rel][rel]

Re-Certification is Necessary

• A thread must re-certify during the execution
that it can write all its promises in isolation.

W=1 if (W) Y=1
else Z=1

if (X) Z=1

Thread 1 Thread 2

(forbidden: X=1)

if (Y && Z) X=1

Thread 3

Z=1 promised

Certified:
T2 in isolation

25

/28

[acq]

[acq][acq]

[rel] [rel][rel]

Re-Certification is Necessary

• A thread must re-certify during the execution
that it can write all its promises in isolation.

W=1 if (W) Y=1
else Z=1

if (X) Z=1

Thread 1 Thread 2

(forbidden: X=1)

if (Y && Z) X=1

Thread 3

Z=1 promised

Certified:
T2 in isolation

Re-certification:
Failed!

Because X = 0

25

Example

Counter

26

Core 1 Core 2

r1 = fetch-add X

(forbidden:
r1=1,r2=1)

r2 = fetch-add X

Timestamp

Loc.

X 0

Example

Counter

26

Core 1 Core 2

r1 = fetch-add X

(forbidden:
r1=1,r2=1)

r2 = fetch-add X

Timestamp

Loc.

X 0 1

Example

Counter

26

Core 1 Core 2

r1 = fetch-add X

(forbidden:
r1=1,r2=1)

r2 = fetch-add X

Timestamp

Loc.

X 0 1 2

/28

Example

Write-Read Coherence

X = 1
a = X

X = 2
b = X

(forbidden: a=2,b=1)Thread 1 Thread 2

27

/28

Example

Write-Read Coherence

X = 1
a = X

X = 2
b = X

(forbidden: a=2,b=1)Thread 1 Thread 2

27

/28

Example

Write-Read Coherence

X = 1
a = X

X = 2
b = X

(forbidden: a=2,b=1)Thread 1 Thread 2

27

/28

Example

Write-Read Coherence

X = 1
a = X

X = 2
b = X

(forbidden: a=2,b=1)Thread 1 Thread 2

27

/28

Example

Write-Read Coherence

X = 1
a = X

X = 2
b = X

(forbidden: a=2,b=1)Thread 1 Thread 2

27

/28

Example

Read-Write Coherence

X = 1
X = 2

a = X
b = X

Thread 1 Thread 2 (forbidden: a=2,b=1)

28

/28

Example

Read-Write Coherence

X = 1
X = 2

a = X
b = X

Thread 1 Thread 2 (forbidden: a=2,b=1)

28

/28

Example

Read-Write Coherence

X = 1
X = 2

a = X
b = X

Thread 1 Thread 2 (forbidden: a=2,b=1)

28

/28

Example

Read-Write Coherence

X = 1
X = 2

a = X
b = X

Thread 1 Thread 2 (forbidden: a=2,b=1)

28

/28

Example

Read-Write Coherence

X = 1
X = 2

a = X
b = X

Thread 1 Thread 2 (forbidden: a=2,b=1)

28

/28

Results (1/2)

Compiler/HW Optimizations

• Operational semantics for C/C++ concurrency:
plain/relaxed/release/acquire r/w/u/fence, SC fence

• Compiler optimizations
(reordering, merge, dead load elim., …)

• Compilation to x86 & Power

29

/28

Results (2/2)

Reasoning Principles

• DRF-SC: Data Race Freedom ⇒ SC

- DRF-PromiseFree:
DRF ⇒ semantics w/o promises

• Invariant-based logic:
soundness of global invariant (e.g. a=b=X=Y=0)

• http://sf.snu.ac.kr/promise-concurrency

30

http://sf.snu.ac.kr/promise-concurrency

/28

Results (2/2)

Reasoning Principles

• DRF-SC: Data Race Freedom ⇒ SC

- DRF-PromiseFree:
DRF ⇒ semantics w/o promises

• Invariant-based logic:
soundness of global invariant (e.g. a=b=X=Y=0)

• http://sf.snu.ac.kr/promise-concurrency

30

http://sf.snu.ac.kr/promise-concurrency

/28

Future Work

• Supporting SC reads & writes
(We found a flaw in C/C++11 on SC)

• Supporting consume reads

• Developing a rich program logic &
Verifying fine-grained concurrent programs

31

