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Delimited continuations



Delimited continuations

Control and prompt Shift and reset

Matthias Felleisen Olivier Danvy Andrzej Filinski

Delimited continuations can “express” any “definable” monad.

[Felleisen, 1988]
[Danvy and Filinski, 1990]
[Filinski, 1994]



Static delimited continuations
“Alice” ++ 〈“ has ” ++ (Sk.(k “a dog”) ++ “ and the dog”++

(k “a bone.”))〉

evaluates to:

“Alice has a dog and the dog has a bone.”

The delimited continuation k is bound to

〈“ has ” ++ [ ]〉

where the hole [ ] is filled with “a dog” and “a bone.”.

I 〈−〉 is called reset: it delimits a continuation
I S is called shift: it captures a delimited continuation

(example from [Materzok and Biernacki, 2011])
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Dynamic delimited continuations

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉

evaluates to:
“A cat has Alice.”

k1 is bound to 〈“ has ” ++ [ ]〉
k2 is bound to 〈“Alice” ++ [ ]〉

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉
 〈“Alice” ++ (Sk2.“A cat” ++ (〈“ has ” ++ [ ]〉 (k2 “.”)))〉
 “A cat” ++ 〈“ has ” ++ [ ]〉 (〈“Alice” ++ [ ]〉 “.”)
 ∗ “A cat has Alice.”

(example from [Materzok and Biernacki, 2011])
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Dynamic delimited continuations
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Subtyping delimited continuations

Marek Materzok Dariusz Biernacki

[Materzok and Biernacki, 2011]



Operational semantics for delimited continuations

Static delimited continuations (shift and reset)

〈E [Sk.M]〉 〈M[(λx.〈E [x]〉)/k]〉
〈V〉 V

Dynamic delimited continuations (shift0 and reset0)

〈E [Sk.M]〉 M[(λx.〈E [x]〉)/k]
〈V〉 V

Slight variation (“dollar” in place of reset0)

〈E [Sk.M] | x.N〉 M[(λx.〈E [x] | x.N〉)/k]
〈V | x.N〉 N[V/x]

〈M〉 ≡ 〈M | x.x〉



Macro expressiveness



On the expressive power of programming languages

There are many different notions of expressive power. Examples:

I What functions can be expressed (not very interesting for
Turing-complete languages)

I Algorithmic complexity
I Macro expressiveness

Matthias Felleisen

[Felleisen, 1990]



Macro expressiveness

Language L macro expresses language L ′ if there exists a local
transformation of L ′ into L.

Analogy with logic:

local transformation ' derivable judgement
global transformation ' admissible judgement



Example: nondeterminism

choose binary nondeterministic choice (true / false)
fail nullary nondeterministic choice
run run a nondeterministic computation

drunkToss () = if choose then
if choose then Heads else Tails

else
fail

drunkTosses n = if n = 0 then []

else drunkToss () :: drunkTosses (n − 1)

run (drunkTosses 2) =
[[Heads,Heads], [Heads,Tails], [Tails,Heads], [Tails,Tails]]



Example: nondeterminism (plain λ-calculus)

We can implement nondeterminism with plain λ-calculus using
a global transformation.

JxK = [x]
Jλx.MK = [λx.JMK]
JM NK = concat [ f x | f ← JMK, x← JNK]

JchooseK = [true, false]
JfailK = []

Jrun MK = JMK

(We assume standard encodings of booleans and lists.)



Example: nondeterminism (delimited continuations)

We can implement nondeterminsm with delimited continuations
using a local transformation.

JchooseK = Sk.k true ++ k false
JfailK = Sk.[]

Jrun MK = 〈M | x.[x]〉



Effect handlers



Effect handlers structure delimited continuations

“effects + handlers” : “delimited continuations”
=

“while” : “goto”

Andrej Bauer



Algebraic effects

Gordon Plotkin John Power

Effect handlers

Gordon Plotkin Matija Pretnar

[Plotkin and Power, 2001–2003]
[Plotkin and Pretnar, 2009]



Example: nondeterminism (effect handlers)

We can implement nondeterminsm with effect handlers using a
local transformation.

JchooseK = choose ()

JfailK = fail ()
Jrun MK = handle M with

return x 7→ [x]
choose () k 7→ k true ++ k false
fail () k 7→ []



Operational semantics for effect handlers

handle V with H N[V/x]
handle E [opi V] with H Ni[V/p, λx.handle E [x] with H/k]

where
H = return x 7→ N

op1 p k 7→ N1

. . .

opn p k 7→ Nn



Delimited continuations versus effect handlers



On the expressive power of user-defined effects: effect
handlers, monadic reflection, delimited continuations

Yannick Forster Ohad Kammar Sam Lindley Matija Pretnar

[Forster et al., 2017]



Delimited continuations as effect handlers

JSk.MK = shift (λk.JMK)
J〈M | x.N〉K = handle M with

return x 7→ JNK
shift p k 7→ p k

Theorem
If M N then JMK + JNK.



Effect handlers as delimited continuations

Jop VK = Sk.Sh.h (inj op (JVK, λx.〈k x | y.y h〉))
Jhandle M with HK = 〈〈JMK | Hret〉 | Hops〉

where

H = return x 7→ N
op1 p k 7→ N1

. . .

opn p k 7→ Nn

Hret = x.Sh.JNK
Hops = y.case y of op1 (p, k)→ JN1K

. . .

opn (p, k)→ JNnK

Theorem
If M N then JMK + JNK.



Types

I Simple types for delimited continuations and effect handlers
I Neither local transformation preserves typeability of terms
I No typeability-preserving local transformations exist
I Polymorphic operations (Del 7→ Eff)
I Polymorphism (Eff 7→ Del)



Conclusions

I Expressiveness is subtle
I Untyped delimited continuations

and effect handlers can macro
express one another

I Simply typed delimited
continuations and effect handlers
cannot macro express one another

I Polymorphism may allow
type-preserving macro
translations between delimited
continuations and effect handlers

I Macro expressiveness has
limitations
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Static delimited continuations example

Delimited continuations

“Alice” ++ 〈“ has ” ++ (Sk.(k “a dog”) ++ “ and the dog”++
(k “a bone.”))〉

Effect handlers

“Alice”++
handle “ has ” ++ trans (“dog”, “bone”) with

return x 7→ x
trans (p, q) k 7→ (k (“a ” ++ p)) ++ “ and the ” ++ p++

(k (“a ” ++ q))



Dynamic delimited continuations example

Delimited continuations

〈“Alice” ++ 〈“ has ” ++ (Sk1.Sk2.“A cat” ++ (k1 (k2 “.”)))〉〉

Effect handlers

handle “Alice”++
handle “ has ” ++ subject (“A cat”) with

return x 7→ x
subject s k 7→ s ++ k (object “.”)

with
return x 7→ x
object p k 7→ k p


