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Outline

Part I: Harary’s P-colorings.

Part II (i): The complexity of the chromatic polynomial.

Part II (ii): Issues with the computational model.

Part II (iii): The Difficult Point Property (a former conjecture).

Part III: The complexity of univariate graph polynomials.

Conclusions: Challenges and summary.
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Part I:

Harary’s P-colorings

and

generalized chromatic polynomials

Back to overview
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The chromatic polynomial

Let G be a graph and [k] = {1,2, . . . , k}. We think of [k] as colors.

A function c : V (G) → [k] is a proper coloring of G with at most k colors, if
for each i ∈ [k] the set c−1(i) is an independent set in G.

We denote by χ(G; k) the number of proper colorings of G with k colors.

Birkhoff (1912) showed that χ(G; k) is a polynomial in Z[k]. Furthermore,
he showed that for the edgeless graph with n vertices, En = ([n], ∅) we have
that χ(En; k) = kn and

χ(G/e; k) = χ(G; k) + χ(G\e; k)

where e ∈ E(G) and G/e is obtained by deleting the edge e and G\e is obtained
by contracting the edge e.

This shows that χ(G; k) is a polynomial counting colorings and that χ(G; k)

has a recursive definition,

and can be extended to a polynomial χ(G;X) ∈ R[X].
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Harary’s P-colorings

Let P be any graph property and k ∈ N with [k] = {1,2, . . . k}.

A P-vertex coloring of a graph G = (V (G), E(G) with at most k colors is a
function f

f : V (G)→ [k]

such that for each i ∈ [k], the set f−1(i) induces a graph G[f−1(i)] ∈ P.

• If P is the class of edgeless graphs, we get the proper vertex colorings.

• If P is the class of connected graphs, we get the convex vertex colorings.
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Counting P-colorings

We denote by

χP(G; k)

the number of distinct P-colorings of G with at most k colors.

Theorem 1 (JAM and Zilber, 2005)

For every graph G, the counting function

χP(G; k) is a polynomial in Z[k],

χP(G; k) has a canonical extension

to a polynomial over the real or complex numbers,

which we denote by χP(G;X).
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Definability, I

Let L be a fragment of Second Order Logic SOL.

FOL is First Order Logic.
MSOLgraph is Monadic Second Order Logic in the language of graphs,
MSOLhypergraph is Monadic Second Order Logic in the language of hyper-
graphs, and similar for CMSOL with modular counting.

• A Harary polynomial is L-definable, or an L-Harary polynomial,
if P is L-definable.

• A graph polynomial is an L-polynomial if it is of the form

P (G; X̄) =
∑

R1:G|=φ(R1)

. . .
∑

Rk:G|=φ(R1,...,Rk)

∏
S1:G|=φ(R̄,S1)

X1 . . .
∏

S`:G|=φ(R̄,S1,...,S`)

X`
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Definability, II

Theorem 2 (Kotek and JAM, 2008/12)

(i) Every SOL-Harary polynomial is an SOL-polynomial.

(ii) The chromatic polynomial χ(G;X) is a FOL-Harary polynomials
which is not a CMSOLgraph-polynomial,
but is a CMSOLhypergraph-polynomial on ordered hypergraphs
(in an ordered invariant way).

(iii) There are FOL-Harary polynomials which are
not CMSOLhypergraph-polynomials.
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Which mathematical properties

are shared

between χ(G;X) and χP(G;X)?
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Multiplicativity

Let G tH denote the disjoint union of the graphs G and H.

• The chromatic polynomial is multiplicative, i.e.,

χ(G tH;X) = χ(G;X) · χ(H;X)

A graph property P is hereditary if for all G ∈ P and H an induced subgraph
H ⊂ind G we have H ∈ P.

A graph property P is additive if for all G,H ∈ P we have G tH ∈ P.

Proposition 3

Assume a graph property P is hereditary and additive.

Then χP(G;X) is multiplicative, i.e.,

χP(G tH;X) = χP(G;X) · χP(H;X)
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Deletion/contraction relations, I

Let G be an undirected graph, possibly with multiple edges and loops. For
e = {u, v} ∈ E(G) we denote by

• G−e the graph with

V (G−e) = V (G) and E(G−e) = E(G)− {e}.

• G/e the graph with

V (G/e) = (V (G)− {u, v}) ∪ {w}
where w 6∈ V (G), and

E(G/e) = (E(G)− {{a, u} : a ∈ V (G)} − {{a, v} : a ∈ V (G)})
∪{{a,w} : {a, u} ∈ E(G) or {a, v} ∈ E(G)})
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Deletion/contraction relations, II

The chromatic polynomial satisfies the following deletion/contraction rela-
tion:

χ(G;X) = χ(G−e;X)− χ(G/e;X)

Two graphs are similar if the have the same number n(G) of vertices, m(G)
of edges, and k(G) of connected components.

A graph polynomial χP(G;X) is a chromatic invariant
(aka a Tutte-Grothendieck invariant) if

χP(G;X) =


αn(G) if G has no edges

β · χP(G−e;X) if e is a loop

γ · χP(G/e;X) if e is a bridge

λ · χP(G−e;X) + µ · χP(G/e;X) otherwise
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Distinctive power of graph parameters

For graph G we denote by n(G) the number of vertices, m(G) the number of
edges and k(G) the number of connected components.

• Two graphs G1, G2 are similar if n(G1) = n(G2), m(G1) = m(G2) and
k(G1) = k(G2).

• Let f, g be two graph parameters. f is at least as distinctive as g (on
similar graphs) if for all (similar) graphs G1, G2 we have that f(G1) =
f(G2) implies g(G1) = g(G2).

We write g ≤d.p f , respectively f ≤s.d.p g.

• f and g have the same distinctive power (are d.p.-equivalent) if for all
graphs G1, G2

f(G1) = f(G2) iff g(G1) = g(G2).

• They have the same distinctive power up to similarity (are s.d.p.-equivalent)
if for all similar graphs G1, G2

f(G1) = f(G2) iff g(G1) = g(G2).
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The most general chromatic invariant

Theorem 4 (T. Brylawski)
There is chromatic invariant U(G;X1, . . . , X5) such that

• for every other chromatic invariant f we have f ≤s.d.p U .

• The Tutte polynomial T (G;X,Y ) is s.d.p-equivalent to U .

Two graphs G1 and G2 are T -equivalent if T (G1, X, Y ) = T (G2, X, Y ).

Theorem 5 (T. Brylawski)
There infinitely many pairs of non-isomorphic similar graphs G1 and G2 which
are T -equivalent.
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Are P-colorings chromatic invariants?

Observation: If two graphs G1 and G2 are non-isomorphic, there is graph
property P such G1 ∈ P and G2 6∈ P.

In fact P is even definable in first order logic FOL.

Theorem 6 (T. Kotek, JAM, E.V. Ravve)
(i) There are infinitely many FOL-definable properties P such that χP(G;X)

is not a chromatic invariant.

(ii) There are infinitely many FOL-definable properties P such that the graph
polynomials χP(G;X) are mutually s.d.p.-incomparable,
and therefore also d.p.-incomparable.

However, in (i) P is not explicitely given, and in (ii) P contains, up to iso-
morphism, just a single structure.

Can we do better?
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H-free graphs

Let H be a simple graph. A graph G is H-free if it does not contain H as an
induced subgraph.

We denote by Fr(H) the class of H-free graphs and note that Fr(H) is
FOL-definable, hereditary, and for H connected, also monotone.

We look at the FOL-Harary polynomial χFr(H)(G;X).

Theorem 7 (V. Rakita and JAM, 2017)
• If H is connected, χFr(H)(G;X) is multiplicative.

• If H is not a complete graph, χFr(H)(G;X) is not a chromatic invariant.

• There infinitely many pairs of graphs H,H ′ such that χFr(H)(G;X) and
χFr(H ′)(G;X) are s.d.p.-incomparable.
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Some open problems

• Which graph polynomials χP(G;X) are chromatic invariants?

• Is the chromatic polynomial the only graph polynomial χP(G;X)

which is a chromatic invariant?

• Find other infinite families X of graph properties

such that the polynomials χP(G;X),P ∈ X
are mutually s.d.p.-incomparable!

Back to overview
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Part II (i):

The complexity of evaluating the

chromatic polynomial χ(G;X)

Back to overview
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The complexity of the chromatic polynomial, I

Theorem:

• χ(G,0), χ(G,1) and χ(G,2) are P-time computable (Folklore)

• χ(G,3) is ]P-complete (Valiant 1979).

• χ(G,−1) is ]P-complete (Linial 1986).

Question:

What is the complexity of computing χ(G,X) for

X = X0 ∈ Q
or even for

X = X0 ∈ C?
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The complexity of the chromatic polynomial, II
Linial’s Trick

Let G1 ./ G2 denote the join of two graphs.

We observe that

χ(G ./ Kn, X) = (X)n · χ(G,X − n) (?)

Hence we get

(i) χ(G ./ K1,4) = 4 · χ(G,3)

(ii) χ(G ./ Kn,3 + n) = (n+ 3)n · χ(G,3)

hence for n ∈ N with n ≥ 3 it is ]P-complete.
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The complexity of the chromatic polynomial, III

We have a Dichotomy Theorem for the evaluations of χ(−, X):

(i) EASY(χ) = {a ∈ C : χ(−, a) ∈ P} = {0,1,2}
Moreover, in C this is a quasi-algebraic set (a finite boolean combination
of algebraic sets) of dimension 0.

(ii) HARD(χ) = {a ∈ C : χ(−, a) is χ(−; 3)-hard} = C− {0,1,2}
More precisely, they are at least as difficult as χ(−,3) via algebraic re-
ductions.

This is a quasi-algebraic set of dimension 1.

Dichotomy: there are no intermediate complexities, although, if P 6= P]P

there would be plenty of complexity levels in between.

In the sequel we speak of the Difficult Point Dichotomy (DPD).

How typical is DPD? Skip computational models
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Part II:(ii)

Issues with the computational model

Back to overview
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Turing complexity: P vs ]P

N. Linial L. Valiant

Let K be a fixed Turing computable subfield K ⊆ C.

(i) EASY(χ) = {a ∈ K : χ(−, a) ∈ P} = {0,1,2}

(ii) HARD(χ) = {a ∈ K : χ(−, a) is ]P-hard} = K − {0,1,2}

Problems:

(i) For a ∈ C− N the graph parameter χ(−; a) is not well defined
in the Turing model, and definitely is not in ]P.

(ii) The precise statement depends on the choice of K and its presentation
as a Turing computable field.
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Computing over the reals: PR vs ]PR

L. Blum, F. Cucker, M. Shub, S. Smale K. Meer

Here we use register machines over a ring R, for our discussion R = R or R = C. PR and
NPR are well defined, and there are PR-complete problems.

Counting classes are defined by counting solutions of systems of equations, but ]PR does not
differentiate between the ways one could have infinitely many solutions.

(i) EASY(χ) = {a ∈ K : χ(−, a) ∈ PR} = {0,1,2}

(ii) HARD(χ) = {a ∈ K : χ(−, a) is χ(−; 3)− hard} = R− {0,1,2}

Problems:

(i) What do we know about χ(−; 3)− hard-problems the BSS-model of computation?

(ii) Are they all in ]PR or in ]PC ?

Skip Metafinite
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Metafinite Model Theory

E. Graedel Y. Gurevich

A metafinite W -structure A over R is given by an underling set finite set [nA]
of nA elements, together with a finite set of functions W = {f1, . . . , fs} of arity
ρ(i)

fAi : [n]ρ(i) → R
.

Two metafinite W structures A,B are W -isomorphic if there is a bijection
α : nA → nB such that for each ρ(i)-tuple ā ∈ [nA]ρ(i) we have that

fBi (α(ā)) = fAi (α(ā)).

An R-parameter of a metafinite W -structures parametrized by s-tuples ā ∈ Rs
is a function P (A; ā) into R which is invariant under W -isomorphisms.

The chromatic polynomial of a graph is an R parameter of graphs.
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]PR vs ]PC

P. Buergisser F. Cucker

• (K. Meer) FPR ⊆ ]PR ⊆ FP]PR
R ⊆ EXPR.

• FPC ⊆ ]PC ⊆ FP]PC
C ⊆ EXPC.

• (Buergisser, Cucker) ]PR, FP]¶R
R and ]PC have complete problems for

polynomial time Turing reductions.

• However, the fine structure of ]PR and ]PC is not well understood.
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Counting in ]PC

Let G be a graphs of order n with V (G) = [n].

Let F (G; k) be the following set of equations:

xki − 1 = 0, i ∈ V (G)

and
k−1∑
d=0

xk−1−d
i xdj = 0, (i, j) ∈ E(G)

and ]F (G; k) the number of its solution over C.

Theorem: (D. Bayer) Let G be a graph and k ∈ N.

• G is k-colorable iff the system of equations F (G, k) has a solution.

• Furthermore, χ(G; k) · k! = ]F (G; k).
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What is the complexity spectrum of χ(−; a)

Let F be a recursive infinite field extending Q,
with polynomial time Turing-computable basic operations.

Upper bounds for χ(−; a)

χ(−; a) Turing BSS
F R C F R C

a = 0,1,2 P P P PF PR PC
a ∈ N− {0,1,2} ]P ]P ]P EXPF EXPR ]PC
a 6∈ N ]P undefined undefined EXPF EXPR FP]PC

C

Lower bounds for χ(−; a)

χ(−; a) Turing BSS
F R C F R C

a = 0,1,2 P P P PF PR PC
a ∈ N− {0,1,2} ]P ]P ]P PF PR PC
a 6∈ N ]P undefined undefined PF PR PC
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An unsatisfactory situation

• The statement that using χ(−; a) as an oracle with a 6∈ N allows us
to compute χ(−; b) for b ∈ N in polynomial time in the BSS model of
computation does not imply that computing χ(−; a) is hard in the BSS
model of computation.

• The mixing of two computational models is really meaningless.

• The traditional excuse that dealing with a fixed computable extension
F of Q makes a statement about the complexity in the Turing model
of computation in F for all a ∈ F, but does not address the issue for
a ∈ R−F.

• The same remarks apply also to other graph polynomial mentioned in
the sequel.

This was the topic of my talk at the workshop last year

The Classification Program of Counting Complexity

Go to thanks
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Part II (iii):

The Difficult Point Properties (DPP)

and the Difficult Point Dichotomy

Back to overview
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Difficult Point Property, I

Given a graph polynomial P (G, X̄) in n indeterminates X1, . . . , Xn

we are interested in the set HARD(P ).

(i) We say that P has the weak difficult point property (WDPP)
if HARD(P ) 6= ∅ then
there is a quasi-algebraic subset D ⊂ Cn of co-dimension ≤ n− 1
such that Cn −D ⊆ HARD(P ).

(ii) We say that P has the strong difficult point property (SDPP)
if HARD(P ) 6= ∅ then
there is a quasi-algebraic subset D ⊂ Cn of co-dimension ≤ n− 1
such that Cn −D = HARD(P ) 6= ∅ and D = EASY(P ).

In both cases EASY(P ) is of dimension ≤ n − 1, and for almost all points
ā ∈ Cn the evaluation of P (−, ā) is ]P-hard.

χ(G;λ) has the SDPP.
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Difficult Point Property, II

We compare WDPP and SDPP to Dichtomy Properties.

(i) We say that P has the dichotomy property (DiP) if

HARD(P ) ∪ EASY(P ) = Cn.

Clearly, if PC 6= NPC, HARD(P ) ∩ EASY(P ) = ∅.

(ii) WDPP is not a dichtomy property, but SDPP a dichotomy property.

(iii) The two versions of DPP have a quantitative aspect:

EASY(P ) is small.
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Graph polynomials with the DPP, I

SDPP: The Tutte polynomial (our paradigma).

SDPP: the cover polynomial C(G, x, y) introduced
by Chung and Graham (1995)
by Bläser, Dell 2007, Bläser, Dell, Fouz 2011

SDPP: the bivariate matching polynomial for multigraphs,
by Averbouch and JAM, 2007

WDPP: the Bollobás-Riordan polynomial, generalizing the Tutte polynomial
and introduced by Bollobás and Riordan (1999),
by Bläser, Dell and JAM 2008, 2010.

WDPP: the interlace polynomial (aka Martin polynomial) introduced by Mar-
tin (1977) and independently by Arratia, Bollobás and Sorkin (2000),
by Bläser and Hoffmann, 2007, 2008

Skip partition functions

Back to outline
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Partition functions as graph polynomials

• Let A ∈ Cn×n a symmetric and G be a graph. Let

ZA(G) =
∑

σ:V (G)→[n]

∏
(v,w)∈E(G)

Aσ(v),σ(w)

ZA is called a partition function.

• Let X be the matrix (Xi,j)i,j≤n of indeterminates.

Then ZX is a graph polynomial in n2 indeterminates,

ZA is an evaluation of ZX, and ZX is MSOL-definable.
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Partition functions have the SDPP

• J. Cai, X. Chen and P. Lu (2010),

building on A. Bulatov and M. Grohe (2005),

proved a dichotomy theorem for ZX where R = C.

• Analyzing their proofs reveals:

ZX satisfies the SDPP for R = C.

• There are various generalizations of this to Hermitian matrices,

M. Thurley (2009),

and beyond.

Back to outline
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Which graph polynomials of the form

χP(G;X)

have some form of a dychotomy property ?
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Part III: On the complexity

of generalized chromatic polynomials.

The univariate case

GHKMN, Advances in Applied Mathematics,

http://dx.doi.org/10.1016/j.aam.2017.04.005

Back to overview
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The complexity spectrum of a

univariate graph polynomial

We shall look at other univariate graph polynomials Q(G;X)

• EASY(Q) = {a ∈ C : Q(−, a) ∈ PC}

• For a graph polynomial Q(G;X) and a, b ∈ C let a <P
poly b if the graph

parameters Q(,−a) is algebraically reducible to Q(−, b) in polynomial time.

• HARD(Q) = {a ∈ C : Q(−, a0) is ]P-hard and Q(−, a0) <P
poly Q(−, a)} for

some a0.

Here ]P-hard is in the Turing model and <P is in BSS.

• For which graph polynomials do we have a dichotomy?

What is the structure of the partial order defined by a <P
poly b for various

univariate graph polynomials P (G;X)?
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Easy evaluations

Some graph polynomials are always easy to evaluate:

• The characteristic polynomial and the Laplacian polynomial, because
they are defined as the characteristic polynomial of the adjacency, resp.
the indicidence matrix of the graph, which is a determinant.

• χconnected(G; k) is the number of vertex colorings with at most k colors
such that neighboring vertices have the same color.

This is clearly the polynomial kκ(G) where κ(G) is the number of con-
nected components of G.

This gives us that SDPP holds in a trivial way

(as there are no difficult points).
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Proper edge colorings χedge(G;X), I

• A proper edge coloring f of a graph G,
f : E(G)→ [k] with at most k colors,
is an edge coloring where no two neighboring edges have the same color.

• f is a proper edge coloring of G iff f is is a proper vertex coloring of the
line graph L(G).

• Therefore, the number χedge(G; k) of proper edge colorings of G with at
most k colors is a polynomial in k.
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Proper edge colorings χedge(G;X), II

Surprisingly, the complexity of counting proper edge colorings was proven
]P-hard only recently:

Theorem: (J. Y. Cai, H. Guo, T. Williams, 2014):

• ]-EdgeColoring is ]P-hard over planar r-regular graphs for all k ≥ r ≥ 3.

• It is trivially tractable when k ≥ r ≥ 3 does not hold.

J. Y. Cai, H. Guo, T. Williams

The complexity of counting edge colorings and a dichotomy

for some higher domain Holant problems,

FOCS 2014 (full paper on arXiv http://arxiv.org/pdf/1404.4020.pdf, 75 pages)

Problem: Find an elementary proof of the complexity result.
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Proper edge colorings χedge(G;X), III

What about evaluation of χedge(G;X) for X = a, a ∈ C− N?

We could not find a variant of Linial’s Trick for χedge(G;X).

Equivalently, what about the complexity of the chromatic polynomial re-
stricted to line graphs?

Line graphs can be characterized using 9 forbidden induced subgraphs.

The problem is wide open.

File:s-part3 45



Logic and Computational Complexity, Shonan Village September 21, 2017

There are two problems to be solved:

• Show that for at least some value X = a0 the evaluation of P (G;X) is
hard.

• Show that for most values X = a the evaluation is at least as hard as for
X = a0.

Both problems may turn out to be new challenges!
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Convex colorings

Joint work with A. Goodall and S. Noble

A convex (vertex) coloring with k colors is convex if every monochromatic
set of vertices induces a connected graph.

Theorem: The problem of counting the number of colorings of the vertices of
a graph with at most two colors, such that the color classes induce connected
subgraphs is ]P-complete.

A. Goodall and S. Noble, 2008 (http://arxiv.org/pdf/1404.4020.pdf)

I had posed this as an open problem at L. Lovasz’ 60th birthday conference,
after trying to prove it and discussing it with Peter Winkler.

Here the reduction is simple:

χconvex(G tK1;X + 1) = X · χconvex(G;X)

Computing χconvex(G; 0) and χconvex(G; 1) is easy.

This gives us that SDPP holds.

File:s-part3 47



Logic and Computational Complexity, Shonan Village September 21, 2017

Complete and harmonious colorings

Joint work with T. Kotek

A coloring is

• complete if every pair of colors occurs along some edge.

• harmonious if every pair of colors occurs
at most once along some edge.

• That χharm(G; k) is a polynomial in k, was shown by B. Zilber and JAM.

• χcomplete(G; k) is not a polynomial in k.

The exact complexity for fixed k seemingly is open......
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Harmonious colorings, continued.

Proposition: For every k ∈ N χharm(−; k) is easy to compute for k ∈ N,
because there are only finitely many graphs without isolated vertices which
admit a harmonious coloring with k-colors.

However, this is not uniform: For each k a different polynomial time Turing
machine is used.

Theorem: For each x ∈ C− N the evaluation of χharm(G;x) is ]P-hard.

This gives us that SDPP does not hold (N is not semi-algebraic) for har-
monious colorings.

However, DPD does hold.
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Harmonious colorings, proof, I

We show that for each x ∈ C− N the evaluation of χharm(G;x) is ]P-hard.

G G1 S(G)

We add a red vertex on each edge of G (making two black edges out of it)
and then add red edges such that the red vertices form a clique.

First we note that

χhar(S(G); k + e) = χ(G; k) ·
(k + e

e

)
e!

where e = |E(G)| and χ(G; k) is the chromatic polynomial.
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Harmonious colorings, proof, II

• Now for k = a we have

χhar(S(G); a)(
a
e

)
e!

= χ(G; a− e)

• It remains to be shown that

χ(G; a− e)
is is ]P-hard for every a ∈ C− N.

• We use Linial’s Trick:

Let v = |V (G)| and |E(G ./ K1)| = e+ v:

χ(G ./ K1; a− (e+ v) + 1) = (a− (e+ v) + 1) · χ(G, a− (e+ v))

Which can be used for every a ∈ C− N.
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mcc(t)-colorings

Let f : V → [k] be an vertex-coloring and t ∈ N.

f is an mcc(t)-coloring of G with k colors, if all the connected components of
a monochromatic set have size at most t.

N. Alon, G. Ding, B. Oporowski, and D. Vertigan. Partitioning into graphs with only small

components. Journal of Combinatorial Theory, Series B, 87:231–243, 2003.

Theorem: (JAM, B. Zilber) Counting the number of mcc(t)-colorings with at
most k colors is a polynomial in k but not in t, and is denoted by χmcc(t)(G;X).
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mcc(t)-colorings

Joint work with Miki Hermann

Theorem: For every t ∈ N+, computing χmcc(t)(G; 2) is ]P-hard.

Proof: Reduction to ]NAEkSAT.

]NAEkSAT is ]P-complete for k ≥ 3 by

Creignou, Nadia, and Miki Hermann. ”Complexity of generalized satisfiability counting prob-

lems.” Information and Computation 125.1 (1996): 1-12.

We failed to see how to use a version of Linial’s Trick.

We: A. Goodall, M. Hermann, T. Kotek, JAM and S. Noble.

Open Problem: What is the full complexity spectrum of χmcc(t)(G; 2) for
t ≥ 2?
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DU(H)-colorings, I

In our attempt to determine the complexity spectrum of χmcc(t)(G;X) we
studied DU(H)-colorings.

Here H is a connected graph and an edge coloring f : V (G) → [k] is an
DU(H)-coloring if each color set induces a disjoint union of copies of H.

• If H = K1 these are the proper colorings.

• χDU(H)(G; k) is a polynomial in k.

• Furthermore, every DU(Kt) coloring is also a mcc(t)-coloring, and

χDU(Kt)(G; k) ≤ χmcc(t)(G; k).

Theorem: For every t ∈ N+ evaluating χDU(Kt)(G; 2) is ]P-complete.

What remains is a version of Linial’s Trick.
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DU(H)-colorings, II

Let v ∈ V (H). We define 2H,v(G) to be the graph with vertex set V (G)tV (H),
and edge set E(G) t E(H) t V (G)× {v}.

Let H be a connected graph.

(i) χDU(H)(2H,v(G); k) = k · χDU(H)(G; k − 1).

(ii) For every a, b ∈ N and b > a, χDU(H)(G; a) is polynomial time reducible
to χDU(H)(G; b).

(iii) For every a0 ∈ F − N, computing the coefficients of χDU(H)(G;X) is
polynomial time reducible to χDU(H)(G; a0).

Show proof

Skip proof
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Proof for DU(H)-colorings

Proof:
(i) All the vertices of V (H) have to be colored by the same color but differ-
ently from the vertices in V (G).
(ii) Apply (i) b− a many times.
(iii) Let G0 = G, Gi+1 = 2H,v(Gi). Using χDU(H)(−; a0) we can compute
χDU(H)(Gi; a0) for sufficiently many i’s and then use Lagrange Interpolation
to compute the coefficients of χDU(H)(G;X). Q.E.D.
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More variations on coloring, I

More coloring polynomials in Z[k]:

* injective: f is injectiv on the neighborhood of every vertex.
G. Hahn and J. Kratochvil and J. Siran and D. Sotteau, On the injective chromatic

number of graphs, Discrete mathematics, 256.1-2, (2002), 179-192.

* path-rainbow: Let f : E → [k] be an edge-coloring. f is path-rainbow if
between any two vertices u, v ∈ V there as a path where all the edges
have different colors.

Rainbow colorings of various kinds arise in computational biology

Rainbow connection in graphs, G. Chartrand and G.L. Johns and K. McKeon A and P.

Zhang, Mathematica Bohemica, 133.1, (2008), 85-98.
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More variations on coloring, II

Let P be any graphs property and let n ∈ N.

We can define coloring functions f : V → [k] by requiring that the union of
any n color classes induces a graph in P.

• For n = 1 and P the empty graphs G = (V, ∅) we get the proper colorings.

• For n = 1 and P the connected graphs we get the convex colorings.

• For n = 1 and P the graphs which are disjoint unions of graphs of size
at most t, we get the mcct-colorings.

• For n = 2 and P the acyclic graphs we get the acyclic colorings,
introduced in: B. Grunbaum, Acyclic colorings of planar graphs, Israel J. Math. 14
(1973), 390-412 and further studied in N.Alon , C. Mcdiarmid, B. Reed, Acyclic coloring
of graphs, Random Structures & Algorithms 2.3 (1991) 277-288.

Theorem: Let χP,n(G, k) be the number of colorings of G with k colors such
that the union of any n color classes induces a graph in P.

Then χP,n(G, k) is a polynomial in k.
Back to outline
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More univariate graph polynomials, III

CP-coloring P1 P2

trivial all graphs all graphs
proper edgeless graphs all graphs
acyclic edgeless graphs forests
convex connected graphs all graphs
harmonious edgeless graphs at most one edge
mcct conn. cpts size ≤ t all graphs
DU(H) disjoint union of ∼= H all graphs
t-imp max. degree t all graphs
co-coloring clique or edgeless all graphs
AH-coloring AH all graphs

P1-colorings where the union of any two color classes is in P2. In the last line

P1 is an additive induced hereditary property (closed under taking induced

subgraphs and disjoint unions).
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A good test problem: H-free colorings, I

We look at the generalized chromatic polynomial χH−free(G; k), which, for
k ∈ N counts the number of H-free colorings of G.

• For H = K2, χH−free(G; k) = χ(G; k), and we have the SDPP.

• For H = K3, χH−free(G; k) counts the triangle free-colorings.
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A good test problem: H-free colorings, II

• From [ABCM98] it follows that χH−free(G; k) is #P-hard for every k ≥ 3
and H of size at least 2.

D. Achlioptas, J. Brown, D. Corneil, and M. Molloy. The existence of uniquely -G

colourable graphs. Discrete Mathematics, 179(1-3):1–11, 1998.

• In [Achlioptas97] it is shown that computing χH−free(G; 2) is NP-hard for
every H of size at most 2.

D. Achlioptas. The complexity of G-free colourability. DMATH: Discrete Mathematics,

165, 1997.

• Characterize H for which χH−free(G; k) satisfies the SDPP (WDPP).

Back to outline
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Conclusions:

Challenges and summary
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The challenge

• For which graph properties P
does χP(G;X) have the Difficult Point Dichotomy?

• Can we show DPD for infinitely many
essentially different graph properties P?

• Can we show DPD for all graph properties P?

• Or at least for graph properties recognizable in (non-deterministic) poly-
nomial time ?

I am tempted to conjecture that the answer is positive.

But I have been proven wrong with previous similar conjectures.

Back to overview
Go to thanks
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Graph polynomials with known full complexity spectrum

From GHKMN, Advances in Applied Mathematics,

http://dx.doi.org/10.1016/j.aam.2017.04.005

G-polynomial E = EASY(P ) ]PHARD(P ) OTHER Reference

χtrivial(G;X) Etrivial = F, u ∅ ∅ trivial
pA(G;X) Echar = F, u ∅ ∅ folklore
gm(G;X) Ematch = {0} F− Ematch ∅ folklore
χ(G;X) Echrom = {0,1,2} F− Echrom ∅ Theorem 1.3
χharm(G;X) Eharm = N, nu F− Eharm ∅ Theorem 3.2
χconvex(G;X) Econvex = {0,1} F− Econvex ∅ Theorem 3.6
χDU(Kα)(G;X) EDU(Kα) = {0,1} F− EDU(Kα) ∅ Theorem 3.16
α ≥ 2

Full complexity spectra, u=uniformly, nu=non-uniformly
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Graph polynomials with known discrete complexity spectrum

From GHKMN, Advances in Applied Mathematics,

http://dx.doi.org/10.1016/j.aam.2017.04.005

G-polynomial E = EASY(P ) ]PHARD(P ) OTHER Reference

χedge(G;X) Eedge = {0,1} N− Eedge ∅ Theorem 5.2
χmcct(G;X) Emcct = {0,1} N− Emcct ∅ Theorem 5.8
t ≥ 2, k ≥ 2

χH−free(G;X) EH−free = {0,1} N− {0,1,2} {2} (+) Theorem 5.10

Discrete complexity spectra only, H of size 2, (+) only NP-hard is known
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Thank you for your attention!

Back to overview
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