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o First half:

o Continuation of Mikotaj's talk:
Lifting the pathwidth case to the treewidth case.

@ Second half:

o Statement of the conjecture for cliquewidth.
e Highlight of the proof for linear cliquewidth (with MB and MG).
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Part |

from pathwidth to treewidth




o Pathwidth case:
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o Pathwidth case:

Decomposition as a word over a finite alphabet of operations.

Design abstraction of a subword as a finite info about it.

Use Simon'’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

o Combine transductions bottom-up on the factorization.

Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

@ ldea: Use variants of Simon's factorization for trees.

o Generalization to trees due to Colcombet.
o QOutcome: Completely does not work.
e Reason: Focus on paths in trees, not on (multi-)contexts.

e Final approach: Reduce the treewidth case to the pathwidth case.
o Caveat: Not a robust approach.
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Guidance systems: intuition

@ Problem: We cannot quantify over sets of k-tuples of vertices.
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Guidance systems: intuition

@ Problem: We cannot quantify over sets of k-tuples of vertices.
@ But we can quantify over sets of single vertices.

o ldea: Encode interesting k-tuples in single vertices so that given a
vertex u, the k-tuple associated with u can be recovered in MSO.
o Quantification over k-tuples ~» Quantification over single vertices
o Note: Encoding can use some (nondeterministically guessed)
coloring of the graph.

e Guidance system:
Combinatorial object that provides this functionality.
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Guidance systems

Guidance system

A guidance system A in a graph G is a tuple of rooted forests
(F1, Fo, ..., Fi)

where V(F;) = V(G) and E(F;) C E(G) for each i.

@ Note: Forests may overlap!
@ We think of each tree as oriented towards its root.
@ For each u € V(G), define k-tuple A(u) as

Nu) = (vi,va, .o, k),

where v; is the root of the tree of F; that contains u.
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u

Mi. Pilipczuk Courcelle’s Conjecture 11 6/25



Guidance systems

Guidance system

A guidance system A in a graph G is a tuple of rooted forests
(F1, Fo, ..., Fi)

where V(F;) = V(G) and E(F;) C E(G) for each i.

@ Note: Forests may overlap!
@ We think of each tree as oriented towards its root.
@ For each u € V(G), define k-tuple A(u) as

ANu) = (vi,va, ooy Vi),

where v; is the root of the tree of F; that contains u.

vi 0" ‘3
N

A

@ A vertex subset X is captured by A if X C A(u) for some vertex u.
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Capturing tree decompositions

@ A captures a tree decomposition iff A captures all its bags.
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Guidance systems and MSO

@ Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.
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Guidance systems and MSO

@ Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

@ Obs: To guess a guidance system of size ¢, one may quantify
existentially ¢ subsets of edges and ¢ subsets of vertices.

For every graph G of pathwidth < k, some tree decomposition of G is
captured by a guidance system of size f (k).

o Original proof:
o This statement is proved using Simon'’s factorization.
o Then guess a guidance system and piece together a decomposition.

@ Intuition: Families of subsets captured by small guidance systems
can be efficiently guessed in MSO.
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Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that
@ the torso of every bag of s has pathwidth bounded by 2k + 1; and
o the adhesions of s are captured by a guid. system of size 4k3 + 2k.

@ Torso of S in G: take G[S] and turn the neighbors of every conn.
component of G — S into a clique.
@ Having this, the proof follows easily.
o Construct the decomposition s by guessing a guidance system
capturing its adhesions.
o Apply the transduction for pathwidth < 2k + 1 on each bag.
o Combine all the obtained decompositions along s.
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@ Fix some tree decomposition tg of width k.
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Requests

o Fix some tree decomposition tg of width k.

o Wilog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

Request: Pair of vertices (u, v) from the adhesion.

Realization: u-v path through vertices in the component below.

Goal: Partition of tg into subtrees so that:
o The torso of the union of bags in each subtree has bnd pathwidth.
o We can realize all request in adhesions between pieces using a path
system that can be colored with a bounded number of colors.

Idea: Extract pieces by a top-down induction.
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@ Assumptions:

o A subtree t of tp, with top adhesion S.
e A multiset R of < p(k) requests on pairs in S.

Mi. Pilipczuk Courcelle’s Conjecture 11 11/25



Induction

@ Assumptions:
o A subtree t of tp, with top adhesion S.
o A multiset R of < p(k) requests on pairs in S.
@ Goal: A prefix X of t such that
e the torso of the union of bags in X has bnd pathwidth; and

Mi. Pilipczuk Courcelle’s Conjecture 11 11/25



@ Assumptions:

o A subtree t of tp, with top adhesion S.

o A multiset R of < p(k) requests on pairs in S.
@ Goal: A prefix X of t such that

o the torso of the union of bags in X has bnd pathwidth; and
o requests from R U (3) can be realized with < p(k) requests imposed
on every component below X.

Mi. Pilipczuk Courcelle’s Conjecture 11 11/25



@ Assumptions:

o A subtree t of tp, with top adhesion S.

o A multiset R of < p(k) requests on pairs in S.
@ Goal: A prefix X of t such that

o the torso of the union of bags in X has bnd pathwidth; and
o requests from R U (3) can be realized with < p(k) requests imposed
on every component below X.

@ Goal achieved =
Paths can be colored greedily top-down with p(k) + (%) colors.

Mi. Pilipczuk Courcelle’s Conjecture 11 11/25



@ Assumptions:

o A subtree t of tp, with top adhesion S.

o A multiset R of < p(k) requests on pairs in S.
@ Goal: A prefix X of t such that

o the torso of the union of bags in X has bnd pathwidth; and
o requests from R U (3) can be realized with < p(k) requests imposed
on every component below X.

o Goal achieved =
Paths can be colored greedily top-down with p(k) + (%) colors.

o Every path in conflict with < p(k) + (§) — 1 other paths.

Mi. Pilipczuk Courcelle’s Conjecture 11 11/25



@ Assumptions:

o A subtree t of tp, with top adhesion S.

o A multiset R of < p(k) requests on pairs in S.
@ Goal: A prefix X of t such that

o the torso of the union of bags in X has bnd pathwidth; and
o requests from R U (3) can be realized with < p(k) requests imposed
on every component below X.

o Goal achieved =
Paths can be colored greedily top-down with p(k) + (%) colors.

o Every path in conflict with < p(k) + (§) — 1 other paths.
o Caveat: Not quite true, needs a slightly different choice of kings.
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Motivating example

@ Consider the following tree decomposition of a path,
with p(k) requests on the top vertices.
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Motivating example

@ Consider the following tree decomposition of a path,
with p(k) requests on the top vertices.

@ In this case, X should be the whole t.
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Strategy for constructing X

o If |R| < p(k) — \(g)| then we can fix X = {root}, route requests
anyhow, and apply the induction assumption in children.
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Strategy for constructing X

o If |IR| < p(k) — |(§)| then we can fix X = {root}, route requests
anyhow, and apply the induction assumption in children.

o Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

From now on: R = R U (g) has more than p(k) requests.
Key idea: Let (u, v) be the request with highest multiplicity.
Say (u,v) is requested ¢ > p(k)/(5) times.

Goal: Find X so that (u, v)-requests can be routed in such a
manner that each component below X gets load < ¢/2 from them.
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Strategy for constructing X

If IR| < p(k) — |(§)| then we can fix X = {root}, route requests
anyhow, and apply the induction assumption in children.

o Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

From now on: R = R U (g) has more than p(k) requests.
Key idea: Let (u, v) be the request with highest multiplicity.
Say (u,v) is requested ¢ > p(k)/(5) times.

Goal: Find X so that (u, v)-requests can be routed in such a
manner that each component below X gets load < ¢/2 from them.

If achieved, then remaining requests are routed arbitrarily, and

p(k) + (g) - ';((k)) < p(k)

for a quartic polynomial p(k).
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Constructing X

@ Construct the following hypergraph H:

o The vertex set is the root bag.
o Each child node gives rise to a hyperedge equal to the adhesion.
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@ Note: Edges of the graph are in leaves.
e Paths in H: Alternating sequences of vertices and hyperedges.

o Flow-cut duality: If there is no hyperedge cutting v from v, then
there are two hyperedge-disjoint paths from u to v.
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Constructing X

@ Construct the following hypergraph H:
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Constructing X

@ Construct the following hypergraph H:

o The vertex set is the root bag.
o Each child node gives rise to a hyperedge equal to the adhesion.

Note: Edges of the graph are in leaves.
Paths in H: Alternating sequences of vertices and hyperedges.

Flow-cut duality: If there is no hyperedge cutting u from v, then
there are two hyperedge-disjoint paths from u to v.

Then we can split the (u, v)-requests equally between them.
Ergo: If no cutedge, then again X = {root} does the job.
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Constructing X

@ Otherwise, there is a sequence of cutedges.
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o Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
o Ergo: We can have load ¢/2 on all hyperedges apart from cutedges.
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Constructing X

@ Otherwise, there is a sequence of cutedges.
o Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
o Ergo: We can have load ¢/2 on all hyperedges apart from cutedges.
o Construction: Extend X to the roots of those subtrees that
correspond to cutedges, and recurse.

o Observation: After unraveling all the recursive calls and examining
the torso of [ J X, we see one long path decomposition.
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Constructing X

@ Otherwise, there is a sequence of cutedges.
o Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
o Ergo: We can have load ¢/2 on all hyperedges apart from cutedges.
@ Construction: Extend X to the roots of those subtrees that
correspond to cutedges, and recurse.
o Observation: After unraveling all the recursive calls and examining
the torso of [J X, we see one long path decomposition.

e This is exactly what happens in the motivating example.

ey O e
€ Ot W . & .
source . : : sink
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o Support: Graphs with < k interfaces, numbered from 1 to k.
o Operations: introduce, forget, join, leaf.

o Cliquewidth algebra:

o Support: k-colored graphs, colors from 1 to k.
o Operations:
@ A single Vertex of color i.
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j.
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Cliquewidth

o Treewidth algebra:

o Support: Graphs with < k interfaces, numbered from 1 to k.
o Operations: introduce, forget, join, leaf.

o Cliquewidth algebra:

o Support: k-colored graphs, colors from 1 to k.
o Operations:
@ A single Vertex of color i.
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j.
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.
Linear cliquewidth: Vertices have to be added one by one.

o Add Vertex instead of Vertex, Connect, and Disjoint Union.
g8 00
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VR-recognizability

@ We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25



VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Mpyhill-Nerode relation for a graph language L:

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25



VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
e k-colored graphs G; and G, are L-equivalent if for every context H,

HoG el & HoGy€e L.

=

&\ L&

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25



VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
o k-colored graphs G; and G, are L-equivalent if for every context H,

HoG €L & HoGye L.

e L is recognizable if for each k this relation has finite index.

=

&\ L&

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25



VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
o k-colored graphs G; and G, are L-equivalent if for every context H,

HoG €L & HoGye L.

o L is recognizable if for each k this relation has finite index.

@ Homomorphism definition:

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25



VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
o k-colored graphs G; and G, are L-equivalent if for every context H,

HoG €L & HoGye L.

o L is recognizable if for each k this relation has finite index.

@ Homomorphism definition:

o Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.
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VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
o k-colored graphs G; and G, are L-equivalent if for every context H,

HoG €L & HoGye L.

o L is recognizable if for each k this relation has finite index.

@ Homomorphism definition:

o Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.
o Homomorphism h recognizes L if L = h™*(S) for some S C A.

Gk ——— A
p—1
L +«—— S

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25



VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
o k-colored graphs G; and G, are L-equivalent if for every context H,

HoG €L & HoGye L.

o L is recognizable if for each k this relation has finite index.

@ Homomorphism definition:

o Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.

o Homomorphism h recognizes L if L = h™(S) for some S C A.

e L is recognizable if for each k it is recognized as above.

Gk ——— A
p—1
L +«—— S

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25



Conjecture for cliquewidth

Let L be a language of graphs of cliquewidth < k, for some k € N.
Then L is definable in CMSO; iff it is recognizable.
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Let L be a language of graphs of cliquewidth < k, for some k € N.
Then L is definable in CMSO; iff it is recognizable.

(=) Follows as in the treewidth case.
(<=) The same issue as in the treewidth case.

For each k € N there is an MSO; transduction that given a graph of
cliquewidth at most k outputs some its clique decomposition.

v
Theorem [BGP,17+4]

For each k € N there is an MSO; transduction that given a graph of
linear cliquewidth at most k outputs some its clique decomposition.
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Conjecture for cliquewidth

Let L be a language of graphs of cliquewidth < k, for some k € N.
Then L is definable in CMSO; iff it is recognizable.

(=) Follows as in the treewidth case.
(<=) The same issue as in the treewidth case.

For each k € N there is an MSO; transduction that given a graph of
cliquewidth at most k outputs some its clique decomposition.

v
Theorem [BGP,17+4]

For each k € N there is an MSO; transduction that given a graph of
linear cliquewidth at most k outputs some its clique decomposition.

Corollary [BGP.17+]

Let L be a language of graphs of linear cliquewidth < k, for some k € N.
Then L is definable in CMSO; iff it is recognizable.
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Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.
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Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

o Strategy:

o View linear clique decomposition as a word over instructions.

o Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

o Construct Simon's factorization of the linear clique decomposition.

o Combine transductions by a bottom-up induction.

o Key: Implement binary and idempotent nodes.

o Message:
e The plan above can be implemented.
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Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.
o Strategy:

o View linear clique decomposition as a word over instructions.

o Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

o Construct Simon's factorization of the linear clique decomposition.

o Combine transductions by a bottom-up induction.

o Key: Implement binary and idempotent nodes.
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e The plan above can be implemented.
o Far more technical details than in the pathwidth case.
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Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.
o Strategy:

o View linear clique decomposition as a word over instructions.

o Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

o Construct Simon's factorization of the linear clique decomposition.

o Combine transductions by a bottom-up induction.

o Key: Implement binary and idempotent nodes.

o Message:

e The plan above can be implemented.
o Far more technical details than in the pathwidth case.
e Lack of combinatorial abstraction is a nuisance.
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Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:
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Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:

e Recolor according to a function ¢: [k] — [K].
o Add vertex of color i and adjacent to colors X C [K].

@ k-derivation corresponds to a word of instructions, and consists of:
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Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:

e Recolor according to a function ¢: [k] — [K].
o Add vertex of color i and adjacent to colors X C [K].

@ k-derivation corresponds to a word of instructions, and consists of:
o the underlying k-colored graph G;

past

e o e o o
° ° ° oo |
° °
© 0 o ° ° °
o0 e o e © 0 00 ©
o © oo © —+
L4 ee ° ° ° o
e oo oo oo
°
LY ° e ° el .
o o © oo °® ° o
o o o °, %o oo OO o
o ) oo [ -+
o o o oo o 0o
oo oo ° o ® %o
. LS
. . .
. o 0
. o o
. ° )
Mi. Pilipczuk Courcelle’s Conjecture |l

future



Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:

e Recolor according to a function ¢: [k] — [K].
o Add vertex of color i and adjacent to colors X C [K].

@ k-derivation corresponds to a word of instructions, and consists of:
o the underlying k-colored graph G;
e for each u € G, its profile A\(v) C [K];
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Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:
e Recolor according to a function ¢: [k] — [K].
o Add vertex of color i and adjacent to colors X C [K].
@ k-derivation corresponds to a word of instructions, and consists of:
o the underlying k-colored graph G;
o for each u € G, its profile A\(v) C [K];
e recoloring ¢: [k] — [K].
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Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:
e Recolor according to a function ¢: [k] — [K].
o Add vertex of color i and adjacent to colors X C [K].
@ k-derivation corresponds to a word of instructions, and consists of:
o the underlying k-colored graph G;
o for each u € G, its profile A\(v) C [K];
e recoloring ¢: [k] — [K].

@ Derivations have a natural semigroup structure.

future

\ e olp :o g Oziﬂ
} o0 .'.' -.- -.-- e .
1\ °° oo 0%le° 10%
\') o0 e @ eoe .: °

)
o
°
°
ole
°
°
o
o
°
o o le
00O |®
ool e
o
o
e
°
°
l

~
Y [ ) © o —+—
o o o io o o
\ oo (o0 ° o ® %o
. LS
.o . . R o e
\ hd hd J
profiles
Mi. Pilipczuk Courcelle’s Conjecture |l



Binary Lemma

For two k-derivations o1, 02, we have
dew(oy - 02) < f(dew(o1), dew(o2)).
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For two k-derivations o1, 02, we have
dew(oy - 02) < f(dew(o1), dew(o2)).

@ Proof: We are given the underlying graph G of o1 - 0».
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Binary Lemma

For two k-derivations o1, 05, we have
dew(oy - 02) < f(dew(o1), dew(o2)).

Proof: We are given the underlying graph G of o7 - 05.
Guess the partition of G into G; and G;.
Apply transductions to G; and G, obtaining clique decompositions.
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Binary Lemma

For two k-derivations o1, 05, we have
dew(oy - 02) < f(dew(o1), dew(o2)).

Proof: We are given the underlying graph G of o7 - 05.

Guess the partition of G into G; and G;.

Apply transductions to G; and G, obtaining clique decompositions.
Cut between G; and G, has modular width at most 2.

Enrich decompositions with neighborhoods on the other side.
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Binary Lemma

For two k-derivations o1, 05, we have
dew(oy - 02) < f(dew(o1), dew(o2)).

Proof: We are given the underlying graph G of o7 - 05.

Guess the partition of G into G; and G;.

Apply transductions to G; and G, obtaining clique decompositions.
Cut between G; and G, has modular width at most 2.

Enrich decompositions with neighborhoods on the other side.
Combine. : O

e 6 6 6 o o
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Abstraction and Idempotent Lemma

@ Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let 01,...,0, be k-derivations with same idempotent abstraction. Then

dew(oy -+ 0p) < f(r_n:F»]( dew(o;)).
€ln
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Abstraction and Idempotent Lemma

@ Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let 01,...,0, be k-derivations with same idempotent abstraction. Then

dew(oy -+ 0p) < f(r_n:Fn]( dew(o;)).
€ln

@ Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size < f(k).
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Abstraction and Idempotent Lemma

@ Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let 01,...,0, be k-derivations with same idempotent abstraction. Then

dew(oy -+ 0p) < f(r_n:Fn]( dew(o;)).
€ln

@ Intuition: We can pack into abstraction all information that is
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Abstraction and Idempotent Lemma

@ Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let 01,...,0, be k-derivations with same idempotent abstraction. Then

dew(oy -+ 0p) < f(r_n:F»]( dew(o;)).
€ln

@ Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size < f(k).
@ In our case:

o All o; use the same idempotent recoloring ¢.
o In all o; the set of nonempty cells is the same.
o We keep some information about paths between the cells.
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Definable Order Lemma

Let 01,...,0, be k-derivations with the same idempotent abstraction.
Then there is some flip H of o7 - - - 0, such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

@ Using the Definable Order Lemma:

o Guess partition into cells and the flip.

o Interpret the block order in each connected component.

o Apply the assumed transductions to each block in parallel.
o Combine everything along the block order.

@ Proving the Definable Order Lemma:
o Analyze interactions between cells.
o Flip: turn full adjacencies into full non-adjacencies to make
connections local.
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@ Thank you for your attention!
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