
Delimited continuations, macro
expressiveness, and effect handlers

Sam Lindley

Laboratory for Foundations of Computer Science
The University of Edinburgh

Sam.Lindley@ed.ac.uk

May 19th, 2017

(based on joint work with Yannick Forster, Ohad Kammar, and
Matija Pretnar)

Delimited continuations

Delimited continuations

Control and prompt Shift and reset

Matthias Felleisen Olivier Danvy Andrzej Filinski

Delimited continuations can “express” any “definable” monad.

[Felleisen, 1988]
[Danvy and Filinski, 1990]
[Filinski, 1994]

Static delimited continuations
“Alice” ++ 〈“ has ” ++ (Sk.(k “a dog”) ++ “ and the dog”++

(k “a bone.”))〉

evaluates to:

“Alice has a dog and the dog has a bone.”

The delimited continuation k is bound to

〈“ has ” ++ []〉

where the hole [] is filled with “a dog” and “a bone.”.

I 〈−〉 is called reset: it delimits a continuation
I S is called shift: it captures a delimited continuation

(example from [Materzok and Biernacki, 2011])

Static delimited continuations
“Alice” ++ 〈“ has ” ++ (Sk.(k “a dog”) ++ “ and the dog”++

(k “a bone.”))〉

evaluates to:

“Alice has a dog and the dog has a bone.”

The delimited continuation k is bound to

〈“ has ” ++ []〉

where the hole [] is filled with “a dog” and “a bone.”.

I 〈−〉 is called reset: it delimits a continuation
I S is called shift: it captures a delimited continuation

(example from [Materzok and Biernacki, 2011])

Static delimited continuations
“Alice” ++ 〈“ has ” ++ (Sk.(k “a dog”) ++ “ and the dog”++

(k “a bone.”))〉

evaluates to:

“Alice has a dog and the dog has a bone.”

The delimited continuation k is bound to

〈“ has ” ++ []〉

where the hole [] is filled with “a dog” and “a bone.”.

I 〈−〉 is called reset: it delimits a continuation
I S is called shift: it captures a delimited continuation

(example from [Materzok and Biernacki, 2011])

Dynamic delimited continuations

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉

evaluates to:
“A cat has Alice.”

k1 is bound to 〈“ has ” ++ []〉
k2 is bound to 〈“Alice” ++ []〉

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉
 〈“Alice” ++ (Sk2.“A cat” ++ (〈“ has ” ++ []〉 (k2 “.”)))〉
 “A cat” ++ 〈“ has ” ++ []〉 (〈“Alice” ++ []〉 “.”)
 ∗ “A cat has Alice.”

(example from [Materzok and Biernacki, 2011])

Dynamic delimited continuations

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉

evaluates to:
“A cat has Alice.”

k1 is bound to 〈“ has ” ++ []〉
k2 is bound to 〈“Alice” ++ []〉

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉
 〈“Alice” ++ (Sk2.“A cat” ++ (〈“ has ” ++ []〉 (k2 “.”)))〉
 “A cat” ++ 〈“ has ” ++ []〉 (〈“Alice” ++ []〉 “.”)
 ∗ “A cat has Alice.”

(example from [Materzok and Biernacki, 2011])

Dynamic delimited continuations

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉

evaluates to:
“A cat has Alice.”

k1 is bound to 〈“ has ” ++ []〉
k2 is bound to 〈“Alice” ++ []〉

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉
 〈“Alice” ++ (Sk2.“A cat” ++ (〈“ has ” ++ []〉 (k2 “.”)))〉
 “A cat” ++ 〈“ has ” ++ []〉 (〈“Alice” ++ []〉 “.”)
 ∗ “A cat has Alice.”

(example from [Materzok and Biernacki, 2011])

Dynamic delimited continuations

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉

evaluates to:
“A cat has Alice.”

k1 is bound to 〈“ has ” ++ []〉
k2 is bound to 〈“Alice” ++ []〉

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉
 〈“Alice” ++ (Sk2.“A cat” ++ (〈“ has ” ++ []〉 (k2 “.”)))〉
 “A cat” ++ 〈“ has ” ++ []〉 (〈“Alice” ++ []〉 “.”)
 ∗ “A cat has Alice.”

(example from [Materzok and Biernacki, 2011])

Subtyping delimited continuations

Marek Materzok Dariusz Biernacki

[Materzok and Biernacki, 2011]

Operational semantics for delimited continuations

Static delimited continuations (shift and reset)

〈E [Sk.M]〉 〈M[(λx.〈E [x]〉)/k]〉
〈V〉 V

Dynamic delimited continuations (shift0 and reset0)

〈E [Sk.M]〉 M[(λx.〈E [x]〉)/k]
〈V〉 V

Slight variation (“dollar” in place of reset0)

〈E [Sk.M] | x.N〉 M[(λx.〈E [x] | x.N〉)/k]
〈V | x.N〉 N[V/x]

〈M〉 ≡ 〈M | x.x〉

Macro expressiveness

On the expressive power of programming languages

There are many different notions of expressive power. Examples:

I What functions can be expressed (not very interesting for
Turing-complete languages)

I Algorithmic complexity
I Macro expressiveness

Matthias Felleisen

[Felleisen, 1990]

Macro expressiveness

Language L macro expresses language L ′ if there exists a local
transformation of L ′ into L.

Analogy with logic:

local transformation ' derivable judgement
global transformation ' admissible judgement

Example: nondeterminism

choose binary nondeterministic choice (true / false)
fail nullary nondeterministic choice
run run a nondeterministic computation

drunkToss () = if choose then
if choose then Heads else Tails

else
fail

drunkTosses n = if n = 0 then []

else drunkToss () :: drunkTosses (n − 1)

run (drunkTosses 2) =
[[Heads,Heads], [Heads,Tails], [Tails,Heads], [Tails,Tails]]

Example: nondeterminism (plain λ-calculus)

We can implement nondeterminism with plain λ-calculus using
a global transformation.

JxK = [x]
Jλx.MK = [λx.JMK]
JM NK = concat [f x | f ← JMK, x← JNK]

JchooseK = [true, false]
JfailK = []

Jrun MK = JMK

(We assume standard encodings of booleans and lists.)

Example: nondeterminism (delimited continuations)

We can implement nondeterminsm with delimited continuations
using a local transformation.

JchooseK = Sk.k true ++ k false
JfailK = Sk.[]

Jrun MK = 〈M | x.[x]〉

Effect handlers

Effect handlers structure delimited continuations

“effects + handlers” : “delimited continuations”
=

“while” : “goto”

Andrej Bauer

Algebraic effects

Gordon Plotkin John Power

Effect handlers

Gordon Plotkin Matija Pretnar

[Plotkin and Power, 2001–2003]
[Plotkin and Pretnar, 2009]

Example: nondeterminism (effect handlers)

We can implement nondeterminsm with effect handlers using a
local transformation.

JchooseK = choose ()

JfailK = fail ()
Jrun MK = handle M with

return x 7→ [x]
choose () k 7→ k true ++ k false
fail () k 7→ []

Operational semantics for effect handlers

handle V with H N[V/x]
handle E [opi V] with H Ni[V/p, λx.handle E [x] with H/k]

where
H = return x 7→ N

op1 p k 7→ N1

. . .

opn p k 7→ Nn

Delimited continuations versus effect handlers

On the expressive power of user-defined effects: effect
handlers, monadic reflection, delimited continuations

Yannick Forster Ohad Kammar Sam Lindley Matija Pretnar

[Forster et al., 2017]

Delimited continuations as effect handlers

JSk.MK = shift (λk.JMK)
J〈M | x.N〉K = handle M with

return x 7→ JNK
shift p k 7→ p k

Theorem
If M N then JMK + JNK.

Effect handlers as delimited continuations

Jop VK = Sk.Sh.h (inj op (JVK, λx.〈k x | y.y h〉))
Jhandle M with HK = 〈〈JMK | Hret〉 | Hops〉

where

H = return x 7→ N
op1 p k 7→ N1

. . .

opn p k 7→ Nn

Hret = x.Sh.JNK
Hops = y.case y of op1 (p, k)→ JN1K

. . .

opn (p, k)→ JNnK

Theorem
If M N then JMK + JNK.

Types

I Simple types for delimited continuations and effect handlers
I Neither local transformation preserves typeability of terms
I No typeability-preserving local transformations exist
I Polymorphic operations (Del 7→ Eff)
I Polymorphism (Eff 7→ Del)

Conclusions

I Expressiveness is subtle
I Untyped delimited continuations

and effect handlers can macro
express one another

I Simply typed delimited
continuations and effect handlers
cannot macro express one another

I Polymorphism may allow
type-preserving macro
translations between delimited
continuations and effect handlers

I Macro expressiveness has
limitations

References

Olivier Danvy and Andrzej Filinski. Abstracting Control. LISP and functional

programming 1990.

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the

expressive power of user defined effects: effect handlers, monadic reflection,

delimited continuations. ICFP 2017.

Matthias Felleisen. The theory and practice of first-class prompts. POPL 1988.

Matthias Felleisen. On the expressive power of programming languages.

ESOP 1990.

Andrzej Filinski. Representing monads. POPL 1994.

Marek Materzok and Dariusz Biernacki. Subtyping delimited continuations.

ICFP 2011.

Gordon Plotkin and John Power. Adequacy for algebraic effects. FoSSaCS

2001.

Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. ESOP 2009.

Static delimited continuations example

Delimited continuations

“Alice” ++ 〈“ has ” ++ (Sk.(k “a dog”) ++ “ and the dog”++
(k “a bone.”))〉

Effect handlers

“Alice”++
handle “ has ” ++ trans (“dog”, “bone”) with

return x 7→ x
trans (p, q) k 7→ (k (“a ” ++ p)) ++ “ and the ” ++ p++

(k (“a ” ++ q))

Dynamic delimited continuations example

Delimited continuations

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉

Effect handlers

handle “Alice”++
handle “ has ” ++ subject (“A cat”) with

return x 7→ x
subject s k 7→ s ++ k (object “.”)

with
return x 7→ x
object p k 7→ k p

