Language-integrated query:
state of the art and open
problems

James Cheney
University of Edinburgh

Shonan Seminar on Language Integrated Queries
May 29, 2017

What problem are we
trying to solve?

I.I:SVII.D

o o ﬂ

{

query

result

Why integrate language
and query?

e Avoid "impedance mismatch" [Copeland & Maier

1985], queries that fail at run time?

e or just because you forgot a space / closing paren?

e Avoid security vulnerabilities (SQL injection +
friends)?

e Be able to optimize program and queries together /
optimize across queries?

e Others?

e My favorite: To be able to use a general purpose language to
build complex, dynamic queries automatically (and safely)

Three strategies

(not mutually exclusive)

e using query operator APIs / ASTs
o (eg. NETLJ skellDE

D) gpers

e directly embq her query

lang\

o (e

® Ove
compry
o (&£

o I will talk abd
they are perfe
patterns above

, hot because
the three

but becar &y exemp

LINQ

e Core: API and libraries handling a rich set of query operators
(Select, Where, GroupBy, Join, OrderBy, etc.)

e Expression<T>, IQueryable<T> interfaces

employees.Where(x => x.Salary >= 50000)
.Select(x => new { x.Name })

e "x => e"isalambda-abstraction (implicitly quoted when
appropriate)

e Expressions can be evaluated immediately (in-memory)
e Or represented symbolically and analyzed/evaluated via remote queries
e Type-safety inherited from source language

e Type providers (run-time type information in IDE) make this especially
handy

LINQ

1n C#

e Query expressions can be written using special
syntax (not SQL but similar):

from X 1n employees

where xX.sala

ry > 50000

select XxX.name
e Internally, this is treated as a quoted

expression (using the

Expression<T> API)

e The LINQ libraries reflect on and translate the

expression to SQL (or

potentially other targets)

LINQ 1n F#

e Based on comprehension syntax (a.k.a.
"do" notation, computation expressions,
etc.)

query { for x 1in employees
where (x.salary > 50000)
yield {name=x.name} }

e Asin C#, "query" is implicitly quoted and
subject to rewriting / reflection

e before being passed on to C# LINQ library...

LINQ (F#) example

query { for e in employees
where (e.salary > 50000)

yield {name=e.name} } l
employees \7
(dpt name salary)
“Product” “Alex” 40,000 name
“Product” “Bert” 60,000
“Research” “Cora” 50,000 select name Bert
“Research” | “Drew” | 70,000 from employees e D
“Sales” “Erik” 200,000 rew
’ . >
‘S ales” “Fred" 95.000 where e.salary 50000
| “Sales” “Gina” | 155,000 Erik

Fred

Gina

Nested Relational
Calculus

e SQL, C# queries, and F# queries are
all based on a common foundation

e Nested Relational Calculus
[Buneman et al. 1995] - monadic core
language for queries

sy
Types A B:=0O|{¢:A)|BagA|A— B
Base types O ::= Int | Bool | String

Terms M, N ::=x | ¢(M) | table ¢ | if M then N else N’
—
.M | MN|{{=M)| ML

return M |) | MW N | for (x < M) N
empty M

Key question

NRC allows nesting

e queries can build sets of ... sets of sets

Normal relational query languages (SQL +
friends) only have flat relations

Is NRC more expressive than SQL?

e duh, yes, we can consume or return nested sets.

More interesting question: is NRC more
expressive for transforming flat inputs to flat
outputs?

Surprising answer

e The Flat-Flat Theorem

e Paredaens, van Gucht 1992

e Showed that nested relational queries over flat
inputs/outputs are no more expressive

e Conservativity Theorem
e Wong [PODS 1994, JCSS 1996]

e Showed a more general result:

e queries with input/output of nesting depth n do not need
to build intermediate structures of greater nesting depth

Conservativity and
normalization

1. (Ax.e)e ~e[e'/x] 7o {eldnxe{ A~ 1
) 8. {e|A1,xe{e’},A2}ﬂ{e[e’/x] |A1,A2[e’/x]}
. miler, e) e, 9. {e|4d,, xee ve,, 4,} ~{e| 4, xee,, 4,} U
3. if true then e, else e, ~ e, leld,xee,, 4}
4. if false then e, else e, ~ e, A 1[2"/)6%; | 41, x € {e" [A}, Arf ~ fele/x] | 4y, 4,
2

5. if (if e, then e, else e;) then e, else es ~ if e, then 11, {e|d,,x¢c ife, theneyelsees, 4y} ~ e | Ay, ueif

if e, then e, else es) else (if e, then e, else es) ey then {()} else { },xee,, 4, Uie| A,,ue ife, then{ }
. . l A ided (1) u 1s fresh, (2 I t
6. mn,(if e, then e, else ey) ~ if e, then 7,e, else 7;e;, else {()}, es, 4o}, provided (1) u s fresh, (2) e, is not {()}

and e;isnot { }, and (3) e, isnot { } and e;is not {()}.

e Wong gave a straightforward
normalization algorithm

e and an extension to handle
(nonrecursive) sum types

Normal forms

e look roughly like this:

Query terms L:=4C
Comprehensions C' ::= for (G where X) return M
Generators Gu=x<+t
Normalised terms M, N ==X | R
Record terms R:=({(=M)
Base terms X o=zl |c(X)|emptyL
e and can be translated to SQL:
Queries L,M,N ::= (union all) C
Comprehensions C .:= select R from GG where X
Generators G n=tasx
Record terms R = X as/
Base terms XY, Z =zl]|c(X)

| case when X thenY else Z end

Dynamic / composable
querles In F#?

=) stackoverflow

I=l< How do you compose query expressions in F#?

5\

By

Dyna

o
3
v

I've been looking at query expressions here hitp://msdn.microsoft.com/en-us/library/vstudio/hh225374.aspx

And I've been wondering why the following is legitimate

let testQuery = query {
for number in netflix.Titles do
where (number.Name.Contains("Test"))

}

But you can't really do something like this

let christmasPredicate € fun (x:Catalog.ServiceTypes.Title) -> x.Name.Contains("Christ
let testQuery = query {

for number in netflix.Titles do
where christmasPredicate

Surely F# allows composability like this so you can reuse a predicate?? What if | wanted Christmas titles
combined with another predicate like before a specific date? | have to copy and paste my entire query? C# is
completely unlike this and has several ways to build and combine predicates

f# computation-expression query-expressions

2 edit flag edited Dec 11 '12 at 19:38 asked Dec 11 '12 at 19:02
S n% Ramon Snir &, Dbrian
Txx134,841 »2+ 16939 o 45202017

e — e —————

Queries with
function "parameters"?

e A way to (de)compose queries into reusable
chunks?

e (avoid repeating yourself)

e This could be very usetul

e aform of staged computation/meta-programming

e Queries could be constructed dynamically
e including constructing queries of different "shape"
e goes beyond simple int/string parameters

e yet still strongly typed

LINQ (F#) example
(revisited)

let p = <@ fun e -> e.salary > 50000 @>

query { for e in employees
where (3%p e)

yield {name=e.name} } L
employees \7
(dpt name salary)
“Product” “Alex” 40,000 name
“Product” “Bert” 60,000
“Research” “Cora” 50,000 select name Bert
“Research” | “Drew” | 70,000 from employees e D
“Sales” “Erik” 200,000 rew
’ . >
‘S ales” “Fred" 95.000 where e.salary 50000
| “Sales” “Gina” | 155,000 Erik

Fred

Gina

A

Wong's system included A-abstraction

e anonymous functions/application

These are potentially useful for writing
programs that generate queries

Proof did not handle general case though
e measure-based

e Only handles first-order case

Later work [Cooper, DBPL 2009] showed how
to handle arbitrary (nonrecursive) A's in queries

Dynamic queries

e Queries whose structure isn't
determined until run time

e Simple example: predicates

type Predicate = let rec P(t : Predicate) : Expr<int — bool > =

| Above of int match ¢ with |
| Below of int | Above(a) — <@ fun(x) — (%lift(a)) < x@>

: : | Below(a) — <@ fun(x) — x < (%lift(a)) @>
: (A)“d ;’;Prj_d'cate prﬁ_d'cate | And (t, u) — <@ fun(x) — (4P (1)) () && (4P (1)) (x) @>
rot Fredicate X Fredicate | Or(t,u) — <@fun(x) — (hP()) () || (4P (u)) (x) e>
| Not of Predicate | Not(t) — <@fun(x) — not((%P(t))(x)) e>

query { for e 1n employees
where (%3(P (Above(50000))))
yield {name=e.name} }

Richer query results

e We might ask: what if we want queries to return nested results?
e or function values?

e or even sums/datatypes?

e Grust et al. explore an alternative approach based on
translating queries to SQL:1999 "OLAP" operations

e including nesting, functions/defunctionalization, and sums

e depends on sophisticated SQL:1999 optimization/rewrite engine called
Pathfinder [Grust et al. 2008]

e Recent work on DSH based on flattening avoids this

e Our work [SIGMOD '14] extends normalization-based

approach to handle nested results ("query shredding") but not
clear how to handle other features.

Open questions

Expressiveness/performance vs. integration

e Tradeoff between simplicity of implementation and power of underlying
query language

e Updates: have not been studied in much depth

Most work in statically typed languages; what about dynamic
typing?
e conversely, type providers very useful --> gradual types?

Measuring usability/value of LINQ and related techniques

e Common problem: query performance unpredictable/sensitive to small
changes

Adapting to other data-centric heterogeneous programming
models (GPU, data-parallel, MapReduce, etc.)

e see e.g. Delite framework and others

Summary

Language-integrated query has been investigated for >30
years

This talk: attempt to cluster (recent) work and bring out
common themes

e Low-level API/typed ASTs: more programmable but less convenient
e Query DSLs: more convenient but less programmable;

e Reinterpretation/query

All three approaches require care if host language features
(e.g. higher-order functions) are allowed in queries

Some signs of convergence toward a common facility based
on quotation/reflection (or comparable DSL embedding
techniques)

Systems: LINQ query
expressions

e Microsoft LINQ to SQL

e Query API includes Select, Where, GroupBy, many
other (higher-order) operators

e Query API calls can be implemented directly or
recorded as ASTs for lazy optimization / query
generation

e More recently, type providers offer dynamically typed
access to databases and other data resources

e LINQ also includes other things such as object-
relational mapping, XML queries, which we do not
consider here.

Systems: SML#

|Ohori & Ueno 2011]
e (ueries syntactically like SQL

e uses record typing

e no higher-order parameters

val Q =
_sql db =>
select #person.name as name,
#person.age as age
from #db.people as person
where SQL.>= (#person.age, 25);

Systems: Ur/Web
|Chlipala 2011]

queries embedded as typed DSL
uses records/row typing
operations are directly mappable to SQL

implemented internally by translation to a typed
AST for SQL-like queries (I believe, Adam correct
me if I'm wrong)

e (uery generation from AST straightforward; types
ensure schema validity

e query construction/higher-order parameters possible
using AST

Systems: C# LINQ

[Mejjer et al SIGMOD 2006]

e uses query-like syntactic sugar for

quotation (see also [Bierman et al.
OOPSLA 2006])

e (ueries (or other expressions of type
Expr<T>) are implicitly quoted and
can be manipulated at run time

Systems: Kleish

e Kleisli [Wong JFP 2000]

e implicit separation, best effort to find
queries, then execute in-memory

e solved DoE's "twelve impossible queries”

e led to a successful (and proprietary)
commercial product

Systems: LINQ

Microsoft LINQ to SQL (C#, F#)
for C# [Meijer et al SIGMOD 2006]

e uses query-like syntactic sugar for quotation (see also [Bierman et al.
OOPSLA 2006])

for F# [Syme, ML 2006]

e translates F# expressions to C# expressions, then uses C# LINQ library

e currently based on computation expressions [Petricek & Syme PADL
2014]

e did not provide systematic support for HO functions in queries, but our
ICFP 2013 paper showed how to add this (P-LINQ, T-LINQ)

LINQ also includes other things such as object-relational
mapping, XML queries, which we do not consider here.

Systems: Links

e Links [Cooper, Lindley, Wadler, Yallop
20006]

e initially, Kleisli-like

e developed effects and higher-order
normalization [Cooper 2009, ...] to address
performance/reliability

e several other non-DB-related features (web
programming, typed actor-based
concurrency)

Systems: Ferry

e LKerry

A functional query language [Grust et al. 2009]

Data model is ordered (builds on XML query
techniques)

Allows nesting, higher-order, sums; supports
aggregation & grouping

Implemented for C# LINQ, on top of Pathfinc
Database-Supported Haskell: provides Haske

er

]

front-end, translates to SQL:1999 via Pathfind

er

