
Language-integrated query:
state of the art and open
problems

James Cheney
University of Edinburgh

Shonan Seminar on Language Integrated Queries
May 29, 2017

What problem are we
trying to solve?

PL

query

result

DB

Why integrate language
and query?

• Avoid "impedance mismatch" [Copeland & Maier
1985], queries that fail at run time?

• or just because you forgot a space / closing paren?

• Avoid security vulnerabilities (SQL injection +
friends)?

• Be able to optimize program and queries together /
optimize across queries?

• Others?

• My favorite: To be able to use a general purpose language to
build complex, dynamic queries automatically (and safely)

Three strategies
(not mutually exclusive)

• using query operator APIs / ASTs

• (e.g. .NET LINQ operators, HaskellDB)

• directly embedding SQL (-like) syntax (or other query
languages)

• (e.g. C#, SML#, Ur/Web... going back to Pascal-R)

• overloading more general language constructs such as
comprehensions, do-notation etc.

• (e.g. Kleisli, F#, Database Supported Haskell, or Links)

• I will talk about the Microsoft LINQ family, not because
they are perfect but because they exemplify the three
patterns above

(Very) far from an
exhaustive list!

(No offense intended if I didn't
list your system :)

LINQ
• Core: API and libraries handling a rich set of query operators

(Select, Where, GroupBy, Join, OrderBy, etc.)

• Expression<T>, IQueryable<T> interfaces

• "x => e" is a lambda-abstraction (implicitly quoted when
appropriate)

• Expressions can be evaluated immediately (in-memory)

• Or represented symbolically and analyzed/evaluated via remote queries

• Type-safety inherited from source language

• Type providers (run-time type information in IDE) make this especially
handy

employees.Where(x => x.Salary >= 50000)
 .Select(x => new { x.Name })

LINQ in C#
• Query expressions can be written using special

syntax (not SQL but similar):

• Internally, this is treated as a quoted
expression (using the Expression<T> API)

• The LINQ libraries reflect on and translate the
expression to SQL (or potentially other targets)

from x in employees
where x.salary > 50000
select x.name

LINQ in F#
• Based on comprehension syntax (a.k.a.

"do" notation, computation expressions,
etc.)

• As in C#, "query" is implicitly quoted and
subject to rewriting / reflection

• before being passed on to C# LINQ library...

query { for x in employees
 where (x.salary > 50000)
 yield {name=x.name} }

LINQ (F#) example

name
Bert
Drew
Erik
Fred
Gina

select name
from employees e
where e.salary > 50000

Effective Quotation
Relating approaches to language-integrated query

James Cheney Sam Lindley
The University of Edinburgh

jcheney@inf.ed.ac.uk,

Sam.Lindley@ed.ac.uk

Gabriel Radanne
ENS Cachan

gabriel.radanne@zoho.com

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

Abstract
Language-integrated query techniques have been explored in a
number of different language designs. We consider two differ-
ent, type-safe approaches employed by Links and F#. Both ap-
proaches provide rich dynamic query generation capabilities, and
thus amount to a form of heterogeneous staged computation, but to
date there has been no formal investigation of their relative expres-
siveness. We present two core calculi Eff and Quot, respectively
capturing the essential aspects of language-integrated querying us-
ing effects in Links and quotation in LINQ. We show via transla-
tions from Eff to Quot and back that the two approaches are equiv-
alent in expressiveness. Based on the translation from Eff to Quot,
we extend a simple Links compiler to handle queries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; H.2.3 [Languages]: Query languages

Keywords language-integrated query; effects; quotation

1. Introduction
Increasingly, programming involves coordinating data and compu-
tation among several layers, such as server-side, client-side and
database layers of a typical three-tier Web application. The inter-
action between the host programming language (e.g. Java, C#, F#,
Haskell or some other general-purpose language) running on the
server and the query language (e.g. SQL) running on the database
is particularly important, because the relational model and query
language provided by the database differ from the data structures
of most host languages. Conventional approaches to embedding
database queries within a general-purpose language, such as Java’s
JDBC, provide the programmer with precise control over perfor-
mance but are subject to typing errors and security vulnerabili-
ties such as SQL injection attacks [35]. Object-relational mapping
(ORM) tools and libraries, such as Java’s Hibernate, provide a pop-
ular alternative by wrapping database access and update in type-
safe object-oriented interfaces, but this leads to a loss of control
over the structure of generated queries, which makes it difficult to
understand and improve performance [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543738

employees

dpt name salary

“Product” “Alex” 40,000
“Product” “Bert” 60,000
“Research” “Cora” 50,000
“Research” “Drew” 70,000
“Sales” “Erik” 200,000
“Sales” “Fred” 95,000
“Sales” “Gina” 155,000

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “call”

“Cora” “dissemble”

“Cora” “enthuse”

“Drew” “abstract”

“Drew” “enthuse”

“Erik” “call”

“Erik” “enthuse”

“Fred” “call”

“Gina” “call”

“Gina” “dissemble”

Figure 1. Sample Data

To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

query { for e in employees
 where (e.salary > 50000)
 yield {name=e.name} }

Nested Relational
Calculus

• SQL, C# queries, and F# queries are
all based on a common foundation

• Nested Relational Calculus
[Buneman et al. 1995] - monadic core
language for queries

Cooper [7], and Lindley and Cheney [13], but differs in some mi-
nor details that simplify the proof of correctness and facilitate later
stages. We support higher-order query constructs in the source lan-
guage; however, these features are removed in the first stage, which
considerably simplifies subsequent stages.

The second phase, shredding, translates a single, nested query to
a number of flat queries. These queries are organised in a shredded
package, which is essentially a type expression whose collection
type constructors are annotated with queries. The different queries
are linked by indexes, that is, keys and foreign keys. The shredding
algorithm, and its definition and proof of correctness, are new and
are the main contributions of the paper. Shredding leverages the
normalisation phase in that we can define translations on types and
terms independently (in contrast to van den Bussche’s or Ferry’s
approaches).

The third phase, let-insertion, hoists nested subqueries using a
let-binding construct (equivalent to SQL’s WITH) and a row-numbering
operation (equivalent to a restriction of SQL’s ROW_NUMBER). Let-
insertion is conceptually straightforward, but provides a vital link
to proper SQL by providing an implementation of abstract indexes.
Translation to SQL requires a final, but relatively straightforward
record flattening phase.

In contrast to Van den Bussche’s simulation, our approach han-
dles multisets and compiles directly to SQL. Compared with Ferry,
our approach has been proved correct (though space limits preclude
including the full proof in this paper). Moreover, our experimen-
tal evaluation shows that our approach can be significantly faster
than Ferry, due to the latter’s greater reliance on hard-to-optimise
OLAP features. Thus, our approach is both provably correct and
efficient in practice. Our approach does have some limitations: at
present, it does not yet support SQL-style grouping and aggrega-
tion, nor does it handle queries that return functions. Some work
has been done to handle both features in Ferry, albeit without any
correctness proof [22, 12].

The rest of the paper is organised as follows. Section 2 gives
background and introduces a running example. Section 3 reviews
query normalisation. Section 4 defines a translation from normal
forms to shredded terms, shredded packages for bundling shredded
queries or shredded results together, and a semantics for shredded
query packages. Section 5 summarises the proof of correctness of
the shredding translation. Section 6 gives a translation for provid-
ing flat indexes using let-insertion. Section 7 outlines a translation
to SQL. Section 8 evaluates our implementation. Section 9 dis-
cusses related and future work and Section 10 concludes.

2. BACKGROUND
2.1 Notational conventions

We use metavariables x, y, . . . , f, g for variables, and c, d, . . .
for constants and primitive operations. We also use letters t, t0, . . .
for table names, `, `0, `

i

, . . . for record labels and a, b, . . . for tags.
We write M [x := N] for capture-avoiding substitution of N for

x in M . We write ~x for a vector x1, . . . , xn

. Moreover, we extend
vector notation pointwise to other constructs, writing, for example,
h����!` = Mi for h`1 = M1, . . . , `n = M

n

i.
We write: square brackets [�] for the meta level list constructor;

w :: ~v for adding the element w onto the front of the list ~v; ~v ++ ~w
for the result of appending the list ~w onto the end of the list ~v; and
concat for the function that concatenates a list of lists.

In the meta language we make extensive use of comprehensions,
primarily list comprehensions. For instance, [v | x xs, y
ys, p], returns a copy of v for each pair hx, yi of elements of xs
and ys such that the predicate p holds. We write [v

i

]

n

i=1 as short-

N JxK
⇢

= ⇢(x)
N Jc(X1, . . . , Xn

)K
⇢

= JcK(N JX1K⇢, . . . ,N JX
n

K
⇢

)

N J�x.MK
⇢

= �v.N JMK
⇢[x 7!v]

N JM NK
⇢

= N JMK
⇢

(N JNK
⇢

)

N Jh`
i

= M
i

in
i=1K⇢ = h`

i

= N JM
i

K
⇢

in
i=1

N JM.`K
⇢

= N JMK
⇢

.`

N Jif L thenM elseNK
⇢

=

⇢ N JMK
⇢

, if N JLK
⇢

= true

N JNK
⇢

, if N JLK
⇢

= false

N JreturnMK
⇢

= [N JMK
⇢

]

N J;K
⇢

= []

N JM]NK
⇢

= N JMK
⇢

++N JNK
⇢

N Jfor (x M)NK
⇢

= concat [N JNK
⇢[x 7!v] | v N JMK

⇢

]

N JemptyMK
⇢

=

⇢
true, if N JMK

⇢

= []

false, if N JMK
⇢

6= []

N Jtable tK
⇢

= JtK

Figure 1: Semantics of �NRC

hand for [v | 1  i  n] and similarly, e.g., h`
i

= M
i

in
i=1 for

h`1 = M1, . . . , `n = M
n

i.

2.2 Nested relational calculus
We take the higher-order, nested relational calculus (evaluated

over bags) as our starting point. We call this �NRC ; this is es-
sentially a core language for the query components of Links, Ferry,
and LINQ. The types of �NRC include base types (integers, strings,
booleans), record types h��!` : Ai, bag types BagA, and function
types A! B.

Types A,B ::= O | h��!` : Ai | BagA | A! B
Base types O ::= Int | Bool | String

We say that a type is nested if it contains no function types and flat
if it contains only base and record types.

The terms of �NRC include �-abstractions, applications, and the
standard terms of nested relational calculus.

Terms M,N ::= x | c(~M) | table t | ifM thenN elseN 0

| �x.M | M N | h����!` = Mi | M.`
| returnM | ; | M]N | for (x M)N
| emptyM

We assume that the constants and primitive functions include
boolean values with negation and conjunction, and integer values
with standard arithmetic operations and equality tests. We assume
special labels #1,#2, . . . and encode tuple types hA1, . . . , An

i
as record types h#1 : A1, . . . ,#n

: A
n

i, and similarly tuple terms
hM1, . . . ,Mn

i as record terms h#1 = M1, . . . ,#n

= M
n

i. We
assume fixed signatures ⌃(t) and ⌃(c) for tables and con-
stants. The tables are constrained to have flat relation type
(Bag h`1 : O1, . . . , `n : O

n

i), and the constants must be of base
type or first order n-ary functions (hO1, . . . , On

i ! O).
Most language constructs are standard. The ; expression builds

an empty bag, returnM constructs a singleton, and M]N builds
the bag union of two collections. The for (x M) N comprehen-
sion construct iterates over a bag obtained by evaluating M , binds
x to each element, evaluates N to another bag for each such bind-
ing, and takes the union of the results. The expression emptyM
evaluates to true if M evaluates to an empty bag, and false other-
wise.

�NRC employs a standard type system similar to that presented
in other work [27, 13, 5]. We will also introduce several typed

Cooper [7], and Lindley and Cheney [13], but differs in some mi-
nor details that simplify the proof of correctness and facilitate later
stages. We support higher-order query constructs in the source lan-
guage; however, these features are removed in the first stage, which
considerably simplifies subsequent stages.

The second phase, shredding, translates a single, nested query to
a number of flat queries. These queries are organised in a shredded
package, which is essentially a type expression whose collection
type constructors are annotated with queries. The different queries
are linked by indexes, that is, keys and foreign keys. The shredding
algorithm, and its definition and proof of correctness, are new and
are the main contributions of the paper. Shredding leverages the
normalisation phase in that we can define translations on types and
terms independently (in contrast to van den Bussche’s or Ferry’s
approaches).

The third phase, let-insertion, hoists nested subqueries using a
let-binding construct (equivalent to SQL’s WITH) and a row-numbering
operation (equivalent to a restriction of SQL’s ROW_NUMBER). Let-
insertion is conceptually straightforward, but provides a vital link
to proper SQL by providing an implementation of abstract indexes.
Translation to SQL requires a final, but relatively straightforward
record flattening phase.

In contrast to Van den Bussche’s simulation, our approach han-
dles multisets and compiles directly to SQL. Compared with Ferry,
our approach has been proved correct (though space limits preclude
including the full proof in this paper). Moreover, our experimen-
tal evaluation shows that our approach can be significantly faster
than Ferry, due to the latter’s greater reliance on hard-to-optimise
OLAP features. Thus, our approach is both provably correct and
efficient in practice. Our approach does have some limitations: at
present, it does not yet support SQL-style grouping and aggrega-
tion, nor does it handle queries that return functions. Some work
has been done to handle both features in Ferry, albeit without any
correctness proof [22, 12].

The rest of the paper is organised as follows. Section 2 gives
background and introduces a running example. Section 3 reviews
query normalisation. Section 4 defines a translation from normal
forms to shredded terms, shredded packages for bundling shredded
queries or shredded results together, and a semantics for shredded
query packages. Section 5 summarises the proof of correctness of
the shredding translation. Section 6 gives a translation for provid-
ing flat indexes using let-insertion. Section 7 outlines a translation
to SQL. Section 8 evaluates our implementation. Section 9 dis-
cusses related and future work and Section 10 concludes.

2. BACKGROUND
2.1 Notational conventions

We use metavariables x, y, . . . , f, g for variables, and c, d, . . .
for constants and primitive operations. We also use letters t, t0, . . .
for table names, `, `0, `

i

, . . . for record labels and a, b, . . . for tags.
We write M [x := N] for capture-avoiding substitution of N for

x in M . We write ~x for a vector x1, . . . , xn

. Moreover, we extend
vector notation pointwise to other constructs, writing, for example,
h����!` = Mi for h`1 = M1, . . . , `n = M

n

i.
We write: square brackets [�] for the meta level list constructor;

w :: ~v for adding the element w onto the front of the list ~v; ~v ++ ~w
for the result of appending the list ~w onto the end of the list ~v; and
concat for the function that concatenates a list of lists.

In the meta language we make extensive use of comprehensions,
primarily list comprehensions. For instance, [v | x xs, y
ys, p], returns a copy of v for each pair hx, yi of elements of xs
and ys such that the predicate p holds. We write [v

i

]

n

i=1 as short-

N JxK
⇢

= ⇢(x)
N Jc(X1, . . . , Xn

)K
⇢

= JcK(N JX1K⇢, . . . ,N JX
n

K
⇢

)

N J�x.MK
⇢

= �v.N JMK
⇢[x 7!v]

N JM NK
⇢

= N JMK
⇢

(N JNK
⇢

)

N Jh`
i

= M
i

in
i=1K⇢ = h`

i

= N JM
i

K
⇢

in
i=1

N JM.`K
⇢

= N JMK
⇢

.`

N Jif L thenM elseNK
⇢

=

⇢ N JMK
⇢

, if N JLK
⇢

= true

N JNK
⇢

, if N JLK
⇢

= false

N JreturnMK
⇢

= [N JMK
⇢

]

N J;K
⇢

= []

N JM]NK
⇢

= N JMK
⇢

++N JNK
⇢

N Jfor (x M)NK
⇢

= concat [N JNK
⇢[x 7!v] | v N JMK

⇢

]

N JemptyMK
⇢

=

⇢
true, if N JMK

⇢

= []

false, if N JMK
⇢

6= []

N Jtable tK
⇢

= JtK

Figure 1: Semantics of �NRC

hand for [v | 1  i  n] and similarly, e.g., h`
i

= M
i

in
i=1 for

h`1 = M1, . . . , `n = M
n

i.

2.2 Nested relational calculus
We take the higher-order, nested relational calculus (evaluated

over bags) as our starting point. We call this �NRC ; this is es-
sentially a core language for the query components of Links, Ferry,
and LINQ. The types of �NRC include base types (integers, strings,
booleans), record types h��!` : Ai, bag types BagA, and function
types A! B.

Types A,B ::= O | h��!` : Ai | BagA | A! B
Base types O ::= Int | Bool | String

We say that a type is nested if it contains no function types and flat
if it contains only base and record types.

The terms of �NRC include �-abstractions, applications, and the
standard terms of nested relational calculus.

Terms M,N ::= x | c(~M) | table t | ifM thenN elseN 0

| �x.M | M N | h����!` = Mi | M.`
| returnM | ; | M]N | for (x M)N
| emptyM

We assume that the constants and primitive functions include
boolean values with negation and conjunction, and integer values
with standard arithmetic operations and equality tests. We assume
special labels #1,#2, . . . and encode tuple types hA1, . . . , An

i
as record types h#1 : A1, . . . ,#n

: A
n

i, and similarly tuple terms
hM1, . . . ,Mn

i as record terms h#1 = M1, . . . ,#n

= M
n

i. We
assume fixed signatures ⌃(t) and ⌃(c) for tables and con-
stants. The tables are constrained to have flat relation type
(Bag h`1 : O1, . . . , `n : O

n

i), and the constants must be of base
type or first order n-ary functions (hO1, . . . , On

i ! O).
Most language constructs are standard. The ; expression builds

an empty bag, returnM constructs a singleton, and M]N builds
the bag union of two collections. The for (x M) N comprehen-
sion construct iterates over a bag obtained by evaluating M , binds
x to each element, evaluates N to another bag for each such bind-
ing, and takes the union of the results. The expression emptyM
evaluates to true if M evaluates to an empty bag, and false other-
wise.

�NRC employs a standard type system similar to that presented
in other work [27, 13, 5]. We will also introduce several typed

Key question
• NRC allows nesting

• queries can build sets of ... sets of sets

• Normal relational query languages (SQL +
friends) only have flat relations

• Is NRC more expressive than SQL?

• duh, yes, we can consume or return nested sets.

• More interesting question: is NRC more
expressive for transforming flat inputs to flat
outputs?

Surprising answer
• The Flat-Flat Theorem

• Paredaens, van Gucht 1992

• Showed that nested relational queries over flat
inputs/outputs are no more expressive

• Conservativity Theorem

• Wong [PODS 1994, JCSS 1996]

• Showed a more general result:

• queries with input/output of nesting depth n do not need
to build intermediate structures of greater nesting depth

Conservativity and
normalization

• Wong gave a straightforward
normalization algorithm

• and an extension to handle
(nonrecursive) sum types

File: 571J 140405 . By:CV . Date:11:07:96 . Time:13:20 LOP8M. V8.0. Page 01:01
Codes: 6368 Signs: 4411 . Length: 56 pic 0 pts, 236 mm

stands for the expression obtained by replacing all free
occurrences of x in e by e$, provided the free variables in e$
are not captured during the substitution. Similarly, the
notation 2[e$✓x], where 2 is x1 # e1 , ..., xn # en , stands for
x1 # e1[e$✓x], ..., xn # en[e$✓x]. Now, consider the rewrite
system consisting of the following rules:

1. (*x.e) e$^ e[e$✓x]

2. ?i (e1 , e2)^ ei

3. if true then e1 else e2^ e1

4. if false then e1 else e2^ e2

5. if (if e1 then e2 else e3) then e4 else e5^ if e1 then
(if e2 then e4 else e5) else (if e3 then e4 else e5)

6. ?i (if e1 then e2 else e3)^ if e1 then ?i e2 else ?ie3

7. [e | 21 , x # [], 22]^ []
8. [e | 21 , x # [e$], 22]^ [e[e$✓x] | 21 , 22[e$✓x]]
9. [e | 21 , x # e1_ e2 , 22]^ [e | 21 , x # e1 , 22]_

[e | 21 , x # e2 , 22]
10. [e | 21 , x # [e$ | 2$], 22] ^ [e[e$✓x] | 21 , 2$,

22[e$✓x]]
11. [e | 21 , x # if e1 then e2 else e3 , 22]^ [e | 21 , u # if

e1 then [()] else [], x # e2 , 22]_ [e | 21 , u # if e1 then []
else [()], e3 , 22], provided (1) u is fresh, (2) e2 is not [()]
and e3 is not [], and (3) e2 is not [] and e3 is not [()].

Rule 10 is the most significant rule. It rewrites the
expression [e | 21 , x # [e$ | 2$], 22] to [e[e$✓x] | 21 , 2$,
22[e$✓x]]. In the process of doing so, it eliminates the inter-
mediate set [e$ | 2$] constructed by the original expression.
If this intermediate set has great height, than the set height
of the resulting expression would be reduced.

Rule 11 basically rewrites [e | 21 , x # if e1 then e2

else e3 , 22] to [e | 21 , e1 , x # e2 , 22]_ [e | 21 , not e1 ,
x # e3 , 22]. It is given the more complicated form above in
order to guarantee the termination of the system. In the next
section, we present a strikingly simpler system based on
NRC.

Rule 5 is not really needed for proving the conservative
extension theorem in this section. It is included here to
provide a correspondence to a more general rule used in
proving the more general result of the next section. It is of
course also a useful simplification rule in its own right.

As an illustration of these rules, let us consider the first
method for testing if all drinkers like the same beers:
empty[() | z # [[?2y | y # R, (?1 y=drinker ?1x)] | x # R],
not (z=[beer] [?2w | w # R])]. As discussed earlier, it
has set height 2. It can be rewritten using Rule 10 to
give the expression empty[() | x # R, not ([?2y | y # R,
(?1y=drinker ?1x)]=[beer] [?2 w | w # R])], which has
height 1 and is the third method mentioned earlier. The
difference between these two expressions is simple. The
original expression generates all the grouping of beers

[[?2y | y # R, (?1 y=drinker ?1x)] | x # R] before testing
that each group [?2y | y # R, (?1y=drinker ?1x)] is the same
as all the beers mentioned in R. The new expression
generates one group [?2y | y # R, (?1y=drinker ?1x)] and
tests it before going on to the next group, avoiding the need
to keep all groups simultaneously. Note that the expression
can be further reduced because =[beer] is a compound
expression defined in terms of =[beer] as given by Proposi-
tion 2.2. However, these subsequent rewrite steps do not
change the height of expressions.

This rewrite system is sound. That is,

Proposition 3.1 (Soundness). If e1^ e2 , then e1 and e2

have the same denotation.

A rewrite system is said to be strongly normalizing if it
does not admit any infinite sequence of rewriting. That is,
any sequence of rewriting must lead to an expression to
which no rewrite rule of the system is applicable.

Theorem 3.2 (Strong Normalization). This rewrite
system is strongly normalizing.

Proof. Let . be an arbitrary function which maps
variable names to a natural number greater than 1 and let
.[n✓x] be the function which assigns n to x but agrees with
. on other variables. Then &e& ., as defined below,
measures the size of e in the environment . where each free
variable x in e is given the size .(x).

v &x& .=.(x)

v &()& .=&[]& .=&true& .=& false& .=&c& .=2

v &?1e& . = &?2e& . = &[e]& . = &empty e& .=1+
&e& .

v &(*x.e)(e$)& .=&e& .[&e$& .✓x]+&e$& .
v &*x.e& .=&e& .[2✓x]

v &if e1 then [()] else []& .=&if e1 then [] else
[()]& .=&e1& .

v &if e1 then e2 else e3& .=&e1& . } (1+&e2& .+
&e3& .), provided the cost formula immediately above is not
applicable.

v &e1_ e2& . = &(e1 , e2)& . = &e1=b e2& . = 1+
&e1& .+&e2& .

v &[en | x1 # e0 , ..., xn # en&1]& . = &e0& .0 } } } } }
&en& .n , where .0=. and .i+1=.i[&ei& .i ✓xi+1].

Now we need several technical claims.

Claim I. Suppose x is not free in e. Then &e& .=
&e& .[N✓x].

Proof of Claim I. Straightforward induction on e.

Claim II. Suppose .1(x)�.2(x) for each x free in e.
Then &e& .1�&e& .2 .

499CONSERVATIVE EXTENSION PROPERTIES

File: 571J 140405 . By:CV . Date:11:07:96 . Time:13:20 LOP8M. V8.0. Page 01:01
Codes: 6368 Signs: 4411 . Length: 56 pic 0 pts, 236 mm

stands for the expression obtained by replacing all free
occurrences of x in e by e$, provided the free variables in e$
are not captured during the substitution. Similarly, the
notation 2[e$✓x], where 2 is x1 # e1 , ..., xn # en , stands for
x1 # e1[e$✓x], ..., xn # en[e$✓x]. Now, consider the rewrite
system consisting of the following rules:

1. (*x.e) e$^ e[e$✓x]

2. ?i (e1 , e2)^ ei

3. if true then e1 else e2^ e1

4. if false then e1 else e2^ e2

5. if (if e1 then e2 else e3) then e4 else e5^ if e1 then
(if e2 then e4 else e5) else (if e3 then e4 else e5)

6. ?i (if e1 then e2 else e3)^ if e1 then ?i e2 else ?ie3

7. [e | 21 , x # [], 22]^ []
8. [e | 21 , x # [e$], 22]^ [e[e$✓x] | 21 , 22[e$✓x]]
9. [e | 21 , x # e1_ e2 , 22]^ [e | 21 , x # e1 , 22]_

[e | 21 , x # e2 , 22]
10. [e | 21 , x # [e$ | 2$], 22] ^ [e[e$✓x] | 21 , 2$,

22[e$✓x]]
11. [e | 21 , x # if e1 then e2 else e3 , 22]^ [e | 21 , u # if

e1 then [()] else [], x # e2 , 22]_ [e | 21 , u # if e1 then []
else [()], e3 , 22], provided (1) u is fresh, (2) e2 is not [()]
and e3 is not [], and (3) e2 is not [] and e3 is not [()].

Rule 10 is the most significant rule. It rewrites the
expression [e | 21 , x # [e$ | 2$], 22] to [e[e$✓x] | 21 , 2$,
22[e$✓x]]. In the process of doing so, it eliminates the inter-
mediate set [e$ | 2$] constructed by the original expression.
If this intermediate set has great height, than the set height
of the resulting expression would be reduced.

Rule 11 basically rewrites [e | 21 , x # if e1 then e2

else e3 , 22] to [e | 21 , e1 , x # e2 , 22]_ [e | 21 , not e1 ,
x # e3 , 22]. It is given the more complicated form above in
order to guarantee the termination of the system. In the next
section, we present a strikingly simpler system based on
NRC.

Rule 5 is not really needed for proving the conservative
extension theorem in this section. It is included here to
provide a correspondence to a more general rule used in
proving the more general result of the next section. It is of
course also a useful simplification rule in its own right.

As an illustration of these rules, let us consider the first
method for testing if all drinkers like the same beers:
empty[() | z # [[?2y | y # R, (?1 y=drinker ?1x)] | x # R],
not (z=[beer] [?2w | w # R])]. As discussed earlier, it
has set height 2. It can be rewritten using Rule 10 to
give the expression empty[() | x # R, not ([?2y | y # R,
(?1y=drinker ?1x)]=[beer] [?2 w | w # R])], which has
height 1 and is the third method mentioned earlier. The
difference between these two expressions is simple. The
original expression generates all the grouping of beers

[[?2y | y # R, (?1 y=drinker ?1x)] | x # R] before testing
that each group [?2y | y # R, (?1y=drinker ?1x)] is the same
as all the beers mentioned in R. The new expression
generates one group [?2y | y # R, (?1y=drinker ?1x)] and
tests it before going on to the next group, avoiding the need
to keep all groups simultaneously. Note that the expression
can be further reduced because =[beer] is a compound
expression defined in terms of =[beer] as given by Proposi-
tion 2.2. However, these subsequent rewrite steps do not
change the height of expressions.

This rewrite system is sound. That is,

Proposition 3.1 (Soundness). If e1^ e2 , then e1 and e2

have the same denotation.

A rewrite system is said to be strongly normalizing if it
does not admit any infinite sequence of rewriting. That is,
any sequence of rewriting must lead to an expression to
which no rewrite rule of the system is applicable.

Theorem 3.2 (Strong Normalization). This rewrite
system is strongly normalizing.

Proof. Let . be an arbitrary function which maps
variable names to a natural number greater than 1 and let
.[n✓x] be the function which assigns n to x but agrees with
. on other variables. Then &e& ., as defined below,
measures the size of e in the environment . where each free
variable x in e is given the size .(x).

v &x& .=.(x)

v &()& .=&[]& .=&true& .=& false& .=&c& .=2

v &?1e& . = &?2e& . = &[e]& . = &empty e& .=1+
&e& .

v &(*x.e)(e$)& .=&e& .[&e$& .✓x]+&e$& .
v &*x.e& .=&e& .[2✓x]

v &if e1 then [()] else []& .=&if e1 then [] else
[()]& .=&e1& .

v &if e1 then e2 else e3& .=&e1& . } (1+&e2& .+
&e3& .), provided the cost formula immediately above is not
applicable.

v &e1_ e2& . = &(e1 , e2)& . = &e1=b e2& . = 1+
&e1& .+&e2& .

v &[en | x1 # e0 , ..., xn # en&1]& . = &e0& .0 } } } } }
&en& .n , where .0=. and .i+1=.i[&ei& .i ✓xi+1].

Now we need several technical claims.

Claim I. Suppose x is not free in e. Then &e& .=
&e& .[N✓x].

Proof of Claim I. Straightforward induction on e.

Claim II. Suppose .1(x)�.2(x) for each x free in e.
Then &e& .1�&e& .2 .

499CONSERVATIVE EXTENSION PROPERTIES

Normal forms
• look roughly like this:

• and can be translated to SQL:

�-rules

(�x.N) M N [x := M]
(⇤↵.M) T M [↵ := T]

h` = M ;Ni.` M

h` = M ;Ni.`0 N.`

0
, if ` 6= `

0

case ` L of ` x!M ; z ! N M [x := L]
case ` L of `

0
x!M ; z ! N N [z := ` L], if ` 6= `

0

if true thenM elseN M

if false thenM elseN N

for (x [M])N N [x := M]

List deconstruction

for (x [])M []

for (x M1 ++M2)N (for (x M1)N)
++ (for (x M2)N)

Commuting conversions

F [if L thenM elseN] if L thenF [M] elseF [N]
for (x for (y L)M)N for (y L) for (x M)N

Elimination frames

F ::= [] M | [] T | [].`
| case [] of ` x!M ; z ! N

| if [] thenM elseN

| for (x [])N

Compatible closure

M M

0

K[M] K[M 0]

where K ranges over one-hole contexts

Figure 5. Query rewriting

can be translated to SQL trivially, since the syntax of normalised
queries is isomorphic to the following fragment of SQL:

Queries L,M,N ::= (union all)C
Comprehensions C ::= selectR fromGwhereX

Generators G ::= t asx

Record terms R ::= X as `

Base terms X,Y, Z ::= x.` | c(X)
| case whenX thenY elseZ end

Strictly speaking, this is not quite a subset of SQL as SQL cannot
handle comprehensions in which R is a row with no fields, or empty
unions. We ignore these idiosyncrasies.

4.1 Normalisation

Query evaluation relies on the query normalisation function norm

defined in Figures 5 and 6. This is invoked whenever evaluation
needs to access the database. Cooper [10] defines a similar nor-
malisation algorithm for a monomorphic language. His termination
proof is somewhat intricate because some of the rewrite rules do not
fit standard patterns. In order to avoid such difficulties in our more
challenging polymorphic setting, we have decomposed the normal-
isation algorithm into two stages. The first stage performs standard
symbolic evaluation, that is �-reductions, list deconstruction, and
commuting conversions, defined through a reduction relation ,
thus it is amenable to standard termination arguments. The second
stage takes the output of the first stage as input. It is defined as
a structurally recursive function that returns a term in the desired
normal form.

Each � rule in the relation arises from a corresponding � rule
in the �! relation (and similarly for the list deconstruction rules).
Notice however, that because we are only interested in applying
query normalisation rules to tame terms, the � rules are the more
general call-by-name variants. Furthermore, the rules are closed
under all contexts rather than just evaluation contexts. This means
that it is possible to perform some reductions that appear unsound:
although the whole query term must be tame, it may refer to
functions whose bodies are wild, providing those functions are not
actually used. For instance, suppose that we add a print command
that outputs a string and whose effect is wild. Now the term:

query (�x. []) ((�y.�z. hy, yi)(print "foo"))
rewrites to:

query (�x. []) ((�z. hprint "foo", print "foo"i))
which appears to duplicate the print command. However, this then
rewrites to:

query []

The purpose of the commuting conversions is to expose further
�-reductions. They are necessary because not all values are avail-
able at normalisation time. (It is not necessary to perform com-
muting conversions for hoisting cases out of elimination contexts
because cases can always be eliminated from closed flat relational
queries by �-reduction alone.)

The syntax of -normal forms is given by the following gram-
mar:

Terms M,N ::= [R] | for (x t)M | t
| [] | M ++N

| ifX thenM elseN

Records R,S ::= x | h` = Xi
| ifX thenR elseS

Base expressions X,Y, Z ::= x.l | c(X)
| ifX thenY elseZ

Given a -normal form M , the second stage of normalisation
computes kMk[],true, which splits M into a list of comprehensions,
which when concatenated together gives the desired normal form. It
is defined with respect to the labels ` of the output relation. (In order
to distinguish the meta language from the object languages, we
write roman square brackets [�] for the meta level list constructor
and � for the meta level concatenation of two lists — as opposed
to teletype square brackets [] and ++ for object languages.)

The function k�k
G,X

splits its argument aggregating the cur-
rently active generators G and the current where clause X as it
proceeds. The auxiliary k�k function recurses on the record at the
tail of a comprehension. The auxiliary k�k

i

function computes the
base expression associated with the `

i

component of the record.
Together k�k and k�k

i

perform any necessary ⌘-expansion for
record variables, and push conditionals inside records. These oper-
ations are necessary as SQL supports neither record variables nor
conditionals over records.

Given a tame flat relational term M : [h` : Ai], we write
norm

`

(M) for the function that first applies -normalisation and
then splits the result to obtain a normalised query. It is well-defined
because is confluent.

4.2 The database operations

Now we extend the small-step rules to include the database oper-
ations (Figure 7). We model a database DB as a record of tables.
Each table t is a bag (or multiset) of flat records of type ⌃(t). We
write ⌃ ` DB to assert that the value of each table t of DB satis-
fies ` DB .t : ⌃(t). The small-step evaluation relation is extended
to keep track of the database. The statement DB ;M �!M

0;DB

0

98

The result type of Q is:
Result = Bag hdepartment : String,

people : Bag hname : String, tasks : Bag Stringii
Observe that we can compose Q with Qview to form a query from
the flat data stored in ⌃ to the nested Result . The result of running
Q �Qview on the data in Figure 2 is:

[hdepartment = “Product”,

people = [hname = “Bert”, tasks = [“build”]i,
hname = “Pat”, tasks = [“buy”]i]i]

hdepartment = “Research”, people = ;i,
hdepartment = “Quality”, people = ;i,
hdepartment = “Sales”,

people = [hname = “Erik”, tasks = [“call”, “enthuse”]i,
hname = “Fred”, tasks = [“call”]i,
hname = “Sue”, tasks = [“buy”]i]i]

Now, however, we are faced with a problem: SQL databases
do not directly support nested multisets (or sets). Our shredding
algorithm, like Van den Bussche’s for sets and Grust et al.’s for
lists, can translate a normalised query such as Q0

: Result that
maps flat input ⌃ to nested output Result to a fixed number of
flat queries Q1 : Result1, . . . , Qn

: Result
n

whose results can
be combined via a stitching operation Qstitch : Result1 ⇥ · · · ⇥
Result

n

! Result . Thus, we can simulate the query Q0 by run-
ning Q1, . . . , Qn

remotely on the database and stitching the results
together using Qstitch . The number of intermediate queries n is
the nesting degree of Result , that is, the number of collection type
constructors in the result type. For example, the nesting degree
of Bag hA : Bag Int , B : Bag Stringi is 3. For our example, the
nesting degree of Result is also 3, which means Q can be shredded
into three flat queries.

The basic idea is straightforward. Whenever a nested bag ap-
pears in the output of a query, we generate an index that uniquely
identifies the current context. Then a separate query produces the
contents of the nested bag, where each element is paired up with its
parent index. Each inner level of nesting requires a further query.

We will illustrate by showing the results of the three queries and
how they can be combined to reconstitute the desired nested result.
The outer query Q1 contains one entry for each department, with
an index ha, idi in place of each nested collection:

[hdepartment = “Product”, people = ha, 1ii,
hdepartment = “Quality”, people = ha, 2ii,
hdepartment = “Research”, people = ha, 3ii,
hdepartment = “Sales”, people = ha, 4ii]

The second query Q2 generates the data needed for the people
collections:

[hha, 1i, hname = “Bert”, tasks = hb, 1, 2iii,
hha, 4i, hname = “Erik”, tasks = hb, 4, 5iii,
hha, 4i, hname = “Fred”, tasks = hb, 4, 6iii,
hha, 1i, hname = “Pat”, tasks = hd, 1, 2iii,
hha, 4i, hname = “Sue”, tasks = hd, 4, 7iii]

The idea is to ensure that we can stitch the results of Q1 together
with the results of Q2 by joining the inner indexes of Q1 (bound to
the people field of each result) with the outer indexes of Q2 (bound
to the first component of each result). In both cases the static com-
ponents of these indexes are the same tag a. Joining the people field
of Q1 to the outer index of Q2 correctly associates each person with
the appropriate department.

Finally, let us consider the results of the innermost query Q3 for
generating the bag bound to the tasks field:

[hhb, 1, 2i, “build”i, hhb, 4, 5i, “call”i, hhb, 4, 5i, “enthuse”i,
hhb, 4, 6i, “call”i, hhd, 1, 2i, “buy”i, hhd, 4, 7i, “buy”i]

Recall that Q2 returns further inner indexes for the tasks associ-
ated with each person. The two halves of the union have different
static indexes for the tasks b and d, because they arise from differ-
ent comprehensions in the source term. Furthermore, the dynamic
index now consists of two id fields (x.id and y.id) in each half of
the union. Like Van den Bussche [23], we are using vectors of
atomic values (integers) as indexes to identify parts of nested col-
lections. Thus, joining the tasks field of Q2 to the outer index of
Q3 correctly associates each task with the appropriate outlier.

Note that each of the queries Q1, Q2, Q3 produces records that
contain other records as fields. This is not strictly allowed by SQL,
but it is straightforward to simulate such nested records by rewrit-
ing to a query with no nested collections in its result type.

We will return to this example throughout the paper to illustrate
our query shredding algorithm.

3. QUERY NORMALISATION
The first stage of our shredding algorithm is to rewrite the query

to a normal form that has a number of useful properties. This is a
simple adaptation of normalisation techniques in prior work [26, 7,
13, 5].

In Links, query normalisation is an important part of the execu-
tion model [7, 13]. Links currently supports only queries mapping
flat tables to flat results, or flat–flat queries. When a subexpression
denoting a query is evaluated, the subexpression is first normalised
and then converted to SQL, which is sent to the database for evalua-
tion; the tuples received in response are then converted into a Links
value and execution proceeds.

For flat–nested queries that read from flat tables and produce a
nested result value, our normalisation procedure is similar to the
one currently used in Links [13], but we hoist all conditionals into
the nearest enclosing comprehension as where clauses. The result-
ing normal forms are:

Query terms L ::=

U ~C

Comprehensions C ::= for (

~GwhereX) returnM
Generators G ::= x t
Normalised terms M,N ::= X | R | L
Record terms R ::= h����!` = Mi
Base terms X ::= x.` | c(~X) | emptyL

Any closed flat–nested query can be converted to an equivalent term
in the above normal form.

THEOREM 1. Given a closed flat–nested query ` M : BagA,
there exists a normalisation function normBagA

, such that M '
normBagA

(M) is in normal form.

The normalisation algorithm and correctness proof are similar to
those in previous papers [7, 13, 5]. Continuing the running example
from Section 2.3, normalising Q �Qview yields query Q0:

Q

0
= for (x departments)

return (

hdepartment = x.name,
people =

(for (y employees)where (x.name = y.dept ^
(y.salary < 1000 _ y.salary > 1000000))

return (hname = y.name,
tasks = for (z tasks)

where (z.employee = y.name)
return

c

z.taski))
]
(for (y contacts)where (x.name = y.dept ^ y.client)
return (hname = y.name,

tasks = return “buy”i))i)

Dynamic/composable
queries in F#?

Queries with
function "parameters"?

• A way to (de)compose queries into reusable
chunks?

• (avoid repeating yourself)

• This could be very useful

• a form of staged computation/meta-programming

• Queries could be constructed dynamically

• including constructing queries of different "shape"

• goes beyond simple int/string parameters

• yet still strongly typed

LINQ (F#) example
(revisited)

name
Bert
Drew
Erik
Fred
Gina

select name
from employees e
where e.salary > 50000

Effective Quotation
Relating approaches to language-integrated query

James Cheney Sam Lindley
The University of Edinburgh

jcheney@inf.ed.ac.uk,

Sam.Lindley@ed.ac.uk

Gabriel Radanne
ENS Cachan

gabriel.radanne@zoho.com

Philip Wadler
The University of Edinburgh

wadler@inf.ed.ac.uk

Abstract
Language-integrated query techniques have been explored in a
number of different language designs. We consider two differ-
ent, type-safe approaches employed by Links and F#. Both ap-
proaches provide rich dynamic query generation capabilities, and
thus amount to a form of heterogeneous staged computation, but to
date there has been no formal investigation of their relative expres-
siveness. We present two core calculi Eff and Quot, respectively
capturing the essential aspects of language-integrated querying us-
ing effects in Links and quotation in LINQ. We show via transla-
tions from Eff to Quot and back that the two approaches are equiv-
alent in expressiveness. Based on the translation from Eff to Quot,
we extend a simple Links compiler to handle queries.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]; D.3.2 [Language Classifications]: Applicative (func-
tional) languages; H.2.3 [Languages]: Query languages

Keywords language-integrated query; effects; quotation

1. Introduction
Increasingly, programming involves coordinating data and compu-
tation among several layers, such as server-side, client-side and
database layers of a typical three-tier Web application. The inter-
action between the host programming language (e.g. Java, C#, F#,
Haskell or some other general-purpose language) running on the
server and the query language (e.g. SQL) running on the database
is particularly important, because the relational model and query
language provided by the database differ from the data structures
of most host languages. Conventional approaches to embedding
database queries within a general-purpose language, such as Java’s
JDBC, provide the programmer with precise control over perfor-
mance but are subject to typing errors and security vulnerabili-
ties such as SQL injection attacks [35]. Object-relational mapping
(ORM) tools and libraries, such as Java’s Hibernate, provide a pop-
ular alternative by wrapping database access and update in type-
safe object-oriented interfaces, but this leads to a loss of control
over the structure of generated queries, which makes it difficult to
understand and improve performance [14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM ’14, January 20–21, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2619-3/14/01. . . $15.00.
http://dx.doi.org/10.1145/2543728.2543738

employees

dpt name salary

“Product” “Alex” 40,000
“Product” “Bert” 60,000
“Research” “Cora” 50,000
“Research” “Drew” 70,000
“Sales” “Erik” 200,000
“Sales” “Fred” 95,000
“Sales” “Gina” 155,000

tasks

emp tsk

“Alex” “build”

“Bert” “build”

“Cora” “abstract”

“Cora” “build”

“Cora” “call”

“Cora” “dissemble”

“Cora” “enthuse”

“Drew” “abstract”

“Drew” “enthuse”

“Erik” “call”

“Erik” “enthuse”

“Fred” “call”

“Gina” “call”

“Gina” “dissemble”

Figure 1. Sample Data

To avoid these so-called impedance mismatch problems, a num-
ber of language-integrated query techniques for embedding queries
into general-purpose programming languages have emerged, which
seek to reconcile the goals of type-safety and programmer control.
Two distinctive styles of language-integrated query have emerged:

• Employ some form of static analysis or type system to iden-
tify parts of programs that can be turned into queries (e.g.
Kleisli [38], Links [8], Batches for Java [36]).

• Extend a conventional language with explicit facilities for
quotation or manipulation of query code (e.g. LINQ [21],
Ur/Web [5], Database-Supported Haskell [13]).

Links is an example of the first approach. It uses a type-and-
effect system [32] to classify parts of programs as executable only
on the database, executable only on the host programming lan-
guage, or executable anywhere. For example, consider the em-
ployee and task data in tables in Figure 1. The following code

for (x <- employees)

where(x.salary > 50000)

[(name=x.name)]

retrieves the names of employees earning over $50,000, specif-
ically [“Bert”,“Drew”,“Erik”,“Fred”,“Gina”]. In Links, the
same code can be run either on the database (if employees and
tasks are tables) or in the host language. If executed as a query,
the interpreter generates a single (statically defined) SQL query
that can take advantage of the database’s indexing or other query
optimisation; if executed in-memory, the expression will by default
be interpreted as a quadratic nested loop. (Efficient in-memory im-
plementations of query expressions are also possible [16].)

let p = <@ fun e -> e.salary > 50000 @>

query { for e in employees
 where (%p e)
 yield {name=e.name} }

λ
• Wong's system included λ-abstraction

• anonymous functions/application

• These are potentially useful for writing
programs that generate queries

• Proof did not handle general case though

• measure-based

• Only handles first-order case

• Later work [Cooper, DBPL 2009] showed how
to handle arbitrary (nonrecursive) λ's in queries

Dynamic queries
• Queries whose structure isn't

determined until run time

• Simple example: predicates

Evaluating (5) yields the value:

[{name = “Cora”}; {name = “Drew”}; {name = “Edna”}]
Unlike the previous examples, normalisation of this query requires
rules other than beta-reduction; it is described in detail in Sec-
tion 5.4.

2.6 Dynamically Generated Queries
We now consider dynamically generated queries. The following
algebraic datatype represents predicates over integers as abstract
syntax trees.

type Predicate =
| Above of int
| Below of int

| And of Predicate⇥ Predicate
| Or of Predicate⇥ Predicate
| Not of Predicate

We take Above(a) to denote all ages greater than or equal to a,
and Below(a) to denote all ages strictly less than a, so each is the
negation of the other.

For instance, the following trees both specify predicates that
select everyone in their thirties:

let t0 : Predicate = And(Above(30),Below(40))
let t1 : Predicate = Not(Or(Below(30),Above(40)))

Given a tree representing a predicate we can compute the quo-
tation of a function representing the predicate. We make use of the
lift operator, which lifts a value of some base type O into a quoted
expression of type Expr<O >. The definition is straightforward.

let rec P(t : Predicate) : Expr< int ! bool > =
match t with
| Above(a)! <@ fun(x) ! (%lift(a))  x @>
| Below(a)! <@ fun(x) ! x < (%lift(a)) @>
| And(t, u)! <@ fun(x) ! (%P(t))(x) && (%P(u))(x) @>
| Or(t, u) ! <@ fun(x) ! (%P(t))(x) || (%P(u))(x) @>
| Not(t) ! <@ fun(x) ! not((%P(t))(x)) @>

For instance, P(t0) returns

<@ fun(x) ! (fun(x) ! 30  x)(x) &&
(fun(x) ! x < 40)(x) @>

Applying normalisation to the above simplifies it to

<@ fun(x) ! 30  x && x < 40 @>.

Note how normalisation enables modular construction of a dynamic
query.

We can combine P with the previously defined satisfies to find
all people that satisfy a given predicate:

run(<@ (%satisfies)(%P(t0)) @>) (6)

Evaluating (6) yields the same query as (2) and (3). We may also
instantiate to a different predicate:

run(<@ (%satisfies)(%P(t1)) @>) (7)

Evaluating (7) yields the same answer as (6), though it normalises
to a slightly different term, where the test 30  w.age && w.age <
40 is replaced by not(w.age < 30 || 40  w.age).

This series of examples illustrates our key result: including ab-
straction in the quoted language and normalising quoted terms sup-
ports abstraction over values, abstraction over predicates, composi-
tion of queries, and dynamic generation of queries.

3. Nesting
We now consider nested data, and show further advantages of the
use of normalisation before execution of a query.

{departments =
[{dpt = “Product”}; {dpt = “Quality”};
{dpt = “Research”}; {dpt = “Sales”}];

employees =
[{dpt = “Product”; emp = “Alex”};
{dpt = “Product”; emp = “Bert”};
{dpt = “Research”; emp = “Cora”};
{dpt = “Research”; emp = “Drew”};
{dpt = “Research”; emp = “Edna”};
{dpt = “Sales”; emp = “Fred”}];

tasks =
[{emp = “Alex”; tsk = “build”};
{emp = “Bert”; tsk = “build”};
{emp = “Cora”; tsk = “abstract”};
{emp = “Cora”; tsk = “build”};
{emp = “Cora”; tsk = “design”};
{emp = “Drew”; tsk = “abstract”};
{emp = “Drew”; tsk = “design”};
{emp = “Edna”; tsk = “abstract”};
{emp = “Edna”; tsk = “call”};
{emp = “Edna”; tsk = “design”};
{emp = “Fred”; tsk = “call”}]}

Figure 3. Organisation as Flat Data

For purposes of illustration, we consider a simplified database
representing an organisation, with tables listing departments, em-
ployees belonging to each department, and tasks performed by each
employee. Its type is Org, defined as follows.

type Org = {departments : {dpt : string} list;
employees : {dpt : string; emp : string} list;
tasks : {emp : string; tsk : string} list }

We bind a variable to a reference to the relevant database.

let org : Expr<Org > = <@ database(“Org”) @>

The corresponding data is shown in Figure 3.
The following parameterised query finds departments where

every employee can perform a given task u.

let expertise0 : Expr< string ! {dpt : string} list > =
<@ fun(u) !

for d in (%org).departments do
if not(exists(
for e in (%org).employees do
if d.dpt = e.dpt && not(exists(

for t in (%org).tasks do
if e.emp = t.emp && t.tsk = u then yield { })

)) then yield { })
)) then yield {dpt = d.dpt} @>

Evaluating

run(<@ (%expertise’)(“abstract”) @>) (8)

finds departments where every employee can abstract:

[{dpt = “Quality”}; {dpt = “Research”}]
There are no employees in the Quality department, so it will be
contained in the result of this query regardless of the task specified.

Query expertise0 works as follows. The innermost for yields an
empty record for each task t performed by employee e that is equal
to u; the resulting list is empty if employee e cannot perform task
u. The middle for yields an empty record for each employee e in
department d that cannot perform task u; the resulting list is empty
if every employee in department d can perform task u. Therefore,

Evaluating (5) yields the value:

[{name = “Cora”}; {name = “Drew”}; {name = “Edna”}]
Unlike the previous examples, normalisation of this query requires
rules other than beta-reduction; it is described in detail in Sec-
tion 5.4.

2.6 Dynamically Generated Queries
We now consider dynamically generated queries. The following
algebraic datatype represents predicates over integers as abstract
syntax trees.

type Predicate =
| Above of int
| Below of int

| And of Predicate⇥ Predicate
| Or of Predicate⇥ Predicate
| Not of Predicate

We take Above(a) to denote all ages greater than or equal to a,
and Below(a) to denote all ages strictly less than a, so each is the
negation of the other.

For instance, the following trees both specify predicates that
select everyone in their thirties:

let t0 : Predicate = And(Above(30),Below(40))
let t1 : Predicate = Not(Or(Below(30),Above(40)))

Given a tree representing a predicate we can compute the quo-
tation of a function representing the predicate. We make use of the
lift operator, which lifts a value of some base type O into a quoted
expression of type Expr<O >. The definition is straightforward.

let rec P(t : Predicate) : Expr< int ! bool > =
match t with
| Above(a)! <@ fun(x) ! (%lift(a))  x @>
| Below(a)! <@ fun(x) ! x < (%lift(a)) @>
| And(t, u)! <@ fun(x) ! (%P(t))(x) && (%P(u))(x) @>
| Or(t, u) ! <@ fun(x) ! (%P(t))(x) || (%P(u))(x) @>
| Not(t) ! <@ fun(x) ! not((%P(t))(x)) @>

For instance, P(t0) returns

<@ fun(x) ! (fun(x) ! 30  x)(x) &&
(fun(x) ! x < 40)(x) @>

Applying normalisation to the above simplifies it to

<@ fun(x) ! 30  x && x < 40 @>.

Note how normalisation enables modular construction of a dynamic
query.

We can combine P with the previously defined satisfies to find
all people that satisfy a given predicate:

run(<@ (%satisfies)(%P(t0)) @>) (6)

Evaluating (6) yields the same query as (2) and (3). We may also
instantiate to a different predicate:

run(<@ (%satisfies)(%P(t1)) @>) (7)

Evaluating (7) yields the same answer as (6), though it normalises
to a slightly different term, where the test 30  w.age && w.age <
40 is replaced by not(w.age < 30 || 40  w.age).

This series of examples illustrates our key result: including ab-
straction in the quoted language and normalising quoted terms sup-
ports abstraction over values, abstraction over predicates, composi-
tion of queries, and dynamic generation of queries.

3. Nesting
We now consider nested data, and show further advantages of the
use of normalisation before execution of a query.

{departments =
[{dpt = “Product”}; {dpt = “Quality”};
{dpt = “Research”}; {dpt = “Sales”}];

employees =
[{dpt = “Product”; emp = “Alex”};
{dpt = “Product”; emp = “Bert”};
{dpt = “Research”; emp = “Cora”};
{dpt = “Research”; emp = “Drew”};
{dpt = “Research”; emp = “Edna”};
{dpt = “Sales”; emp = “Fred”}];

tasks =
[{emp = “Alex”; tsk = “build”};
{emp = “Bert”; tsk = “build”};
{emp = “Cora”; tsk = “abstract”};
{emp = “Cora”; tsk = “build”};
{emp = “Cora”; tsk = “design”};
{emp = “Drew”; tsk = “abstract”};
{emp = “Drew”; tsk = “design”};
{emp = “Edna”; tsk = “abstract”};
{emp = “Edna”; tsk = “call”};
{emp = “Edna”; tsk = “design”};
{emp = “Fred”; tsk = “call”}]}

Figure 3. Organisation as Flat Data

For purposes of illustration, we consider a simplified database
representing an organisation, with tables listing departments, em-
ployees belonging to each department, and tasks performed by each
employee. Its type is Org, defined as follows.

type Org = {departments : {dpt : string} list;
employees : {dpt : string; emp : string} list;
tasks : {emp : string; tsk : string} list }

We bind a variable to a reference to the relevant database.

let org : Expr<Org > = <@ database(“Org”) @>

The corresponding data is shown in Figure 3.
The following parameterised query finds departments where

every employee can perform a given task u.

let expertise0 : Expr< string ! {dpt : string} list > =
<@ fun(u) !

for d in (%org).departments do
if not(exists(
for e in (%org).employees do
if d.dpt = e.dpt && not(exists(

for t in (%org).tasks do
if e.emp = t.emp && t.tsk = u then yield { })

)) then yield { })
)) then yield {dpt = d.dpt} @>

Evaluating

run(<@ (%expertise’)(“abstract”) @>) (8)

finds departments where every employee can abstract:

[{dpt = “Quality”}; {dpt = “Research”}]
There are no employees in the Quality department, so it will be
contained in the result of this query regardless of the task specified.

Query expertise0 works as follows. The innermost for yields an
empty record for each task t performed by employee e that is equal
to u; the resulting list is empty if employee e cannot perform task
u. The middle for yields an empty record for each employee e in
department d that cannot perform task u; the resulting list is empty
if every employee in department d can perform task u. Therefore,

query { for e in employees
 where (%(P (Above(50000))))
 yield {name=e.name} }

Richer query results
• We might ask: what if we want queries to return nested results?

• or function values?

• or even sums/datatypes?

• Grust et al. explore an alternative approach based on
translating queries to SQL:1999 "OLAP" operations

• including nesting, functions/defunctionalization, and sums

• depends on sophisticated SQL:1999 optimization/rewrite engine called
Pathfinder [Grust et al. 2008]

• Recent work on DSH based on flattening avoids this

• Our work [SIGMOD '14] extends normalization-based
approach to handle nested results ("query shredding") but not
clear how to handle other features.

Open questions
• Expressiveness/performance vs. integration

• Tradeoff between simplicity of implementation and power of underlying
query language

• Updates: have not been studied in much depth

• Most work in statically typed languages; what about dynamic
typing?

• conversely, type providers very useful --> gradual types?

• Measuring usability/value of LINQ and related techniques

• Common problem: query performance unpredictable/sensitive to small
changes

• Adapting to other data-centric heterogeneous programming
models (GPU, data-parallel, MapReduce, etc.)

• see e.g. Delite framework and others

Summary
• Language-integrated query has been investigated for >30

years

• This talk: attempt to cluster (recent) work and bring out
common themes

• Low-level API/typed ASTs: more programmable but less convenient

• Query DSLs: more convenient but less programmable;

• Reinterpretation/query

• All three approaches require care if host language features
(e.g. higher-order functions) are allowed in queries

• Some signs of convergence toward a common facility based
on quotation/reflection (or comparable DSL embedding
techniques)

Systems: LINQ query
expressions

• Microsoft LINQ to SQL

• Query API includes Select, Where, GroupBy, many
other (higher-order) operators

• Query API calls can be implemented directly or
recorded as ASTs for lazy optimization / query
generation

• More recently, type providers offer dynamically typed
access to databases and other data resources

• LINQ also includes other things such as object-
relational mapping, XML queries, which we do not
consider here.

Systems: SML#
[Ohori & Ueno 2011]

• queries syntactically like SQL

• uses record typing

• no higher-order parameters

val server =
_sqlserver "host=127.0.0.1 dbname=test"
: {people: {name: string, age: int}};

val server = "host=127.0.0.1 dbname=test"
: {people: {age: int, name: string}} SQL.server

val db = SQL.connect server;
val db = <conn>
: {people: {age: int, name: string}} SQL.conn

val q =
_sql db =>

insert into #db.people (name, age)
values ("Alice", 24);

val q = fn
: [’a#{people: {age: int, name: string}},

’b.
(’a, ’b) SQL.db -> SQL.command]

val r = _sqlexec q db;
val r = () : unit

val q =
_sql db =>

insert into #db.people (name, age)
values ("Bob", 25);

val q = fn
: [’a#{people: {age: int, name: string}},

’b.
(’a, ’b) SQL.db -> SQL.command]

val r = _sqlexec q db;
val r = () : unit

val Q =
_sql db =>

select #person.name as name,
#person.age as age

from #db.people as person
where SQL.>= (#person.age, 25);

val Q = fn
: [’a#{people:’b},

’b#{age:int, name:’d},
’c,
’d::{int, word, char, string, real, ’e option},
’e::{int, word, char, bool, string, real}.
(’a, ’c) SQL.db
-> {age: int, name: ’d} SQL.query]

val r = _sqleval Q db;
val r = <rel> : {age: int, name: string} SQL.rel

val x = SQL.fetchAll r;
val x = [{age = 25, name = "Bob"}]
: {age: int, name: string} list

Figure 1. Example Program in SML#

resources (functions and types) for the SQL extension are orga-
nized into the SQL module, and they are referenced through this
notation.

Its type system is that of Standard ML extended with record kinds
on type variables. We let C range over type constructors such as
list or array. Sometimes we use option type constructor to
represent values possibly containing null. We use the following
syntax for types.

• The set of monomorphic types (ranged over by τ) is given by
the following syntax

τ := b | τ -> τ ′ | {l1:τ1,. . .,ln:τn} | τ C

where b ranges over atomic base types such as int; τ -> τ ′

is a function type; {l1:τ1,. . .,ln:τn} is a labeled record type;
and τ C is a constructor type such as int list.

• ’a,’b,. . . are type variables (ranged over by t).
• [t1#k1,...,tn#kn.τ] is a polymorphic type of τ with bound

type variables t1, . . . , tn. Each ti is constrained with a kind
ki. A kind k is either empty indicating no constraint or a
record kind {l1:τ1,. . .,ln:τn} denoting all possible records
that contain at least the specified fields.

3.2 Syntax extension for SQL
To represent SQL, we need to introduce the following.

• A server definition on which SQL is run.
• SQL “commands”. Among them a SELECT command is an

algebraic (functional) expression that returns a relation. The
others are those that change the server state.

Our aim is to represent SQL queries as directly as possible, and
allow them as first-class citizens in the language. The important
step to achieve this goal is to identify all the syntactic elements
that are implicit in a SELECT command and introducing them as
expressions in SML#. Introduction of a server definition and other
SQL commands are relatively straightforward.

To identify those implicit syntactic shorthands, let us examine
the following simple SELECT command.

SELECT name FROM people WHERE age >= 25

This implicitly assumes the following.

1. Field names name and age in SELECT and WHERE clauses denote
the results of the corresponding field selections from a tuple in
the table given in FROM clause.

2. SELECT phrase creates a tuple whose labels are inherited from
the field names.

3. This query is executed against a given database connection.
This implies that the table name people in FROM clause rep-
resents the selection of the people table from a database con-
sisting of a named collection of tables.

The first two points are made explicit by the following more ver-
bose version of the same SQL command

SELECT person.name AS name, person.age AS age
FROM people AS person
WHERE (person.age >= 25)

where a variable person is bound to a representative tuple, from
which the mentioned fields are extracted. To represent the third
point, we represent a query expression as a function that explicitly
takes a database connection db as a parameter and selects the
referenced table people from db. This analysis yield the example
expression we gave in Section 2.

311

Systems: Ur/Web
[Chlipala 2011]

• queries embedded as typed DSL

• uses records/row typing

• operations are directly mappable to SQL

• implemented internally by translation to a typed
AST for SQL-like queries (I believe, Adam correct
me if I'm wrong)

• query generation from AST straightforward; types
ensure schema validity

• query construction/higher-order parameters possible
using AST

Systems: C# LINQ
[Meijer et al SIGMOD 2006]

• uses query-like syntactic sugar for
quotation (see also [Bierman et al.
OOPSLA 2006])

• queries (or other expressions of type
Expr<T>) are implicitly quoted and
can be manipulated at run time

Systems: Kleisli
• Kleisli [Wong JFP 2000]

• implicit separation, best effort to find
queries, then execute in-memory

• solved DoE's "twelve impossible queries"

• led to a successful (and proprietary)
commercial product

Systems: LINQ
• Microsoft LINQ to SQL (C#, F#)

• for C# [Meijer et al SIGMOD 2006]

• uses query-like syntactic sugar for quotation (see also [Bierman et al.
OOPSLA 2006])

• for F# [Syme, ML 2006]

• translates F# expressions to C# expressions, then uses C# LINQ library

• currently based on computation expressions [Petricek & Syme PADL
2014]

• did not provide systematic support for HO functions in queries, but our
ICFP 2013 paper showed how to add this (P-LINQ, T-LINQ)

• LINQ also includes other things such as object-relational
mapping, XML queries, which we do not consider here.

Systems: Links
• Links [Cooper, Lindley, Wadler, Yallop

2006]

• initially, Kleisli-like

• developed effects and higher-order
normalization [Cooper 2009, ...] to address
performance/reliability

• several other non-DB-related features (web
programming, typed actor-based
concurrency)

Systems: Ferry
• Ferry

• A functional query language [Grust et al. 2009]

• Data model is ordered (builds on XML query
techniques)

• Allows nesting, higher-order, sums; supports
aggregation & grouping

• Implemented for C# LINQ, on top of Pathfinder

• Database-Supported Haskell: provides Haskell
front-end, translates to SQL:1999 via Pathfinder

