Parameterized AC⁰ – Some upper and lower bounds

Yijia Chen Fudan University

September 19th, 2017 @ Shonan

A family of Boolean circuits $(C_n)_{n \in \mathbb{N}}$ are AC^0 -circuits if for every $n \in \mathbb{N}$

- (i) C_n computes a Boolean function from $\{0,1\}^n$ to $\{0,1\}$;
- (ii) the depth of C_n is bounded by a fixed constant;
- (iii) the size of C_n is polynomially bounded in n.

Remark

- 1. Without (ii), we get a family of polynomial-size circuits $(C_n)_{n \in \mathbb{N}}$, which decides a language in P/poly.
- If C_n is computable by a TM in time O(log n), then (C_n)_{n∈ℕ} is dlogtime-uniform, which corresponds to FO(<,+,×) [Barrington, Immerman, and Straubing, 1990].

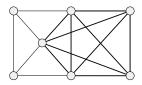
The k-clique problem

Definition

Let G be a graph and $k \in \mathbb{N}$. Then a subset $C \subseteq V(G)$ is a k-clique if

(i) for every two vertices $u, v \in V(G)$ either u = v or $\{u, v\} \in E(G)$,

(ii) and |C| = k.



A graph with a 5-clique.

k-clique by AC⁰

Let $n \in \mathbb{N}$ and we encode a graph G with V(G) = [n] as follows. For every $1 \leq i < j \leq n$ the Boolean variable $X_{\{i,j\}}$ is defined by

$$X_{\{i,j\}} = \begin{cases} 1 & \text{if there is an edge between } i \text{ and } j \\ 0 & \text{otherwise.} \end{cases}$$

Then the k-clique problem can be computed by circuits

$$\mathsf{C}_{\binom{n}{2}} = \bigvee_{K \in \binom{[n]}{k}} \bigwedge_{\{i,j\} \in \binom{K}{2}} X_{\{i,j\}}.$$

- (i) $C_{\binom{n}{2}}: \{0,1\}^{\binom{n}{2}} \to \{0,1\}.$
- (ii) The depth of $C_{\binom{n}{2}}$ is 2.
- (iii) $C_{\binom{n}{2}}$ has size $n^{k+O(1)}$.

Theorem (Rossman, 2008) Let $k \in \mathbb{N}$. There are no AC⁰-circuits $(C_{\binom{n}{2}})_{n \in \mathbb{N}}$ of size $O(n^{k/4})$ such that for every *n*-vertex graph G

G has a k-clique
$$\iff C_{\binom{n}{2}}(G) = 1.$$

A uniform version

Corollary

There are no circuits $\left(C_{\binom{n}{2},k}\right)_{n,k\in\mathbb{N}}$ which satisfy the following conditions.

- (i) The size of $C_{\binom{n}{2},k}$ is bounded by $f(k) \cdot n^{k/4}$.
- (ii) The depth of $C_{\binom{n}{2},k}$ is bounded by g(k).

(iii) Let G be an n-vertex graph G and $k \in \mathbb{N}$. Then

G has a k-clique
$$\iff C_{\binom{n}{2}}(G) = 1.$$

Remark

- 1. It is about the circuit complexity of the parameterized clique problem.
- If true without (ii), then the parameterized clique problem is not fixed-parameter tractable. Thus it is an AC⁰ version of FPT ≠ W[1].

Outline

- 1. Parameterized AC⁰
- 2. Some lower bounds
 - for fpt-approximation of the clique problem.
- 3. Some upper bounds:
 - ▶ a descriptive characterizations of parameterized AC⁰,
 - ▶ the color coding technique in parameterized AC⁰.

Parameterized AC⁰

Parameterized problems

Definition

A parameterized problem (Q, κ) consists of a classical problem $Q \subseteq \Sigma^*$ and a function $\kappa : \Sigma^* \to \mathbb{N}$, the parameterization, computable in polynomial time.

Example

A graph G and $k \in \mathbb{N}$.
<i>k</i> .
Does G contain a clique of size k?

<i>p</i> -DOMINATING-S	ET
Input:	A graph G and $k \in \mathbb{N}$.
Parameter:	<i>k</i> .
Problem:	Does G contain a dominating set of size k?

Parameterized AC⁰

Definition (Bannach, Stockhusen, and Tantau, 2015)

A parameterized problem (Q, κ) is in para-AC⁰ if there exists a family $(C_{n,k})_{n,k\in\mathbb{N}}$ of circuits such that:

1. The depth of every $C_{n,k}$ is bounded by a fixed constant.

2.
$$|C_{n,k}| \leq f(k) \cdot n^{O(1)}$$
 for every $n, k \in \mathbb{N}$.

- 3. Let $x \in \Sigma^*$. Then $(x \in Q \text{ if and only if } C_{|x|,\kappa(x)}(x) = 1)$.
- 4. There is a TM that on input $(1^n, 1^k)$ computes the circuit $C_{n,k}$ in time $g(k) + O(\log n)$.

Both $f, g : \mathbb{N} \to \mathbb{N}$ are computable functions.

Some equivalent characterizations

Proposition

Let (Q, κ) be a parameterized problem with κ computable by AC⁰-circuits. Then all the following are equivalent.

- (i) $(Q, \kappa) \in \text{para-AC}^0$.
- (ii) [AC⁰ after a precomputation] There is a computable function pre : $\mathbb{N} \to \Sigma^*$ and dlogtime-uniform AC⁰-circuits $(C_n)_{n \in \mathbb{N}}$ such that for $x \in \Sigma^*$,

$$x \in Q \quad \iff \quad \mathsf{C}_{|(x, pre(\kappa(x)))|}(x, pre(\kappa(x))) = 1.$$

(iii) [Eventually in AC⁰] Q is decidable and there is a computable function $h : \mathbb{N} \to \mathbb{N}$ and dlogtime-uniform AC⁰-circuits $(C_n)_{n \in \mathbb{N}}$ such that for every $x \in \Sigma^*$ with $|x| \ge h(\kappa(x))$,

$$x \in Q \quad \Longleftrightarrow \quad C_{|x|}(x) = 1.$$

Some Lower Bounds

Theorem (Rossman, 2008) p-CLIQUE \notin para-AC⁰.

By appropriate reductions, i.e., para-AC⁰-reductions:

Corollary

- 1. *p*-DOMINATING-SET \notin para-AC⁰, an AC⁰ version of FPT \neq W[2].
- 2. p-WSAT($\Gamma_{t,d}$) \notin para-AC⁰ for $t + d \ge 3$, an AC⁰ version of FPT \neq W[t].

Inapproximability of p-CLIQUE by para-AC⁰

A major open problem in parameterized complexity

Can we approximate *p*-CLIQUE in fpt time?

Approximation of *p*-CLIQUE

Let $\rho : \mathbb{N} \to \mathbb{R}_{\geq 1}$ be a computable function with nondecreasing and unbounded $k \mapsto k/\rho(k)$.

Definition

An algorithm \mathbb{A} is a parameterized approximation for *p*-CLIQUE with approximation ratio ρ if for every graph *G* and $k \in \mathbb{N}$ with $\omega(G) \ge k$ the algorithm \mathbb{A} computes a clique *C* of *G* such that $|C| \ge k/\rho(k)$.

 $\omega(G)$ is the size of a maximum clique of G.

Conjecture

p-CLIQUE has no parameterized approximation for any ρ .

Theorem (Chalermsook, Cygany, Kortsarz, Laekhanukit, Manurangsi, Nanongkai, and Trevisan, 2017)

Under the gap Exponential Time Hypothesis, p-CLIQUE has no parameterized approximation for any ρ .

Remark

The gap Exponential Time Hypothesis might require the construction of linear PCP, which seems to be out of reach at this point.

Approximation in para-AC⁰

 $\begin{array}{ll} p\text{-}\mathrm{GAP}_{\rho}\text{-}\mathrm{CLIQUE} \\ Input: & \mathsf{A} \text{ graph } G \text{ and } k \in \mathbb{N} \text{ such that either} \\ & k \leqslant \omega(G)/\rho(\omega(G)) \text{ or } k > \omega(G). \\ Parameter: & k. \\ Problem: & \mathsf{ls} \ k \leqslant \omega(G)/\rho(\omega(G))? \end{array}$

Lemma

If p-GAP_{ρ}-CLIQUE \notin FPT, then p-CLIQUE has no parameterized approximation with ratio ρ .

```
Theorem (C. and Flum, 2016)
```

p-GAP $_{\rho}$ -CLIQUE \notin para-AC⁰ for any ρ .

The proof is based on an AC^0 version of the planted clique conjecture with respect to Erdős-Rényi random graphs.

Definition

Let $n \in \mathbb{N}$ and $p \in \mathbb{R}$ with $0 \leq p \leq 1$. Then $G \in \text{ER}(n, p)$ is the Erdős-Rényi random graph on vertex set [n] constructed by adding every edge $e \in {[n] \choose 2}$ independently with probability p.

Example

ER(n, 1/2) is the uniform distribution on graphs with vertex set [n].

Let $G \in ER(n, 1/2)$. Then the expected $\omega(G)$ is approximately $2 \cdot \log n$.

Erdős-Rényi random graphs with a planted clique

Definition Let $n \in \mathbb{N}$ and $p \in \mathbb{R}$ with $0 \leq p \leq 1$. Moreover let $c \in [n]$. Then $(G + A) \in ER(n, p, c)$ is the distribution:

- 1. Pick $G \in ER(n, p)$.
- 2. Pick a uniformly random subset $A \subseteq [n]$ with |A| = c.
- 3. Plant in G a clique C(A) on A, thus getting the graph G + C(A).

Example

With high probability, the maximum clique in G + C(A) with

$$(G+A) \in \mathsf{ER}(n, 1/2, 4 \cdot \log n)$$

is the clique C(A).

Conjecture (Jerrum, 1992; Kucera, 1995)

For every polynomial time algorithm $\mathbb A$ and for all sufficiently large $n\in\mathbb N$

$$\Pr_{(G+A)\in \mathsf{ER}(n,1/2,4\cdot\log n)}\left[\mathbb{A}(G+C(A))\neq A\right]>\frac{1}{2}$$

That is, A fails to find the planted clique with high probability.

An AC⁰ version of the planted clique conjecture

Theorem (C. and Flum, 2016)

Let $k : \mathbb{N} \to \mathbb{R}^+$ with $\lim_{n \to \infty} k(n) = \infty$, and $c : \mathbb{N} \to \mathbb{N}$ with $c(n) \leq n^{\xi}$ for some $0 \leq \xi < 1$. Then for all AC^0 -circuits $(C_n)_{n \in \mathbb{N}}$,

$$\lim_{n\to\infty} \Pr_{(G,A)\in \mathsf{ER}(n,n^{-1/k(n)}, c(n))} \left[\mathsf{C}_n(G) = \mathsf{C}_n(G + C(A)) \right] = 1.$$

Let
$$(G, A) \in \mathsf{ER}(n, n^{-1/k(n)}, c(n))$$
, then
 $\frac{\omega(G + C(A))}{\omega(G)}$

can be arbitrarily large. Hence

Theorem (*C*. and Flum, 2016) p-GAP_{ρ}-CLIQUE \notin para-AC⁰.

Inapproximability of p-DOMINATING-SET by para-AC⁰

Theorem (*C*. and Lin, 2017) p-GAP_{ρ}-DOMINATING-SET \notin para-AC⁰ for

 $\rho(k) = \frac{\log k}{\omega(\log \log k)}.$

<i>p</i> -stConn	
Input:	A graph G, $s,t\in V(G)$, and $k\in\mathbb{N}.$
Parameter:	<i>k</i> .
Problem:	Does G contain a path from s to t of length $\leq k$?

Theorem (Beame, Impagliazzo, and Pitassi, 1995) p-STCONN is not in parameterized AC⁰, even on graphs of degree at most 2.

Some Upper Bounds

p-VERTEX-COVERInput:A graph G and $k \in \mathbb{N}$.Parameter:k.Problem:Does G contain a vertex cover of size k?

Theorem (Bannach, Stockhusen, and Tantau, 2015) *p*-VERTEX-COVER *is in parameterized* AC⁰.

Remark

The proof of Bannach et al. is direct by circuits, which can be rephrased in first-order logic by a descriptive characterization of $para-AC^0$.

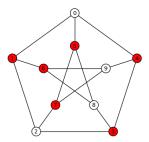
The *k*-vertex-cover problem

Definition

Let G be a graph and $k \in \mathbb{N}$. Then a subset $C \subseteq V(G)$ is a k-vertex-cover if

(i) for every edge $\{u, v\} \in V(G)$ either $u \in C$ or $v \in C$,

(ii) and |C| = k.



The peterson graph with a 6-vertex-cover.

G has a k-vertex-cover $\iff G \models \psi_k$

where
$$\psi_k = \exists x_1 \cdots \exists x_k \Big(\bigwedge_{1 \leq i < j \leq k} x_i \neq x_j \\ \land \forall u \forall v (Euv \rightarrow \bigvee_{i \in [k]} (u = x_i \lor v = x_i)) \Big).$$

Can we do better?

Better in what sense?

The quantifier rank of

$$\psi_{k} = \exists x_{1} \cdots \exists x_{k} \Big(\bigwedge_{1 \leq i < j \leq k} x_{i} \neq x_{j} \\ \land \forall u \forall v \Big(Euv \rightarrow \bigvee_{i \in [k]} (u = x_{i} \lor v = x_{i}) \Big) \Big)$$

is $qr(\psi_k) = k + 2$.

There is an algorithm which checks whether

 $\mathcal{A}\models\varphi$

in time $O(|\varphi| \cdot ||\mathcal{A}||^{qr(\varphi)})$.

Definition

Let $q \in \mathbb{N}$. Then FO_q is the fragment of FO consisting of all formulas of quantifier rank at most q.

By simple Ehrenfeucht-Fraïssé games

Theorem There is no $\varphi \in FO_{k-1}$ such that for every graph G

G has a *k*-vertex cover \iff *G* $\models \varphi$.

With arithmetics

Theorem (C., Flum, and Huang, 2017) For every $k \in \mathbb{N}$ there is a $\psi_k \in FO_{17}$ such that for every graph G G has a k-vertex cover $\iff (G, <, +, \times, \mathbf{0}, \dots, \mathbf{k}') \models \psi_k$.

Moreover, the mapping is

$$k \mapsto \psi_k$$

is computable (hence, so is $k \mapsto k'$).

The slicewise definability of the vertex cover problem

Theorem

p-VERTEX-COVER is slicewise definable in FO₁₇. That is, for every $k \in \mathbb{N}$, the kth slice of VERTEX-COVER i.e., the k-vertex-cover problem, is definable by some $\psi_k \in \text{FO}_{17}$.

Moreover, $k \mapsto \varphi_k$ is computable.

The descriptive characterization of para-AC⁰

Theorem (C., Flum, and Huang, 2017)

Let (Q, κ) be a parameterized problem. Then (Q, κ) is slicewise definable in FO_q for some $q \in \mathbb{N}$ if and only if $(Q, \kappa) \in \text{para-AC}^0$.

The main theorem

Theorem *p*-VERTEX-COVER *is slicewise definable in* FO₁₇.

The proof strategy

1. There is a polynomial time algorithm $\mathbb K$ which for every graph G and $k\in\mathbb N$ computes a graph G' and k' such that

1.1 G has k-vertex-cover if and only if G' has a k'-vertex-cover.

1.2 $|V(G')| \leq k^2 + k$ and $k' \leq k$.

K is known as Buss' kernelization of VERTEX-COVER.

- 2. We show that \mathbb{K} can be implemented in FO₁₇.
- 3. Any class of graphs with at most $k^2 + k$ vertices can be defined in FO₀ with the constants $0, \ldots, k^2 + k$.

- 1. If v is a vertex of degree at least k + 1, then v must be in every k-vertex cover. Thus we can remove all such v and decrease k accordingly.
- 2. Remove all isolated vertices.
- 3. Let G' and k' be the resulting instance. If

$$|V(G')| > k^2 + k \ge k'(k+1),$$

then G', and hence also G, is a no instance.

The main difficulty is how to count in FO₁₇, e.g. how to identify a vertex v with degree at least k + 1.

$$\exists x_1 \cdots \exists x_{k+1} \left(\bigwedge_{1 \leq i < j \leq k+1} x_i \neq x_j \land \bigwedge_{i \in [k]} Evx_i \right)$$

would not work.

Color coding

Lemma (Alon, Yuster, and Zwick, 1995)

For every sufficiently large $n \in \mathbb{N}$, it holds that for all $k \leq n$ and for every k-element subset X of [n], there exists a prime $p < k^2 \cdot \log_2 n$ and q < p such that the function $h_{p,q} : [n] \to \{0, \ldots, k^2 - 1\}$ given by

 $h_{p,q}(m) := (q \cdot m \mod p) \mod k^2$

is injective on X.

Color coding in FO_q

Corollary

Let $k \in \mathbb{N}$ and $\varphi(\bar{x}, y)$ be an FO-formula. Then there exists an FO-formula $\chi_{\varphi,k}(\bar{x})$ of the form

$$\rho \vee \exists p \exists q \left(\bigvee_{0 \leqslant i_1 < \dots < i_k < k^2} \bigwedge_{j \in [k]} \exists y \big(\text{``h}_{p,q}(y) = i_j \text{''} \land \varphi(\bar{x}, y) \big) \right),$$

such that

1. for every graph G and $\bar{u} \in V(G)^{|\bar{x}|}$ there are k vertices v in G satisfying $\varphi(\bar{u}, v)$ if and only if

$$(G, <, +, \times, \mathbf{0}, \dots, \mathbf{k}^3) \models \chi_{\varphi, k}(\bar{u}),$$

2. and $qr(\chi_{\varphi,k}) = max \{12, qr(\varphi) + 3\}.$

Degree constraints by color coding

Let

$$\varphi(x,y)=Exy.$$

Then for every $k \in \mathbb{N}$, every graph G and $v \in V(G)$

 $(G, <, +, \times, \mathbf{0}, \dots, \mathbf{k}^3) \models \chi_{\varphi, k}(v) \iff$ the degree of v in G is at least k. Moreover, $qr(\chi_{\varphi, k}) = 12$.

- 1. If v is a vertex of degree $\geq k + 1$, then v must be in every k-vertex cover. Thus we can remove all such v and decrease k accordingly.
- 2. Remove all isolated vertices.
- 3. Let G' and k' be the resulting instance. If $|V(G')| > k^2 + k \ge k'(k+1)$, then G', and hence also G, is a no instance.

Buss' kernelization in FO₁₇

Corollary

For every $k \in \mathbb{N}$ and $k' \leq k$ there are

 $\varphi_{vertex}(x), \varphi_{edge}(x, y), \varphi_{kernel} \in \mathsf{FO}_{17},$

such that for every graph G if we define G' with

$$V(G') := \{ v \in V(G) \mid G \models \varphi_{vertex}(v) \},\$$

$$E(G') := \{ \{u, v\} \mid u, v \in V(G'), u \neq v, and G \models \varphi_{edge}(u, v) \},\$$

then

G has a k-vertex-cover

 $\iff (\textit{G},<,+,\times,\textbf{0},\ldots) \models \varphi_{\textit{kernel}} \textit{ and } \textit{G}' \textit{ has a k'-vertex-cover}.$

Moreover, $|V(G')| \leq k^2 + k$ if $(G, <, +, \times, \mathbf{0}, ...) \models \varphi_{kernel}$.

The final step

Lemma

Let H be a graph with |V(H)| = k. Then there is an FO₀-sentence φ_H such that for every graph G

G and *H* are isomorphic \iff (*G*, **0**, ..., **k**) $\models \varphi_H$.

Corollary

Let K be a finite class of graphs closed under isomorphisms. Then there is an FO₀-sentence φ_{K} such that for every graph G

$$G \in K \iff (G, \mathbf{0}, \ldots) \models \varphi_{K}.$$

Recall:

Corollary

For every $k \in \mathbb{N}$ and $k' \leq k$ there are $\varphi_{vertex}(x), \varphi_{edge}(x, y), \varphi_{kernel} \in FO_{17}$, such that for every graph G if we define G' with

$$V(G') := \{ v \in V(G) \mid G \models \varphi_{vertex}(v) \},\$$

$$E(G') := \{ \{u, v\} \mid u, v \in V(G'), u \neq v, and G \models \varphi_{edge}(u, v) \},\$$

then

G has a k-vertex-cover $\iff G \models \varphi_{kernel}$ and G' has a k'-vertex-cover Moreover, $|V(G')| \leq k^2 + k$ if $G \models \varphi_{kernel}$.

But how to define $0, 1, \ldots$ of G' in G?

What we really need to define a finite graph is to say, e.g.,

there is an edge between the first and the twelfth vertices.

So if we know the subgraph G' of G constructed by Buss' kernelzation, and its size ℓ , then for some p and q, and $0 \leq i_1 < \cdots < i_{\ell} < \ell^2$ we have

$$h_{p,q}(V(G')) = \{i_1,\ldots,i_\ell\}.$$

Thus we can say, the first, the second, ..., vertices in G' in FO₁₇.

Hitting set problems with bounded hyperedge size

d-Hitting-Set	
Input:	A hypergraph H in which every hyperedge has size
	at most d and $k \in \mathbb{N}$.
Problem:	Does G contain a vertex set of size at most k such that it intersects every hyperedge?

Theorem

Let $d \in \mathbb{N}$. Then d-HITTING-SET is slicewise definable in FO_q with $q = O(d^2)$.

What makes vertex-cover/d-hitting-set slicewise definable?

Let X be a set variable. Then p-VERTEX-COVER is Fagin-defined by

$$\varphi(X) := \forall x \forall y \big(\neg Exy \lor Xx \lor Xy \big).$$

More precisely, for every graph G and $S \subseteq V(G)$

$$S$$
 is a vertex cover of $G \iff G \models \varphi(S)$.

p-CLIQUE is Fagin-defined by

$$\forall x \forall y (x = y \lor Exy \lor \neg Xx \lor \neg Xy).$$

It is not slicewise definable in any FO_q [Rossman, 2008].

p-DOMINATING-SET is Fagin-defined by

$$\forall x \exists y (Xy \land (x = y \lor Exy)).$$

It is not slicewise definable in any FO_q [C. and Flum, 2016].

A meta-theorem

Theorem (C., Flum, and Huang, 2017)

Let $\varphi(X)$ be a formula in which the set variable X does not occur in the scope of an existential quantifier or negation symbol. Then the problem Fagin-defined by $\varphi(X)$ is slicewise definable in FO_q, where q only depends on φ .

Another meta-theorem

Theorem (C. and Flum, 2017)

Let K be a class of graphs of bounded tree depth. Then

 $\begin{array}{ll} p\text{-MC}(\mathbf{K},\mathsf{MSO})\\ & Input: & \mathsf{A} \text{ graph } G \in \mathbf{K} \text{ and } \varphi \in \mathsf{MSO}.\\ Parameter: & |\varphi|.\\ & Problem: & \mathsf{Decide whether } G \models \varphi. \end{array}$

is in para-AC⁰.

If K has unbounded tree depth, and is closed under subgraphs, then p-MC(K,FO) \notin para-AC⁰.

Building on [Håstad, 1988],

Theorem (C., Flum, and Huang, 1988)

Let $q \in \mathbb{N}$. Then there is a problem slicewise definable in FO_{q+1} but not in FO_q .

Conclusions

- 1. As in classical AC⁰-complexity, we can prove many unconditional para-AC⁰ lower bounds. They might increase our confidence in those parameterized complexity assumptions.
- 2. Proving classical AC^0 -lower bounds likely leads to lower bounds for para- AC^0 . Conversely, proving lower bounds for para- AC^0 might require proving optimal AC^0 -lower bounds.
- 3. Can we go beyond AC⁰, e.g., circuits with modular counting gates?