Courcelle’'s Conjecture, part Il:

treewidth and cliquewidth

Michat Pilipczuk’

Based on a joint work with Mikotaj Bojanczyk and Martin Grohe
TInstitute of Informatics, University of Warsaw, Poland

Shonan Meeting on Logic and Complexity Theory,
September 18", 2017

Mi. Pilipczuk Courcelle’s Conjecture |l

o First half:

o Continuation of Mikotaj's talk:
Lifting the pathwidth case to the treewidth case.

@ Second half:

o Statement of the conjecture for cliquewidth.
e Highlight of the proof for linear cliquewidth (with MB and MG).

Mi. Pilipczuk Courcelle’s Conjecture 11 2/25

Part |

from pathwidth to treewidth

o Pathwidth case:

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:
o Decomposition as a word over a finite alphabet of operations.

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:

o Decomposition as a word over a finite alphabet of operations.
e Design abstraction of a subword as a finite info about it.

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:
o Decomposition as a word over a finite alphabet of operations.
o Design abstraction of a subword as a finite info about it.
e Use Simon'’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon'’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

o Combine transductions bottom-up on the factorization.

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.

Use Simon'’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

o Combine transductions bottom-up on the factorization.

Key: Efficient composition of transductions in the idempotent nodes.

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:

Decomposition as a word over a finite alphabet of operations.

Design abstraction of a subword as a finite info about it.

Use Simon'’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

o Combine transductions bottom-up on the factorization.

Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:

Decomposition as a word over a finite alphabet of operations.

Design abstraction of a subword as a finite info about it.

Use Simon'’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

o Combine transductions bottom-up on the factorization.

Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

@ ldea: Use variants of Simon's factorization for trees.

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:

Decomposition as a word over a finite alphabet of operations.

Design abstraction of a subword as a finite info about it.

Use Simon'’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

o Combine transductions bottom-up on the factorization.

Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

o ldea: Use variants of Simon's factorization for trees.
o Generalization to trees due to Colcombet.

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:

Decomposition as a word over a finite alphabet of operations.

Design abstraction of a subword as a finite info about it.

Use Simon'’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

o Combine transductions bottom-up on the factorization.

Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

@ ldea: Use variants of Simon's factorization for trees.

o Generalization to trees due to Colcombet.
e Outcome: Completely does not work.

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:

Decomposition as a word over a finite alphabet of operations.

Design abstraction of a subword as a finite info about it.

Use Simon'’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

o Combine transductions bottom-up on the factorization.

Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

@ ldea: Use variants of Simon's factorization for trees.

o Generalization to trees due to Colcombet.
o QOutcome: Completely does not work.
e Reason: Focus on paths in trees, not on (multi-)contexts.

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:

Decomposition as a word over a finite alphabet of operations.

Design abstraction of a subword as a finite info about it.

Use Simon'’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

o Combine transductions bottom-up on the factorization.

Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

@ ldea: Use variants of Simon's factorization for trees.

o Generalization to trees due to Colcombet.
o QOutcome: Completely does not work.
e Reason: Focus on paths in trees, not on (multi-)contexts.

e Final approach: Reduce the treewidth case to the pathwidth case.

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

o Pathwidth case:

Decomposition as a word over a finite alphabet of operations.

Design abstraction of a subword as a finite info about it.

Use Simon'’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

o Combine transductions bottom-up on the factorization.

Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

@ ldea: Use variants of Simon's factorization for trees.

o Generalization to trees due to Colcombet.
o QOutcome: Completely does not work.
e Reason: Focus on paths in trees, not on (multi-)contexts.

e Final approach: Reduce the treewidth case to the pathwidth case.
o Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture 11 4/25

Guidance systems: intuition

@ Problem: We cannot quantify over sets of k-tuples of vertices.

Mi. Pilipczuk Courcelle’s Conjecture 11 5/25

Guidance systems: intuition

@ Problem: We cannot quantify over sets of k-tuples of vertices.

@ But we can quantify over sets of single vertices.

Mi. Pilipczuk Courcelle’s Conjecture 11 5/25

Guidance systems: intuition

@ Problem: We cannot quantify over sets of k-tuples of vertices.
@ But we can quantify over sets of single vertices.

@ ldea: Encode interesting k-tuples in single vertices so that given a
vertex u, the k-tuple associated with u can be recovered in MSO.

Mi. Pilipczuk Courcelle’s Conjecture 11 5/25

Guidance systems: intuition

@ Problem: We cannot quantify over sets of k-tuples of vertices.
@ But we can quantify over sets of single vertices.

o ldea: Encode interesting k-tuples in single vertices so that given a
vertex u, the k-tuple associated with u can be recovered in MSO.

e Quantification over k-tuples ~» Quantification over single vertices

Mi. Pilipczuk Courcelle’s Conjecture 11 5/25

Guidance systems: intuition

@ Problem: We cannot quantify over sets of k-tuples of vertices.
@ But we can quantify over sets of single vertices.

o ldea: Encode interesting k-tuples in single vertices so that given a
vertex u, the k-tuple associated with u can be recovered in MSO.
o Quantification over k-tuples ~» Quantification over single vertices
e Note: Encoding can use some (nondeterministically guessed)
coloring of the graph.

Mi. Pilipczuk Courcelle’s Conjecture 11 5/25

Guidance systems: intuition

@ Problem: We cannot quantify over sets of k-tuples of vertices.
@ But we can quantify over sets of single vertices.

o ldea: Encode interesting k-tuples in single vertices so that given a
vertex u, the k-tuple associated with u can be recovered in MSO.
o Quantification over k-tuples ~» Quantification over single vertices
o Note: Encoding can use some (nondeterministically guessed)
coloring of the graph.

e Guidance system:
Combinatorial object that provides this functionality.

Mi. Pilipczuk Courcelle’s Conjecture 11 5/25

Guidance systems

Guidance system

A guidance system A in a graph G is a tuple of rooted forests
(F1, Fo, ..., Fi)

where V(F;) = V(G) and E(F;) C E(G) for each i.

Guidance systems

Guidance system

A guidance system A in a graph G is a tuple of rooted forests
(F1, Fo, ..., Fi)

where V(F;) = V(G) and E(F;) C E(G) for each i.

@ Note: Forests may overlap!

Mi. Pilipczuk Courcelle’s Conjecture 11 6/25

Guidance systems

Guidance system

A guidance system A in a graph G is a tuple of rooted forests
(F1, Fo, ..., Fi)

where V(F;) = V(G) and E(F;) C E(G) for each i.

@ Note: Forests may overlap!
@ We think of each tree as oriented towards its root.

Mi. Pilipczuk Courcelle’s Conjecture 11 6/25

Guidance systems

Guidance system

A guidance system A in a graph G is a tuple of rooted forests
(F1, Fo, ..., Fi)

where V(F;) = V(G) and E(F;) C E(G) for each i.

@ Note: Forests may overlap!
@ We think of each tree as oriented towards its root.
@ For each u € V(G), define k-tuple A(u) as

Nu) = (vi,va, .o, k),

where v; is the root of the tree of F; that contains u.

vi 0" 3
N

A

u

Mi. Pilipczuk Courcelle’s Conjecture 11 6/25

Guidance systems

Guidance system

A guidance system A in a graph G is a tuple of rooted forests
(F1, Fo, ..., Fi)

where V(F;) = V(G) and E(F;) C E(G) for each i.

@ Note: Forests may overlap!
@ We think of each tree as oriented towards its root.
@ For each u € V(G), define k-tuple A(u) as

ANu) = (vi,va, ooy Vi),

where v; is the root of the tree of F; that contains u.

vi 0" ‘3
N

A

@ A vertex subset X is captured by A if X C A(u) for some vertex u.

Mi. Pilipczuk Courcelle’s Conjecture 11 6/25

Capturing tree decompositions

@ A captures a tree decomposition iff A captures all its bags.

Mi. Pilipczuk Courcelle’s Conjecture 11 7/25

Capturing tree decompositions

@ A captures a tree decomposition iff A captures all its bags.

Mi. Pilipczuk Courcelle’s Conjecture 11 7/25

Capturing tree decompositions

@ A captures a tree decomposition iff A captures all its bags.

Mi. Pilipczuk Courcelle’s Conjecture 11 7/25

Capturing tree decompositions

@ A captures a tree decomposition iff A captures all its bags.

o=

0t

AAVA A A A

o0 O0—0 O0—0 0—0

O

s855 0054
0

18

o 0—>0 0—>0 0—>0 O

.—»0—»0—»0—1&

Guidance systems and MSO

@ Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

Mi. Pilipczuk Courcelle’s Conjecture 11 8/25

Guidance systems and MSO

@ Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

@ Obs: To guess a guidance system of size ¢, one may quantify
existentially ¢ subsets of edges and ¢ subsets of vertices.

Mi. Pilipczuk Courcelle’s Conjecture |l

Guidance systems and MSO

@ Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

@ Obs: To guess a guidance system of size ¢, one may quantify
existentially ¢ subsets of edges and ¢ subsets of vertices.

For every graph G of pathwidth < k, some tree decomposition of G is
captured by a guidance system of size f (k).

Mi. Pilipczuk Courcelle’s Conjecture |l

Guidance systems and MSO

@ Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

@ Obs: To guess a guidance system of size ¢, one may quantify
existentially ¢ subsets of edges and ¢ subsets of vertices.

For every graph G of pathwidth < k, some tree decomposition of G is
captured by a guidance system of size f (k).

o Original proof:

Mi. Pilipczuk Courcelle’s Conjecture |l

Guidance systems and MSO

@ Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

@ Obs: To guess a guidance system of size ¢, one may quantify
existentially ¢ subsets of edges and ¢ subsets of vertices.

For every graph G of pathwidth < k, some tree decomposition of G is
captured by a guidance system of size f (k).

o Original proof:
e This statement is proved using Simon'’s factorization.

Mi. Pilipczuk Courcelle’s Conjecture |l

Guidance systems and MSO

@ Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

@ Obs: To guess a guidance system of size ¢, one may quantify
existentially ¢ subsets of edges and ¢ subsets of vertices.

For every graph G of pathwidth < k, some tree decomposition of G is
captured by a guidance system of size f (k).

o Original proof:
o This statement is proved using Simon'’s factorization.
o Then guess a guidance system and piece together a decomposition.

Mi. Pilipczuk Courcelle’s Conjecture |l

Guidance systems and MSO

@ Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

@ Obs: To guess a guidance system of size ¢, one may quantify
existentially ¢ subsets of edges and ¢ subsets of vertices.

For every graph G of pathwidth < k, some tree decomposition of G is
captured by a guidance system of size f (k).

o Original proof:
o This statement is proved using Simon'’s factorization.
o Then guess a guidance system and piece together a decomposition.

@ Intuition: Families of subsets captured by small guidance systems
can be efficiently guessed in MSO.

Mi. Pilipczuk Courcelle’s Conjecture |l

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that
@ the torso of every bag of s has pathwidth bounded by 2k + 1; and
o the adhesions of s are captured by a guid. system of size 4k3 + 2k.

Mi. Pilipczuk Courcelle’s Conjecture 11 9/25

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that
@ the torso of every bag of s has pathwidth bounded by 2k + 1; and
o the adhesions of s are captured by a guid. system of size 4k3 + 2k.

@ Torso of S in G: take G[S] and turn the neighbors of every conn.
component of G — S into a clique.

Mi. Pilipczuk Courcelle’s Conjecture 11 9/25

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that
@ the torso of every bag of s has pathwidth bounded by 2k + 1; and
o the adhesions of s are captured by a guid. system of size 4k3 + 2k.

@ Torso of S in G: take G[S] and turn the neighbors of every conn.
component of G — S into a clique.

@ Having this, the proof follows easily.

Mi. Pilipczuk Courcelle’s Conjecture 11 9/25

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that
@ the torso of every bag of s has pathwidth bounded by 2k + 1; and
o the adhesions of s are captured by a guid. system of size 4k3 + 2k.

@ Torso of S in G: take G[S] and turn the neighbors of every conn.
component of G — S into a clique.
@ Having this, the proof follows easily.

e Construct the decomposition s by guessing a guidance system
capturing its adhesions.

Mi. Pilipczuk Courcelle’s Conjecture 11 9/25

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that
@ the torso of every bag of s has pathwidth bounded by 2k + 1; and
o the adhesions of s are captured by a guid. system of size 4k3 + 2k.

@ Torso of S in G: take G[S] and turn the neighbors of every conn.
component of G — S into a clique.
@ Having this, the proof follows easily.

o Construct the decomposition s by guessing a guidance system
capturing its adhesions.
o Apply the transduction for pathwidth < 2k + 1 on each bag.

Mi. Pilipczuk Courcelle’s Conjecture 11 9/25

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that
@ the torso of every bag of s has pathwidth bounded by 2k + 1; and
o the adhesions of s are captured by a guid. system of size 4k3 + 2k.

@ Torso of S in G: take G[S] and turn the neighbors of every conn.
component of G — S into a clique.
@ Having this, the proof follows easily.
o Construct the decomposition s by guessing a guidance system
capturing its adhesions.
o Apply the transduction for pathwidth < 2k + 1 on each bag.
o Combine all the obtained decompositions along s.

Mi. Pilipczuk Courcelle’s Conjecture 11 9/25

@ Fix some tree decomposition tg of width k.

Mi. Pilipczuk Courcelle’s Conjecture 11 10/25

o Fix some tree decomposition tg of width k.

o Wilog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

adhesion

Mi. Pilipczuk Courcelle’s Conjecture 11 10/25

o Fix some tree decomposition tg of width k.

o Wilog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

o Request: Pair of vertices (u, v) from the adhesion.

Mi. Pilipczuk Courcelle’s Conjecture 11 10/25

o Fix some tree decomposition tg of width k.

o Wilog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

o Request: Pair of vertices (u, v) from the adhesion.

@ Realization: u-v path through vertices in the component below.

Mi. Pilipczuk Courcelle’s Conjecture 11 10/25

Requests

o Fix some tree decomposition tg of width k.

o Wilog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

o Request: Pair of vertices (u, v) from the adhesion.
@ Realization: u-v path through vertices in the component below.
@ Goal: Partition of tp into subtrees so that:

Mi. Pilipczuk Courcelle’s Conjecture 11 10/25

Requests

o Fix some tree decomposition tg of width k.
o Wilog: the component at each node is connected its neighborhood is
exactly the whole adhesion.
o Request: Pair of vertices (u, v) from the adhesion.
@ Realization: u-v path through vertices in the component below.
@ Goal: Partition of t; into subtrees so that:
o The torso of the union of bags in each subtree has bnd pathwidth.

Mi. Pilipczuk Courcelle’s Conjecture 11 10/25

Requests

o Fix some tree decomposition tg of width k.
o Wilog: the component at each node is connected its neighborhood is
exactly the whole adhesion.
o Request: Pair of vertices (u, v) from the adhesion.
@ Realization: u-v path through vertices in the component below.
@ Goal: Partition of t; into subtrees so that:

o The torso of the union of bags in each subtree has bnd pathwidth.
o We can realize all request in adhesions between pieces using a path
system that can be colored with a bounded number of colors.

Mi. Pilipczuk Courcelle’s Conjecture |l

10/25

Requests

o Fix some tree decomposition tg of width k.

o Wilog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

Request: Pair of vertices (u, v) from the adhesion.

Realization: u-v path through vertices in the component below.

Goal: Partition of tg into subtrees so that:
o The torso of the union of bags in each subtree has bnd pathwidth.
o We can realize all request in adhesions between pieces using a path
system that can be colored with a bounded number of colors.

Idea: Extract pieces by a top-down induction.

Mi. Pilipczuk Courcelle’s Conjecture |l

10/25

@ Assumptions:

o A subtree t of tp, with top adhesion S.
e A multiset R of < p(k) requests on pairs in S.

Mi. Pilipczuk Courcelle’s Conjecture 11 11/25

Induction

@ Assumptions:
o A subtree t of tp, with top adhesion S.
o A multiset R of < p(k) requests on pairs in S.
@ Goal: A prefix X of t such that
e the torso of the union of bags in X has bnd pathwidth; and

Mi. Pilipczuk Courcelle’s Conjecture 11 11/25

@ Assumptions:

o A subtree t of tp, with top adhesion S.

o A multiset R of < p(k) requests on pairs in S.
@ Goal: A prefix X of t such that

o the torso of the union of bags in X has bnd pathwidth; and
o requests from R U (3) can be realized with < p(k) requests imposed
on every component below X.

Mi. Pilipczuk Courcelle’s Conjecture 11 11/25

@ Assumptions:

o A subtree t of tp, with top adhesion S.

o A multiset R of < p(k) requests on pairs in S.
@ Goal: A prefix X of t such that

o the torso of the union of bags in X has bnd pathwidth; and
o requests from R U (3) can be realized with < p(k) requests imposed
on every component below X.

@ Goal achieved =
Paths can be colored greedily top-down with p(k) + (%) colors.

Mi. Pilipczuk Courcelle’s Conjecture 11 11/25

@ Assumptions:

o A subtree t of tp, with top adhesion S.

o A multiset R of < p(k) requests on pairs in S.
@ Goal: A prefix X of t such that

o the torso of the union of bags in X has bnd pathwidth; and
o requests from R U (3) can be realized with < p(k) requests imposed
on every component below X.

o Goal achieved =
Paths can be colored greedily top-down with p(k) + (%) colors.

o Every path in conflict with < p(k) + (§) — 1 other paths.

Mi. Pilipczuk Courcelle’s Conjecture 11 11/25

@ Assumptions:

o A subtree t of tp, with top adhesion S.

o A multiset R of < p(k) requests on pairs in S.
@ Goal: A prefix X of t such that

o the torso of the union of bags in X has bnd pathwidth; and
o requests from R U (3) can be realized with < p(k) requests imposed
on every component below X.

o Goal achieved =
Paths can be colored greedily top-down with p(k) + (%) colors.

o Every path in conflict with < p(k) + (§) — 1 other paths.
o Caveat: Not quite true, needs a slightly different choice of kings.

Mi. Pilipczuk Courcelle’s Conjecture 11 11/25

Motivating example

@ Consider the following tree decomposition of a path,
with p(k) requests on the top vertices.

Mi. Pilipczuk Courcelle’s Conjecture 11

Motivating example

@ Consider the following tree decomposition of a path,
with p(k) requests on the top vertices.

@ In this case, X should be the whole t.

Mi. Pilipczuk Courcelle’s Conjecture 11

Strategy for constructing X

o If |R| < p(k) — \(g)| then we can fix X = {root}, route requests
anyhow, and apply the induction assumption in children.

Mi. Pilipczuk Courcelle’s Conjecture 11 13/25

Strategy for constructing X

o If |IR| < p(k) — |(§)| then we can fix X = {root}, route requests
anyhow, and apply the induction assumption in children.

e Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

Mi. Pilipczuk Courcelle’s Conjecture 11 13/25

Strategy for constructing X

o If |IR| < p(k) — |(§)| then we can fix X = {root}, route requests
anyhow, and apply the induction assumption in children.

o Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

e From now on: R =R U (g) has more than p(k) requests.

Mi. Pilipczuk Courcelle’s Conjecture 11 13/25

Strategy for constructing X

o If |IR| < p(k) — |(§)| then we can fix X = {root}, route requests
anyhow, and apply the induction assumption in children.

o Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

e From now on: R =R U (g) has more than p(k) requests.
o Key idea: Let (u,v) be the request with highest multiplicity.

Mi. Pilipczuk Courcelle’s Conjecture 11 13/25

Strategy for constructing X

o If |IR| < p(k) — |(§)| then we can fix X = {root}, route requests
anyhow, and apply the induction assumption in children.

o Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

e From now on: R =R U (g) has more than p(k) requests.
o Key idea: Let (u,v) be the request with highest multiplicity.
e Say (u,v) is requested ¢ > p(k)/(5) times.

Mi. Pilipczuk Courcelle’s Conjecture 11 13/25

Strategy for constructing X

o If |IR| < p(k) — |(§)| then we can fix X = {root}, route requests
anyhow, and apply the induction assumption in children.

o Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

From now on: R = R U (g) has more than p(k) requests.
Key idea: Let (u, v) be the request with highest multiplicity.
Say (u,v) is requested ¢ > p(k)/(5) times.

Goal: Find X so that (u, v)-requests can be routed in such a
manner that each component below X gets load < ¢/2 from them.

Mi. Pilipczuk Courcelle’s Conjecture 11 13/25

Strategy for constructing X

If IR| < p(k) — |(§)| then we can fix X = {root}, route requests
anyhow, and apply the induction assumption in children.

o Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

From now on: R = R U (g) has more than p(k) requests.
Key idea: Let (u, v) be the request with highest multiplicity.
Say (u,v) is requested ¢ > p(k)/(5) times.

Goal: Find X so that (u, v)-requests can be routed in such a
manner that each component below X gets load < ¢/2 from them.

If achieved, then remaining requests are routed arbitrarily, and

p(k) + (g) - ';((k)) < p(k)

for a quartic polynomial p(k).

Mi. Pilipczuk Courcelle’s Conjecture 11 13/25

Constructing X

@ Construct the following hypergraph H:

o The vertex set is the root bag.
o Each child node gives rise to a hyperedge equal to the adhesion.

Mi. Pilipczuk Courcelle’s Conjecture 11 14/25

Constructing X

@ Construct the following hypergraph H:

o The vertex set is the root bag.
o Each child node gives rise to a hyperedge equal to the adhesion.

@ Note: Edges of the graph are in leaves.

Mi. Pilipczuk Courcelle’s Conjecture 11 14/25

Constructing X

@ Construct the following hypergraph H:

o The vertex set is the root bag.
o Each child node gives rise to a hyperedge equal to the adhesion.

@ Note: Edges of the graph are in leaves.
e Paths in H: Alternating sequences of vertices and hyperedges.

Mi. Pilipczuk Courcelle’s Conjecture 11 14/25

Constructing X

@ Construct the following hypergraph H:

o The vertex set is the root bag.
o Each child node gives rise to a hyperedge equal to the adhesion.

@ Note: Edges of the graph are in leaves.
e Paths in H: Alternating sequences of vertices and hyperedges.

o Flow-cut duality: If there is no hyperedge cutting v from v, then
there are two hyperedge-disjoint paths from u to v.

Mi. Pilipczuk Courcelle’s Conjecture 11 14/25

Constructing X

@ Construct the following hypergraph H:

o The vertex set is the root bag.
o Each child node gives rise to a hyperedge equal to the adhesion.

@ Note: Edges of the graph are in leaves.
e Paths in H: Alternating sequences of vertices and hyperedges.

o Flow-cut duality: If there is no hyperedge cutting v from v, then
there are two hyperedge-disjoint paths from u to v.

@ Then we can split the (u, v)-requests equally between them.

Mi. Pilipczuk Courcelle’s Conjecture 11 14/25

Constructing X

@ Construct the following hypergraph H:

o The vertex set is the root bag.
o Each child node gives rise to a hyperedge equal to the adhesion.

Note: Edges of the graph are in leaves.
Paths in H: Alternating sequences of vertices and hyperedges.

Flow-cut duality: If there is no hyperedge cutting u from v, then
there are two hyperedge-disjoint paths from u to v.

Then we can split the (u, v)-requests equally between them.
Ergo: If no cutedge, then again X = {root} does the job.

Mi. Pilipczuk Courcelle’s Conjecture 11 14/25

Constructing X

@ Otherwise, there is a sequence of cutedges.

SRS B o,
e AN el -’ e

source ’ Bo V< - : sink

Mi. Pilipczuk Courcelle’s Conjecture 11 15/25

Constructing X

@ Otherwise, there is a sequence of cutedges.

o Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.

@ Coe
Y e Y e
source . : : sink

Mi. Pilipczuk Courcelle’s Conjecture 11 15/25

Constructing X

@ Otherwise, there is a sequence of cutedges.
o Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
e Ergo: We can have load ¢/2 on all hyperedges apart from cutedges.

@ Coe
Y e Y e
source . : : sink

Mi. Pilipczuk Courcelle’s Conjecture 11 15/25

Constructing X

@ Otherwise, there is a sequence of cutedges.

o Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
o Ergo: We can have load ¢/2 on all hyperedges apart from cutedges.

@ Construction: Extend X to the roots of those subtrees that
correspond to cutedges, and recurse.

@ Coe
Y e Y e
source . : : sink

Mi. Pilipczuk Courcelle’s Conjecture 11 15/25

Constructing X

@ Otherwise, there is a sequence of cutedges.
o Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
o Ergo: We can have load ¢/2 on all hyperedges apart from cutedges.
o Construction: Extend X to the roots of those subtrees that
correspond to cutedges, and recurse.

o Observation: After unraveling all the recursive calls and examining
the torso of [J X, we see one long path decomposition.

o @y O o
€ Ot W : €s "
source . : : sink

Mi. Pilipczuk Courcelle’s Conjecture 11 15/25

Constructing X

@ Otherwise, there is a sequence of cutedges.
o Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
o Ergo: We can have load ¢/2 on all hyperedges apart from cutedges.
@ Construction: Extend X to the roots of those subtrees that
correspond to cutedges, and recurse.
o Observation: After unraveling all the recursive calls and examining
the torso of [J X, we see one long path decomposition.

e This is exactly what happens in the motivating example.

ey O e
€ Ot W . & .
source . : : sink

Mi. Pilipczuk Courcelle’s Conjecture I 15/25

Part |l

(linear) cliquewidth

Cliquewidth

o Treewidth algebra:

Mi. Pilipczuk Courcelle’s Conjecture 11 17/25

Cliquewidth

o Treewidth algebra:
o Support: Graphs with < k interfaces, numbered from 1 to k.

Mi. Pilipczuk Courcelle’s Conjecture 11 17/25

Cliquewidth

o Treewidth algebra:

o Support: Graphs with < k interfaces, numbered from 1 to k.
e Operations: introduce, forget, join, leaf.

Mi. Pilipczuk Courcelle’s Conjecture 11 17/25

Cliquewidth

o Treewidth algebra:

o Support: Graphs with < k interfaces, numbered from 1 to k.
o Operations: introduce, forget, join, leaf.

o Cliquewidth algebra:

Mi. Pilipczuk Courcelle’s Conjecture 11 17/25

Cliquewidth

o Treewidth algebra:

o Support: Graphs with < k interfaces, numbered from 1 to k.
o Operations: introduce, forget, join, leaf.

o Cliquewidth algebra:
e Support: k-colored graphs, colors from 1 to k.

Mi. Pilipczuk Courcelle’s Conjecture 11 17/25

Cliquewidth

o Treewidth algebra:

o Support: Graphs with < k interfaces, numbered from 1 to k.
o Operations: introduce, forget, join, leaf.

o Cliquewidth algebra:

o Support: k-colored graphs, colors from 1 to k.
o Operations:
@ A single Vertex of color i.
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j.
Disjoint Union of two k-colored graphs.

Mi. Pilipczuk Courcelle’s Conjecture 11 17/25

Cliquewidth

o Treewidth algebra:

o Support: Graphs with < k interfaces, numbered from 1 to k.
o Operations: introduce, forget, join, leaf.

o Cliquewidth algebra:

o Support: k-colored graphs, colors from 1 to k.
o Operations:
@ A single Vertex of color i.
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j.
Disjoint Union of two k-colored graphs.

o Cliquewidth: Min. number of colors needed to construct a graph.

UTEIZD
ully

Mi. Pilipczuk Courcelle’s Conjecture 11 17/25

Cliquewidth

o Treewidth algebra:

o Support: Graphs with < k interfaces, numbered from 1 to k.
o Operations: introduce, forget, join, leaf.

o Cliquewidth algebra:

o Support: k-colored graphs, colors from 1 to k.
o Operations:
@ A single Vertex of color i.
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j.
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.
Linear cliquewidth: Vertices have to be added one by one.

llf[[l]
ully

Mi. Pilipczuk Courcelle’s Conjecture 11 17/25

Cliquewidth

o Treewidth algebra:

o Support: Graphs with < k interfaces, numbered from 1 to k.
o Operations: introduce, forget, join, leaf.

o Cliquewidth algebra:

o Support: k-colored graphs, colors from 1 to k.
o Operations:
@ A single Vertex of color i.
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j.
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.
Linear cliquewidth: Vertices have to be added one by one.

o Add Vertex instead of Vertex, Connect, and Disjoint Union.
g8 00

Mi. Pilipczuk Courcelle’s Conjecture 11 17/25

VR-recognizability

@ We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25

VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Mpyhill-Nerode relation for a graph language L:

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25

VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
e k-colored graphs G; and G, are L-equivalent if for every context H,

HoG el & HoGy€e L.

=

&\ L&

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25

VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
o k-colored graphs G; and G, are L-equivalent if for every context H,

HoG €L & HoGye L.

e L is recognizable if for each k this relation has finite index.

=

&\ L&

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25

VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
o k-colored graphs G; and G, are L-equivalent if for every context H,

HoG €L & HoGye L.

o L is recognizable if for each k this relation has finite index.

@ Homomorphism definition:

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25

VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
o k-colored graphs G; and G, are L-equivalent if for every context H,

HoG €L & HoGye L.

o L is recognizable if for each k this relation has finite index.

@ Homomorphism definition:

o Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.

Gk ——— A

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25

VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
o k-colored graphs G; and G, are L-equivalent if for every context H,

HoG €L & HoGye L.

o L is recognizable if for each k this relation has finite index.

@ Homomorphism definition:

o Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.
o Homomorphism h recognizes L if L = h™*(S) for some S C A.

Gk ——— A
p—1
L +«—— S

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25

VR-recognizability

o We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

@ Myhill-Nerode relation for a graph language L:
o k-colored graphs G; and G, are L-equivalent if for every context H,

HoG €L & HoGye L.

o L is recognizable if for each k this relation has finite index.

@ Homomorphism definition:

o Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.

o Homomorphism h recognizes L if L = h™(S) for some S C A.

e L is recognizable if for each k it is recognized as above.

Gk ——— A
p—1
L +«—— S

Mi. Pilipczuk Courcelle’s Conjecture 11 18/25

Conjecture for cliquewidth

Let L be a language of graphs of cliquewidth < k, for some k € N.
Then L is definable in CMSO; iff it is recognizable.

Mi. Pilipczuk Courcelle’s Conjecture 11 19/25

Conjecture for cliquewidth

Let L be a language of graphs of cliquewidth < k, for some k € N.
Then L is definable in CMSO; iff it is recognizable.

(=) Follows as in the treewidth case.

Mi. Pilipczuk Courcelle’s Conjecture 11 19/25

Conjecture for cliquewidth

Let L be a language of graphs of cliquewidth < k, for some k € N.
Then L is definable in CMSO; iff it is recognizable.

(=) Follows as in the treewidth case.
(<) The same issue as in the treewidth case.

Mi. Pilipczuk Courcelle’s Conjecture 11 19/25

Conjecture for cliquewidth

Let L be a language of graphs of cliquewidth < k, for some k € N.
Then L is definable in CMSO; iff it is recognizable.

(=) Follows as in the treewidth case.
(<=) The same issue as in the treewidth case.

For each k € N there is an MSO; transduction that given a graph of
cliquewidth at most k outputs some its clique decomposition.

Mi. Pilipczuk Courcelle’s Conjecture 11 19/25

Conjecture for cliquewidth

Let L be a language of graphs of cliquewidth < k, for some k € N.
Then L is definable in CMSO; iff it is recognizable.

(=) Follows as in the treewidth case.
(<=) The same issue as in the treewidth case.

For each k € N there is an MSO; transduction that given a graph of
cliquewidth at most k outputs some its clique decomposition.

v
Theorem [BGP,17+4]

For each k € N there is an MSO; transduction that given a graph of
linear cliquewidth at most k outputs some its clique decomposition.

Mi. Pilipczuk Courcelle’s Conjecture 11 19/25

Conjecture for cliquewidth

Let L be a language of graphs of cliquewidth < k, for some k € N.
Then L is definable in CMSO; iff it is recognizable.

(=) Follows as in the treewidth case.
(<=) The same issue as in the treewidth case.

For each k € N there is an MSO; transduction that given a graph of
cliquewidth at most k outputs some its clique decomposition.

v
Theorem [BGP,17+4]

For each k € N there is an MSO; transduction that given a graph of
linear cliquewidth at most k outputs some its clique decomposition.

Corollary [BGP.17+]

Let L be a language of graphs of linear cliquewidth < k, for some k € N.
Then L is definable in CMSO; iff it is recognizable.

Mi. Pilipczuk Courcelle’s Conjecture I 19/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.
o Strategy:

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.
o Strategy:

o View linear clique decomposition as a word over instructions.

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

o Strategy:

o View linear clique decomposition as a word over instructions.
o Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.
o Strategy:

o View linear clique decomposition as a word over instructions.

o Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

e Construct Simon's factorization of the linear clique decomposition.

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.
o Strategy:

o View linear clique decomposition as a word over instructions.

o Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

o Construct Simon's factorization of the linear clique decomposition.

o Combine transductions by a bottom-up induction.

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.
o Strategy:

o View linear clique decomposition as a word over instructions.

o Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

o Construct Simon's factorization of the linear clique decomposition.

o Combine transductions by a bottom-up induction.

o Key: Implement binary and idempotent nodes.

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.
o Strategy:

o View linear clique decomposition as a word over instructions.

o Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

o Construct Simon's factorization of the linear clique decomposition.

o Combine transductions by a bottom-up induction.

o Key: Implement binary and idempotent nodes.

o Message:

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

o Strategy:

o View linear clique decomposition as a word over instructions.

o Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

o Construct Simon's factorization of the linear clique decomposition.

o Combine transductions by a bottom-up induction.

o Key: Implement binary and idempotent nodes.

o Message:
e The plan above can be implemented.

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.
o Strategy:

o View linear clique decomposition as a word over instructions.

o Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

o Construct Simon's factorization of the linear clique decomposition.

o Combine transductions by a bottom-up induction.

o Key: Implement binary and idempotent nodes.

o Message:

e The plan above can be implemented.
o Far more technical details than in the pathwidth case.

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Proof strategy

@ The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

@ Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.
o Strategy:

o View linear clique decomposition as a word over instructions.

o Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

o Construct Simon's factorization of the linear clique decomposition.

o Combine transductions by a bottom-up induction.

o Key: Implement binary and idempotent nodes.

o Message:

e The plan above can be implemented.
o Far more technical details than in the pathwidth case.
e Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture 11 20/25

Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:

Mi. Pilipczuk Courcelle’s Conjecture 11 21/25

Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:
e Recolor according to a function ¢: [k] — [K].

Mi. Pilipczuk Courcelle’s Conjecture 11 21/25

Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:

e Recolor according to a function ¢: [k] — [K].
o Add vertex of color i and adjacent to colors X C [k].

Mi. Pilipczuk Courcelle’s Conjecture 11 21/25

Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:

e Recolor according to a function ¢: [k] — [K].
o Add vertex of color i and adjacent to colors X C [K].

@ k-derivation corresponds to a word of instructions, and consists of:

past future

Mi. Pilipczuk Courcelle’s Conjecture 11 21/25

Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:

e Recolor according to a function ¢: [k] — [K].
o Add vertex of color i and adjacent to colors X C [K].

@ k-derivation corresponds to a word of instructions, and consists of:
o the underlying k-colored graph G;

past

e o e o o
° ° ° oo |
° °
© 0 o ° ° °
o0 e o e © 0 00 ©
o © oo © —+
L4 ee ° ° ° o
e oo oo oo
°
LY ° e ° el .
o o © oo °® ° o
o o o °, %o oo OO o
o) oo [-+
o o o oo o 0o
oo oo ° o ® %o
. LS
. . .
. o 0
. o o
. °)
Mi. Pilipczuk Courcelle’s Conjecture |l

future

Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:

e Recolor according to a function ¢: [k] — [K].
o Add vertex of color i and adjacent to colors X C [K].

@ k-derivation corresponds to a word of instructions, and consists of:
o the underlying k-colored graph G;
e for each u € G, its profile A\(v) C [K];

past future

o
° o 07"
o o
oo) ° °
o0 e o o ©le oo ©
° .
° ° o ° °
L4 ee ° ° ° o
eo0io e ee oo
°
° ° ° ° o o -~
o [0 ® 00 °® ° o
=1 © o o ioo 00| 0o
o © o
o o 00i® o —+
o o o oo o {0 o
° : e e ° o ® ° -.:
L] ° . L] I. ° N °
\ hd hd J
profiles
Mi. Pilipczuk Courcelle’s Conjecture |l

Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:
e Recolor according to a function ¢: [k] — [K].
o Add vertex of color i and adjacent to colors X C [K].
@ k-derivation corresponds to a word of instructions, and consists of:
o the underlying k-colored graph G;
o for each u € G, its profile A\(v) C [K];
e recoloring ¢: [k] — [K].

future

s 5 \
o e o o
\ o ° e ©
o o
oo) ° °
} °e e o o ©le oo ©
° -
° ° o ° °
f\ ° e oo o le o o
\ eo0io e oo oo
° ° ° ° el .
o [0 ® o °® ° o
] o ° o ° 00i 0o
~ ° o o
4V o o oo o —
[o o o ioo© o {0 o
\ oo (oo ° o ® %o
3 o
L]
.. . L] ° ...
\ hd hd J

profiles

Mi. Pilipczuk Courcelle’s Conjecture 11 21/25

Instructions and derivations

@ A linear cw decomposition of width k is a word over instructions:
e Recolor according to a function ¢: [k] — [K].
o Add vertex of color i and adjacent to colors X C [K].
@ k-derivation corresponds to a word of instructions, and consists of:
o the underlying k-colored graph G;
o for each u € G, its profile A\(v) C [K];
e recoloring ¢: [k] — [K].

@ Derivations have a natural semigroup structure.

future

\ e olp :o g Oziﬂ
} o0 .'.' -.- -.-- e .
1\ °° oo 0%le° 10%
\') o0 e @ eoe .: °

)
o
°
°
ole
°
°
o
o
°
o o le
00O |®
ool e
o
o
e
°
°
l

~
Y [) © o —+—
o o o io o o
\ oo (o0 ° o ® %o
. LS
.o . . R o e
\ hd hd J
profiles
Mi. Pilipczuk Courcelle’s Conjecture |l

Binary Lemma

For two k-derivations o1, 02, we have
dew(oy - 02) < f(dew(o1), dew(o2)).

Mi. Pilipczuk Courcelle’s Conjecture |l

Binary Lemma

Binary Lemma

For two k-derivations o1, 02, we have
dew(oy - 02) < f(dew(o1), dew(o2)).

@ Proof: We are given the underlying graph G of o1 - 0».

Mi. Pilipczuk Courcelle’s Conjecture |l

Binary Lemma

For two k-derivations o1, 05, we have
dew(oy - 02) < f(dew(o1), dew(o2)).

@ Proof: We are given the underlying graph G of o - 05.
@ Guess the partition of G into G; and G>.

Mi. Pilipczuk Courcelle’s Conjecture |l

Binary Lemma

For two k-derivations o1, 05, we have
dew(oy - 02) < f(dew(o1), dew(o2)).

@ Proof: We are given the underlying graph G of o - 05.
@ Guess the partition of G into G; and G;.
@ Apply transductions to G; and G;, obtaining clique decompositions.

Mi. Pilipczuk Courcelle’s Conjecture |l

Binary Lemma

For two k-derivations o1, 05, we have
dew(oy - 02) < f(dew(o1), dew(o2)).

Proof: We are given the underlying graph G of o7 - 05.
Guess the partition of G into G; and G;.
Apply transductions to G; and G, obtaining clique decompositions.

® 6 o o

Cut between G; and G, has modular width at most 2.

Mi. Pilipczuk Courcelle’s Conjecture |l

Binary Lemma

For two k-derivations o1, 05, we have
dew(oy - 02) < f(dew(o1), dew(o2)).

Proof: We are given the underlying graph G of o7 - 05.

Guess the partition of G into G; and G;.

Apply transductions to G; and G, obtaining clique decompositions.
Cut between G; and G, has modular width at most 2.

Enrich decompositions with neighborhoods on the other side.

e 6 6 o o

Mi. Pilipczuk Courcelle’s Conjecture |l

Binary Lemma

For two k-derivations o1, 05, we have
dew(oy - 02) < f(dew(o1), dew(o2)).

Proof: We are given the underlying graph G of o7 - 05.

Guess the partition of G into G; and G;.

Apply transductions to G; and G, obtaining clique decompositions.
Cut between G; and G, has modular width at most 2.

Enrich decompositions with neighborhoods on the other side.
Combine. : O

e 6 6 6 o o

Fovel

Mi. Pilipczuk Courcelle’s Conjecture |l

Abstraction and Idempotent Lemma

@ Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let 01,...,0, be k-derivations with same idempotent abstraction. Then

dew(oy -+ 0p) < f(r_n:F»](dew(o;)).
€ln

Mi. Pilipczuk Courcelle’s Conjecture 11 23/25

Abstraction and Idempotent Lemma

@ Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let 01,...,0, be k-derivations with same idempotent abstraction. Then

dew(oy -+ 0p) < f(r_n:Fn](dew(o;)).
€ln

@ Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size < f(k).

Mi. Pilipczuk Courcelle’s Conjecture 11 23/25

Abstraction and Idempotent Lemma

@ Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let 01,...,0, be k-derivations with same idempotent abstraction. Then

dew(oy -+ 0p) < f(r_n:Fn](dew(o;)).
€ln

@ Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size < f(k).

@ In our case:

Mi. Pilipczuk Courcelle’s Conjecture 11 23/25

Abstraction and Idempotent Lemma

@ Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let 01,...,0, be k-derivations with same idempotent abstraction. Then

dew(oy -+ 0p) < f(r_n:Fn](dew(o;)).
€ln

@ Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size < f(k).

@ In our case:
o All o; use the same idempotent recoloring ¢.

[4 4 L4 ¢ ¢ ¢ ¢

Mi. Pilipczuk Courcelle’s Conjecture 11 23/25

Abstraction and Idempotent Lemma

@ Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let 01,...,0, be k-derivations with same idempotent abstraction. Then

dew(oy -+ 0p) < f(r_n:F»](dew(o;)).
€ln

@ Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size < f(k).

@ In our case:

o All o; use the same idempotent recoloring ¢.
o In all o; the set of nonempty cells is the same.

ICHD ICHD Jof [o] ICHO
o[[olol[e] [o[e[e] [o/e/e[e [o[o[e] [ole/e[e] [o[o]e] [o ejele[o[[o[efe[[0
o[c[ojole] [o[[e]e[c[o/e/s] [See[e[c[olc/s] [S[o[e[e o]0 olele og
olo| @ ® oo @ o oo @ o e|e o] [®f ® i
o |® Ll o |® o(® o |® o(® o |® ® Laid o |®

<
-
S

Mi. Pilipczuk Courcelle’s Conjecture 11 23/25

Abstraction and Idempotent Lemma

@ Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let 01,...,0, be k-derivations with same idempotent abstraction. Then

dew(oy -+ 0p) < f(r_n:F»](dew(o;)).
€ln

@ Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size < f(k).
@ In our case:

o All o; use the same idempotent recoloring ¢.
o In all o; the set of nonempty cells is the same.
o We keep some information about paths between the cells.

ICHO ICHO ICHD ICHD Jo [o] ICHD
o] [ojoe[o] [o]o[e] [ojojo[e| [o[e|e[[oejo[e] [o[e]e] [ejee|o| [o]e[e[[e]e/e[e] [o[e|e] [o/eje[e [o]e]e] |o
e[e[o[ejo] [o[e[o[e[e[e|ele] [9[o]e[e e[e]e/e] [*o[e[e[e[e[e/e[[*[o[e]o[0[0c}e [0 oo
OONCEED DONCEED DONCEED DONCEED DONCENED DONCHED olo)
o[(o[[Tole o[(o[[Tole o[(o[[Tele o[(e[[Tofe o[(o[[Tele o[(o[[Tefe OO0
[L4 L4 ¢ ¢ ¢

Mi. Pilipczuk Courcelle’s Conjecture 11 23/25

Definable Order Lemma

@ Block orderon o104, uXviffuco;, veojandi <.

Mi. Pilipczuk Courcelle’s Conjecture 11 24/25

Definable Order Lemma

o Block orderon 010, uXviffueco;, veojandi <.
o Flip of k-derivation 7:
for some pairs of cells, revert the adjacency between them.

Mi. Pilipczuk Courcelle’s Conjecture 11 24/25

Definable Order Lemma

o Block orderon 010, uXviffueco;, veojandi <.

o Flip of k-derivation 7:
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let 01,...,0, be k-derivations with the same idempotent abstraction.
Then there is some flip H of o7 - - - 0, such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

Mi. Pilipczuk Courcelle’s Conjecture 11 24/25

Definable Order Lemma

o Block orderon 010, uXviffueco;, veojandi <.

o Flip of k-derivation 7:
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let 01,...,0, be k-derivations with the same idempotent abstraction.
Then there is some flip H of o7 - - - 0, such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

@ Using the Definable Order Lemma:

Mi. Pilipczuk Courcelle’s Conjecture 11 24/25

Definable Order Lemma

o Block orderon 010, uXviffueco;, veojandi <.

o Flip of k-derivation 7:
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let 01,...,0, be k-derivations with the same idempotent abstraction.
Then there is some flip H of o7 - - - 0, such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

@ Using the Definable Order Lemma:
o Guess partition into cells and the flip.

Mi. Pilipczuk Courcelle’s Conjecture 11 24/25

Definable Order Lemma

o Block orderon 010, uXviffueco;, veojandi <.

o Flip of k-derivation 7:
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let 01,...,0, be k-derivations with the same idempotent abstraction.
Then there is some flip H of o7 - - - 0, such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

@ Using the Definable Order Lemma:

o Guess partition into cells and the flip.
o Interpret the block order in each connected component.

Mi. Pilipczuk Courcelle’s Conjecture 11 24/25

Definable Order Lemma

o Block orderon 010, uXviffueco;, veojandi <.

o Flip of k-derivation 7:
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let 01,...,0, be k-derivations with the same idempotent abstraction.
Then there is some flip H of o7 - - - 0, such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

@ Using the Definable Order Lemma:
o Guess partition into cells and the flip.
o Interpret the block order in each connected component.
o Apply the assumed transductions to each block in parallel.

Mi. Pilipczuk Courcelle’s Conjecture 11 24/25

Definable Order Lemma

o Block orderon 010, uXviffueco;, veojandi <.

o Flip of k-derivation 7:
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let 01,...,0, be k-derivations with the same idempotent abstraction.
Then there is some flip H of o7 - - - 0, such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

@ Using the Definable Order Lemma:
o Guess partition into cells and the flip.
o Interpret the block order in each connected component.
o Apply the assumed transductions to each block in parallel.
o Combine everything along the block order.

Mi. Pilipczuk Courcelle’s Conjecture 11 24/25

Definable Order Lemma

o Block orderon 010, uXviffueco;, veojandi <.

o Flip of k-derivation 7:
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let 01,...,0, be k-derivations with the same idempotent abstraction.
Then there is some flip H of o7 - - - 0, such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

@ Using the Definable Order Lemma:

o Guess partition into cells and the flip.

o Interpret the block order in each connected component.

o Apply the assumed transductions to each block in parallel.
o Combine everything along the block order.

@ Proving the Definable Order Lemma:

Mi. Pilipczuk Courcelle’s Conjecture 11 24/25

Definable Order Lemma

o Block orderon 010, uXviffueco;, veojandi <.

o Flip of k-derivation 7:
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let 01,...,0, be k-derivations with the same idempotent abstraction.
Then there is some flip H of o7 - - - 0, such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

@ Using the Definable Order Lemma:
o Guess partition into cells and the flip.
o Interpret the block order in each connected component.
o Apply the assumed transductions to each block in parallel.
o Combine everything along the block order.
@ Proving the Definable Order Lemma:
e Analyze interactions between cells.

Mi. Pilipczuk Courcelle’s Conjecture 11 24/25

Definable Order Lemma

o Block orderon 010, uXviffueco;, veojandi <.

o Flip of k-derivation 7:
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let 01,...,0, be k-derivations with the same idempotent abstraction.
Then there is some flip H of o7 - - - 0, such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

@ Using the Definable Order Lemma:

o Guess partition into cells and the flip.

o Interpret the block order in each connected component.

o Apply the assumed transductions to each block in parallel.
o Combine everything along the block order.

@ Proving the Definable Order Lemma:
o Analyze interactions between cells.
o Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture 11 24/25

Conclusions

e Treewidth and HR-recognizability:

Mi. Pilipczuk Courcelle’s Conjecture |l

Conclusions

o Treewidth and HR-recognizability:

o First prove the pathwidth case using Simon's factorization.

Mi. Pilipczuk Courcelle’s Conjecture |l

Conclusions

o Treewidth and HR-recognizability:

o First prove the pathwidth case using Simon's factorization.
e Then lift to the treewidth case via reduction to the pathwidth case.

Mi. Pilipczuk Courcelle’s Conjecture |l

Conclusions

o Treewidth and HR-recognizability:
o First prove the pathwidth case using Simon's factorization.
o Then lift to the treewidth case via reduction to the pathwidth case.
o First step robust, second treewidth-specific.

Mi. Pilipczuk Courcelle’s Conjecture |l

Conclusions

o Treewidth and HR-recognizability:
o First prove the pathwidth case using Simon's factorization.
o Then lift to the treewidth case via reduction to the pathwidth case.
o First step robust, second treewidth-specific.
o Direct attempts via Simon-like factorizations so far unsuccessful.

Mi. Pilipczuk Courcelle’s Conjecture |l

Conclusions

o Treewidth and HR-recognizability:
o First prove the pathwidth case using Simon's factorization.
o Then lift to the treewidth case via reduction to the pathwidth case.
o First step robust, second treewidth-specific.
o Direct attempts via Simon-like factorizations so far unsuccessful.
e Bonus: One can compute even a decomposition of optimum width.

Mi. Pilipczuk Courcelle’s Conjecture |l

Conclusions

o Treewidth and HR-recognizability:

o First prove the pathwidth case using Simon's factorization.

o Then lift to the treewidth case via reduction to the pathwidth case.
o First step robust, second treewidth-specific.

o Direct attempts via Simon-like factorizations so far unsuccessful.

e Bonus: One can compute even a decomposition of optimum width.

o Cliquewidth and VR-recognizability:

Mi. Pilipczuk Courcelle’s Conjecture 11 25/25

Conclusions

o Treewidth and HR-recognizability:

o First prove the pathwidth case using Simon's factorization.

o Then lift to the treewidth case via reduction to the pathwidth case.
o First step robust, second treewidth-specific.

o Direct attempts via Simon-like factorizations so far unsuccessful.

e Bonus: One can compute even a decomposition of optimum width.

o Cliquewidth and VR-recognizability:

o Linear cliquewidth case can be done using Simon'’s factorization.

Mi. Pilipczuk Courcelle’s Conjecture |l

Conclusions

o Treewidth and HR-recognizability:

o First prove the pathwidth case using Simon's factorization.

o Then lift to the treewidth case via reduction to the pathwidth case.
o First step robust, second treewidth-specific.

o Direct attempts via Simon-like factorizations so far unsuccessful.

e Bonus: One can compute even a decomposition of optimum width.

o Cliquewidth and VR-recognizability:

o Linear cliquewidth case can be done using Simon'’s factorization.
o Full conjecture for cliquewidth remains wide open.

Mi. Pilipczuk Courcelle’s Conjecture |l

Conclusions

o Treewidth and HR-recognizability:

o First prove the pathwidth case using Simon's factorization.

o Then lift to the treewidth case via reduction to the pathwidth case.
o First step robust, second treewidth-specific.

o Direct attempts via Simon-like factorizations so far unsuccessful.

e Bonus: One can compute even a decomposition of optimum width.

o Cliquewidth and VR-recognizability:

o Linear cliquewidth case can be done using Simon'’s factorization.
o Full conjecture for cliquewidth remains wide open.

@ Thank you for your attention!

Mi. Pilipczuk Courcelle’s Conjecture |l

