May 2017
Shonan Meeting

A Promising Semantics for
Relaxed-Memory Concurrency

Seoul National University
(Korea)

MPI-SWS
(Germany)

Jeehoon Kang
Chung-Kil Hur

Ori Lahav
Viktor Vafeiadis
Derek Dreyer

A Message Passing Example:
No Data Race

Initially: D = F = 0

D = 42 while (1) {
LOCK (L)

LOCK (L) f=F

F =1 UNLOCK (L)

UNLOCK (L)

1f (f) break

Finally: d = 42

2 /28

Sequentially Consistent Concurrency

Initially: D =0

D = 42 while (1) {

f =PF

1f (f) break
}

d =D

Finally: d = 42

3 /28

Relaxed-Memory Concurrency

Initially: D = F = 0

1 D = 42 while (1) ({
. HW out of order exec

42 F =1

Finally: d = 42 or O

4 /28

Release & Acquire

Initially: D = F = 0

D = 42 while (1) {

f =F [acq]

&
Il

1l [rel]

1f (f) break

Finally: d = 42

5 /28

Release & Acquire
Initially: D = F = 0

42 while (1) ({

f =F [acq]

1f (f) break

Run as if) }
N a single thread

Finally: d = 42

5 /28

Release & Acquire with Tweak
Initially: D = F = 0
D = 42 f =F [acq]

F =1 [rel] if (£f) {
d=D // d= 427

}

D =10

6 /28

Concurrency Models

® Semantics of multi-threaded programs?

= Sequential consistency (SC): simple but

® Relaxed memory model (C/C++, Java)
= Many consistency modes (cost vs. consistency tradeoff)

: what is the “ " semantics?

7 /28

‘Right” Concurrency Semantics?

Conflicting goals of compilers, hardware &
programmers

® Compiler/hardware: validating optimizations
(e.g. reordering, merging)

® Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

8 /28

‘Right” Concurrency Semantics?

Conflicting goals of compilers, hardware &
programmers

® Compiler/hardware: vzlidating optimizations
(e.g. reordering, merging)

® Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

8 /28

‘Right” Concurrency Semantics?

Conflicting goals of compilers, hardware &

programmers

. &YJava memory model
® Compiler/hardware: validating optimizations

(e.g. reordering, merging)

® Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

@9 C/C++ memory model

8 /28

‘Right” Concurrency Semantics?

Conflicting goals of compilers, hardware &
programmers

: &)Java memory model
® Compiler/hardware: validating optimizations

(e.g. reordering, merging)

® Programmer: supporting reasoning principles
(e.g. DRF theorem, program logic)

€C/C++ memory model

Key problem:“out-of-thin-air”

8 /28

"Out-of-thin-air” problem (1/3)
L oad-Buffering (LB)

Thread 1 Thread 2
a=X b =Y
Y =a X =42
(allowed: a=b=42)

9 /28

‘Out-of-thin-air” problem (1/3)
S | oad-Buffering (LB)

hread 2

a=X b=Y

Y =a X =47
(allowed: a=b=42)

9 /28

Shared

Locations

a= X b=Y
Y = a X =47
(allowed: a=b=42)

9 /28

Shared
Locations

(allowed: a=b=42)

9 /28

"Out-of-thin-air” problem (1/3)
L oad-Buffering (LB)

Thread 1 Thread 2
a=X b =Y
Y =a X =42
(allowed: a=b=42)

9 /28

"Out-of-thin-air” problem (1/3)
Load-Buftering (LB)

Thread 1 Thread 2
a = X b=Y
Y = a X =472

(allowed: a=b=42)
Allowed by reordering

(Power/ARM)

X =42

9 /28

"Out-of-thin-air” problem (1/3)
Load-Buftering (LB)

Thread 1 Thread 2 (X=Y=0) cequencec-
q = X b — Y / Nefore)
Y = a X = 490 Read\ X,42(r§d<fmm)Read\ Y,42

(allowed: a=b=42)\ |\write Y42 Write X 42

Allowed by reordering Allowed by justification
(Power/ARM) (C/C++)

X =42

9 /28

"Out-of-thin-air” problem (1/3)
Load-Buftering (LB)

Thread 1 Thread 2 (X=Y=0) tequenced-
a = X b =Y T gelore
Read X,42.......Read Y,42

Y = a X =47
(allowed: a=b=42)

| > |

Write Y,42 Write X, 42

Allowed by reordering
(Power/ARM)

Allowed by justification
(C/C++)

X =47 Justification is
h=Y too loose!

9 /28

"Out-of-thin-air” problem (2/3)
Classical Out-of-thin-air (OOTA)

Thread 1 Thread 2
a= X b =Y
Y =a X=D
(forbidden: a=b=42)

10/28

"Out-of-thin-air” problem (2/3)
Classical Out-of-thin-air (OOTA)

Thread 1 Thread 2
a=X b=Y
Y =a X =D
(forbidden: a=b=42)

4) is out-of-thin-air!

T ———

Reasoning principles
(e.g. Invariant a=b=X=Y=0)

10/28

"Out-of-thin-air” problem (2/3)
Classical Out-of-thin-air (OOTA)

Thread 1 Thread 2 (X=Y=0) cequencec-
q = X b — Y / Nefore)
YV = g X = b Read\ X,42(r§d-fm<m)Read\ Y 42

(forbidden: a=b=42) |write Y42 ~ Write X,42

: o Allowed by justification
t+_ . . '
47 is out-of-thin-air! (C/C++)

ﬁ

Reasoning principles
(e.g. Invariant a=b=X=Y=0)

P__*

10/28

"Out-of-thin-air” problem (2/3)
Classical Out-of-thin-air (OOTA)

Thread 1 Thread 2 (X=Y=0) cequencec-
q = X b — Y / Nefore)
YV = g X = b Read\ X,42(r§d<fm)Read\ Y 42

(forbidden: a=b=42) |write Y42 ~ Write X,42

Allowed by justification

. N 4 . - . '
42 is out-of-thin-air! (C/C++)

T ——8

Reasoning principles What does
(e.g. invariant a=b=X=Y=0) hardware do?

10/28

"Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
a =X b=Y a=X b=Y
Y =4 X =47 Y =23 X=D

(a=b=427) (a=b=427)

11/28

"Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
a =X b =Y a=X =Y
Y =a X =47 Y =a N

(a=b=427) (a=b=427)

11/28

"Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
a =X b =Y a=X b=
Y =a X =47 Y =a &

(a=b=427) Bl e (a=b=427) | {e)dsilalal=in
in hardware in hardware
B ——

ﬁ

11/28

"Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
Y =a X=Db+42-b| Y =a &_N¢,

(a=b=427) (a=b=427?) E{elas e a0
in hardware

12 /28

"Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
a=X = a=x lo=
Y =a =QF42-b| Y =a &

(a=b=427) [e)asitalel=s (a=b=427) F ieissialal=s
in hardware in hardware
e B —

12 /28

"Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
a =X O=Y | @a=X =Y
Y =2 =40) Y =a =

(a=b=427) [{e)dstalel=1n (a=b=427)

in hardware

forbidden

in hardware

could be optimized to “42",
should be allowed in PL

"Out-of-thin-air” problem (3/3)
Tracking Syntactic Dependency?

Thread 1 Thread 2 Thread 1 Thread 2
v = 5 - V. -y

(a=b=427) IS 1| (a=b=427)

in hardware

forbidden

in hardware

Syntactic approach ‘
should be allowed in PL| 4oesn’t work for P

ﬁ/——-‘-‘

"Out-of-thin-air” nroblem (3/3)

“A major open problem for PL semantics”

(Batty et al. ESOP 2015)

Thread 1 Thread 2 Thread 1 Tread 2
a=X a=X

Y=a X={J0 0F Y=a o
(a=b=427) BieitesS | | (a=b=427)| B{eiasilslel=s
in hardware in hardware

could be optimized to“42”, § Sy

should be allowed in PL| joesn't Workf

12 /28

Promising Semantics

® Solving the out-of-thin-air problem
® Supporting optimizations & reasoning principles
® Covering most C/C++ concurrency features

® Operational semantics w/o undefined behavior

® Most results are verified in Coq

http://sf.snu.ac.kr/promise-concurrency

13/28

http://sf.snu.ac.kr/promise-concurrency

Key |dea 1: Messages & Views

® Memory: pool of messages (loc, val, timestamp)

® Per-thread view on the memory

LocC.

< o
o

Timestamp

14/28

Key |dea 1: Messages & Views

® Memory: pool of messages (loc, val, timestamp)

® Per-thread view on the memory

Timestamp

14/28

Key |dea 1: Messages & Views

® Memory: pool of messages (loc, val, timestamp)

® Per-thread view on the memory

Thread 1
Lo =

readable/writable

Timestamp

14/28

Key |dea 1: Messages & Views

® Memory: pool of messages (loc, val, timestamp)

® Per-thread view on the memory

LOC

Thread 1 Thread 2
Ry, | readable/writable

Timestamp

14/28

Example
Store Buttering

'I_fb_;ead ['I;I:l_;ead 2
X =47

b=7Y

(allowed: a=b=0)

Timestamp

15/28

Thread 1 Thread 2

—

Example
Store Buffering

(allowed: a=b=0)

¥ X =42 b =Y
b=Y reorderable X = 47
(x86/Power/ARM)

Timestamp

15/28

Example
Store Buffering

Thread 1 Thread 2 (allowed: a=b=0)

Ly Y=42 TTXx=42 b =Y
a= X b=Y reorderable X = 47
(x86/Power/ARM)

Timestamp

15/28

Example
Store Buffering

Thread 1 Thread 2 (allowed: a=b=0)

Y =42 X =472 b=Y
— a = X — b=Y reorderable X = 47
(x86/Power/ARM)
LocC.
X
Y

Timestamp

15/28

Example
Store Buffering

Thread 1 Thread 2 (allowed: a=b=0)

Y =42 — X =47 b =Y
—pp A= X b=Y reorderable X = 4/
(x86/Power/ARM)
Loc.
X
Y

Timestamp

15/28

Example
Store Buffering

Thread 1 Thread 2 (allowed: a=b=0)

Y =47 X =47 b=Y
a=X b=Y reorderable X = 47
- g (x86/Power/ARM)
LocC.
X
Y

Timestamp

15/28

Example

Load Buffering (LB)

1;I:|_;ead 2 (allowed: a=b=42)
b=Y
X =42

Timestamp

16/28

Key Idea 2: Promises

® A thread can promise to write X=V in the future,
after which other threads can read X=V.

® To avoid OOTA, the promising thread must
certify that it can write X=V in isolation.

® Until all its promises are fulfilled, the thread can
take certifiable steps only.

17 /28

Example

Load Buffering (LB)

1;I:|_;ead 2 (allowed: a=b=42)
b=Y
X =42

Timestamp

18/28

Example
Load Buffering (LB)
Thread 2 . a=ph=47
o J (allowed: a=b=42)

X =472
Thread 2's

25" promise

i

Timestamp

18/28

Example

Load Buffering (LB)

Thread 2

sy
oy (allowed: a=b=42)
X =42

Thread 2 should be

Thread 2's
42 E promise able to write &

—l——

in isolation

/—___-—

Timestamp

18/28

Example
Certification

Lh;eadz
b=Y
X =47

Thread 2 should be

Loc. Th read. 2's Jble to write it
X t 4o yPromise in isolation
. o oo _/_-‘
Y

Timestamp

19/28

Example
Certification

Thread 2
b=Y
¥ X =40

Thread 2 should be

Loc. Th read. 2's Jble to write it
X t 4o yPromise in isolation
. o oo _/_-‘
Y

Timestamp

19/28

Example
Certification

Thread 2
b=Y
- X = 42

Thread 2’s Thread 2 should be
-ble to write It

in isolation

Timestamp

19/28

Example
Certification

Thread 2
b=Y
— X =47

|

Thread 2’'s

L - '
- |
\

19/28

Timestamp

Example
Load Buftfering (LB)
T.b.{.egd_zY (allowed: a=b=42)
X =47

Thread 2’s
" 25 promise

Timestamp

20/28

Example

Load Buftfering (LB)
Thread 1 Thread 2, 10wed: a=b=42)

»a=X b=y
Y =a X =42
Loc. i Thread 2’s
\ 25 " Promise
Y

Timestamp

20/28

Example

Load Buftfering (LB)
Thread 1 Thread 2, 10wed: a=b=42)

a=X T b=Y
—p Y =2 X =42
Loc.) Thread 2’s
\ 25" promise
: ‘.----___________.--Illlll
Y

Timestamp

20/28

Example

Load Buftfering (LB)
Thread 1 Thread 2, 10wed: a=b=42)

a - X — D - Y
—p Y = a X =42
Loc.) Thread 2’s
\ 4 " promise
Y

Timestamp

20/28

Thread 1
a= X
___’,Y:a

LocC.

D

L 0

Example

Load Buftfering (LB)

Thread 2
b=Y
- X — 42

Thread 2's

(allowed:

a=b=42)

20/28

Timestamp

Example

Load Buffering (LB)

| endency §

Thread 1 Thread 2 false deziﬁerence!
a =X * ‘

N Y =a

LocC.
X b

Y

Timestamp

20/28

Example

Classical Out-of-thin-air (OOTA)

Thjead 1 T—h{»egd:ZY (forbidden: a=b=42)

X =D

Timestamp

21/28

Example

Classical Out-of-thin-air (OOTA)

Thjead 1 T—'lﬁegd:zY (forbidden: a=b=42)

X =D

Thread 2's
25 “promise?

i

Timestamp

21/28

Example

Classical Out-of-thin-air (OOTA)

L TB%9% (forbidden: a=b=42)
X = b
Thread 2’'s

24

Example

Classical Out-of-thin-air (OOTA)

Promises: ‘‘Semantic Solution” to OOTA

Thread 2’s
v 2 promise?
’ 4 2 |

Impossible:
| thread 2 cannot |
write it In isolationyg

Timestamp

21/28

The Message Passing Example

Thread 1
et
D = 42
F =1

Thread 2
— |
while (1) {
f =F
if (£f) break
}
d =D

22 /28

Timestamp

The Message Passing Example

Thread 1 Thread 2
D = 42 T while (1) |
I £f=F

if (£f) break

}
d =D

Timestamp

22 /28

The Message Passing Example

Thread 1 Thread 2
nmnﬁyp .
D = 42 while (1) {
F =1 f = F
- if (f) break
}
Loc. d =D
D
F

Timestamp

22 /28

The Message Passing Example

Thread 1 Thread 2
D = 42 while (1) {
ey F =1 — f =F

if (£f) break

}
d =D

Timestamp

22 /28

The Message Passing Example

Thread 1 Thread 2
D = 42 while (1) {
——p F =1 £ =F

if (£f) break

}
d =D

—

Timestamp

22 /28

Release & Acquire

Thread 1 Thread 2
- .
D = 42 while (1) {
F =1 [rel] f = F [acq]

if (£f) break

}
d =D

Timestamp

23/28

Release & Acquire

Thread 1 Thread 2
D = 42 =P hile (1) {
— wihlle
; F =1 [rel] = F [acq]

if (£f) break

}
d =D

Timestamp

23/28

Release & Acquire

Thread 1 Thread 2
. o
D = 42 while (1) {
p F = 1 [rel] f = F [acq]
if (£f) break
}

LocC. d=0D
D
F

Timestamp

23/28

Release & Acquire

Thread 1 Thread 2
i
D = 42 while (1) {
p F = 1 [rel] f = F [acq]
if (£f) break
}
Loc. d=D0
D
F released at

Timestamp

23/28

Release & Acquire

Thread 1 Thread 2
D = 42 while (1) {
p F = 1 [rel] — = F [acq]

if (£f) break

}
d =D

1 released at

Timestamp

23/28

Release & Acquire

Thread 1 Thread 2
D = 42 while (1) {
p F = 1 [rel] f = F [acq]

if (£f) break

}
d =D

i

1 released at

Timestamp

23/28

Release & Acquire with Tweak
Initially: D = F = 0
D = 42 f =F [acq]

F =1 [rel] if (£f) {
d=D // d= 427

}

D =10

24/28

Re-Certification 1s Necessary

® A thread must re-certify during the execution
that it can write all its promises in isolation.

Thread 1 Thread 2 Thread 3
[acq] [acq]
VV:1 [rel] |f (\/V) Y:‘ [rel] |f (Y && Z) X:1 [rel]
else /=
[acq]
if (X) Z=1

(forbidden: X=1)

25/28

Re-Certification 1s Necessary

® A thread must re-certify during the execution
that it can write all its promises in isolation.

Thread 1 Thread 2 Thread 3

[acq] [acq]
W=1men if (W) Y=1men if (Y && Z) X=1tzen
else §Z=1}Z=1 promised

[acq]

if (X) Z=1

(forbidden: X=1)

25/28

Re-Certification i1s Necessary

® A thread must re-certify during the execution
that it can write all its promises in isolation.

Lnread.. Thread 2 h
[acq]
- Hc .rel] el

else §Z=1§Z=1 promised

[acq]

it (X) Z= n Certified:

12 In I1solation

(forbidden: X=1)

25/28

Re-Certification i1s Necessary

® A thread must re-certify during the execution
that it can write all its promises in isolation.

Thread 1 Thread 2 Thread 3

[acq] [acq]

W=Tis if (W) Y=1een if (Y && Z) X=1/ean

else §7=1§Z=1 promised
if &q)] Z=1 Certified:

12 In I1solation

(forbidden: X=1)

25/28

Re-Certification i1s Necessary

® A thread must re-certify during the execution
that it can write all its promises in isolation.

Thread 1 Thread 2 Thread 3
[acq]
W=1 Tee1s if (=1 en f (Y && Z) X=1 t=e1

else $7=1§Z=1 promised
|1 &q)l /=1 Certified:

12 In I1solation

(forbidden: X=1)

25/28

Re-Certification i1s Necessary

® A thread must re-certify during the execution
that it can write all its promises in isolation.

Thread 1 Thread 2 Thread 3

/‘M\
W=1 Tre1 if (W) (=1 e (Y && Z) X=1/1zen

N

else $7=1§Z=1 promised
|1 &q)l /=1 Certified:

12 In I1solation

(forbidden: X=1)

25/28

Re-Certification i1s Necessary

® A thread must re-certify during the execution
that it can write all its promises in isolation.

Thread 1 Thread 2 Thread 3

/‘M\
W=1%n if (W) Y=Te=u if (Y && 2)

:‘] [rel]

N

else §7=11Z=1 promiseg
if &q)] /=1 Certified:

12 In I1solation

(forbidden: X=1)

25/28

Re-Certification i1s Necessary

® A thread must re-certify during the execution
that it can write all its promises in isolation.

Thread 1 Thread 2 Thread 3

/‘M\
W=1%n if (W) Y=Te=u if (Y && 2)

else }Z=1}{Z=1 promiseg
[2Cq] peusrmsases

1 fulfilled
(forbidden: X=1)

25/28

:‘] [rel]

Certified:
12 In I1solation

Re-Certification i1s Necessary

® A thread must re-certify during the execution
that it can write all its promises in isolation.

Thread 1 Thread 2 Thread 3
[acq]
W=1 Tee1s if (=1 en f (Y && Z) X=1 t=e1

else $7=1§Z=1 promised
|1 &q)l /=1 Certified:

12 In I1solation

(forbidden: X=1)

25/28

Re-Certification i1s Necessary

® A thread must re-certify during the execution
that it can write all its promises in isolation.

Liiread | Thread 2 h
I Y =1tz rell

else {Z=1§Z=1 promised
|1 &q)] /=1 Certified:

12 In I1solation

(forbidden: X=1)

25/28

Re-Certification i1s Necessary

® A thread must re-certify during the executlon
that it can write all its prags

Failed!
Thread 2 Because X = 0

else §Z=1§7=1 promised
if EXq)] /=1 Certified:

12 In I1solation

(forbidden: X=1)

25/28

Example
Counter

"1 = fetch-add X 12 = fetch-add X

(forbidden:

Loc.
r1=1,r2=1)

Timestamp

26

Example
Counter

1 = fetch—-add X 2 = fetch-add X

ey
(forbidden:

Loc.
r1=1,r2=1)

Timestamp

26

Example
Counter

r1 = fetch—add X r2 = fetch—add X
ey

ey
(forbidden:

Loc.
r1=1,r2=1)

Timestamp

26

Example
Write-Read Coherence

Thread T Thread 2 (15pigden: a=2,b=1)
X X =2
d

1
X b =X

27128

Example
Write-Read Coherence

Thread 1 Thread 2 = (orpigden: a=2,b=1)
X X =2
d

1
™ a=X h = X

27128

Example
Write-Read Coherence

Thread 1 Thread 2 (fOrbidden: 8:2,b21)

X _y X=2
d

1
™ a=X h = X

27128

Example
Write-Read Coherence

Thread 1 Thread 2 (fOrbidden: 8:2,b21)
X=1 _, X=2
_,a=X b = X

27128

Example
Write-Read Coherence

Thread 1 Thread 2 (fOrbidden: 8:2,b21)
X =1 X=2

ya=X _yb=X

27128

Example
Read-Write Coherence

Thread 1 Thread 2 (fOrbidden: a=2,b=1)

R e
a= X

1
2 b =X

X
X

28/28

Example
Read-Write Coherence

Thread 1 Thread 2 (fOrbidden: a=2,b=1)

¥ a=X

1
¥ =0 b = X

X
X

28/28

Example
Read-Write Coherence

Thread 1 Thread 2 (fOrbidden: a=2,b=1)

¥ a=X

1
2 b =X

X
mv-bx

28/28

Example
Read-Write Coherence

Thread 1 Thread 2 (fOrbidden: a=2,b=1)

1 a=X
> TT =X

X
mv-bx

28/28

Example
Read-Write Coherence

Thread 1 Thread 2 (fOrbidden: a=2,b=1)
X =1 a= X
L X=2 _, b=X

28/28

Results (1/2)
Compiler/HW Optimizations

® Operational semantics for C/C++ concurrency:
plain/relaxed/release/acquire r/w/u/fence, SC fence

® Compiler optimizations 2
(reordering, merge, dead load elim,, ...)

® Compilation to x86 7 & Power @

29/28

Results (2/2)
Reasoning Principles

® DRF-SC: Data Race Freedom = SC @

~ DRF-PromiseFree: ~,,
DRF = semantics w/o promises .

® |nvariant-based logic: -~
soundness of global invariant (e.g. a=b=X=Y=0)

® http://sf.snu.ac.kr/promise-concurrency

30/28

http://sf.snu.ac.kr/promise-concurrency

More comprehensive semantics for

C/C++ concurrency

® DRF-SC: Data Race Freedom = SC 5 ?

— DRF-PromiseFree:
DRF = semantics w/o promises ’,)

—

® Invariant-based logic: ’,)

soundness of global invariant (e.g. a=b=X=Y=0)

® http://sf.snu.ac.kr/promise-concurrency

30/28

http://sf.snu.ac.kr/promise-concurrency

Future Work

® Supporting SC reads & writes
(We found a flaw in C/C++11 on SC)

® Supporting consume reads

® Developing a rich program logic &
Verifying fine-grained concurrent programs

31/28

