
Courcelle’s Conjecture, part II:
treewidth and cliquewidth

Micha l Pilipczuk†

Based on a joint work with Miko laj Bojańczyk and Martin Grohe

†Institute of Informatics, University of Warsaw, Poland

Shonan Meeting on Logic and Complexity Theory,
September 18th, 2017

Mi. Pilipczuk Courcelle’s Conjecture II 1/25

Outline

First half:

Continuation of Miko laj’s talk:
Lifting the pathwidth case to the treewidth case.

Second half:

Statement of the conjecture for cliquewidth.
Highlight of the proof for linear cliquewidth (with MB and MG).

Mi. Pilipczuk Courcelle’s Conjecture II 2/25

Part I
from pathwidth to treewidth

Mi. Pilipczuk Courcelle’s Conjecture II 3/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.

Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.

Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.

Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.

Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.

Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.

Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.

Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

First idea

Pathwidth case:

Decomposition as a word over a finite alphabet of operations.
Design abstraction of a subword as a finite info about it.
Use Simon’s factorization theorem to get a bounded depth
factorization of the word that respects abstractions.
Combine transductions bottom-up on the factorization.
Key: Efficient composition of transductions in the idempotent nodes.
Turns out to be a really robust approach!

Idea: Use variants of Simon’s factorization for trees.

Generalization to trees due to Colcombet.
Outcome: Completely does not work.
Reason: Focus on paths in trees, not on (multi-)contexts.

Final approach: Reduce the treewidth case to the pathwidth case.

Caveat: Not a robust approach.

Mi. Pilipczuk Courcelle’s Conjecture II 4/25

Guidance systems: intuition

Problem: We cannot quantify over sets of k-tuples of vertices.

But we can quantify over sets of single vertices.

Idea: Encode interesting k-tuples in single vertices so that given a
vertex u, the k-tuple associated with u can be recovered in MSO.

Quantification over k-tuples Quantification over single vertices
Note: Encoding can use some (nondeterministically guessed)
coloring of the graph.

Guidance system:
Combinatorial object that provides this functionality.

Mi. Pilipczuk Courcelle’s Conjecture II 5/25

Guidance systems: intuition

Problem: We cannot quantify over sets of k-tuples of vertices.

But we can quantify over sets of single vertices.

Idea: Encode interesting k-tuples in single vertices so that given a
vertex u, the k-tuple associated with u can be recovered in MSO.

Quantification over k-tuples Quantification over single vertices
Note: Encoding can use some (nondeterministically guessed)
coloring of the graph.

Guidance system:
Combinatorial object that provides this functionality.

Mi. Pilipczuk Courcelle’s Conjecture II 5/25

Guidance systems: intuition

Problem: We cannot quantify over sets of k-tuples of vertices.

But we can quantify over sets of single vertices.

Idea: Encode interesting k-tuples in single vertices so that given a
vertex u, the k-tuple associated with u can be recovered in MSO.

Quantification over k-tuples Quantification over single vertices
Note: Encoding can use some (nondeterministically guessed)
coloring of the graph.

Guidance system:
Combinatorial object that provides this functionality.

Mi. Pilipczuk Courcelle’s Conjecture II 5/25

Guidance systems: intuition

Problem: We cannot quantify over sets of k-tuples of vertices.

But we can quantify over sets of single vertices.

Idea: Encode interesting k-tuples in single vertices so that given a
vertex u, the k-tuple associated with u can be recovered in MSO.

Quantification over k-tuples Quantification over single vertices

Note: Encoding can use some (nondeterministically guessed)
coloring of the graph.

Guidance system:
Combinatorial object that provides this functionality.

Mi. Pilipczuk Courcelle’s Conjecture II 5/25

Guidance systems: intuition

Problem: We cannot quantify over sets of k-tuples of vertices.

But we can quantify over sets of single vertices.

Idea: Encode interesting k-tuples in single vertices so that given a
vertex u, the k-tuple associated with u can be recovered in MSO.

Quantification over k-tuples Quantification over single vertices
Note: Encoding can use some (nondeterministically guessed)
coloring of the graph.

Guidance system:
Combinatorial object that provides this functionality.

Mi. Pilipczuk Courcelle’s Conjecture II 5/25

Guidance systems: intuition

Problem: We cannot quantify over sets of k-tuples of vertices.

But we can quantify over sets of single vertices.

Idea: Encode interesting k-tuples in single vertices so that given a
vertex u, the k-tuple associated with u can be recovered in MSO.

Quantification over k-tuples Quantification over single vertices
Note: Encoding can use some (nondeterministically guessed)
coloring of the graph.

Guidance system:
Combinatorial object that provides this functionality.

Mi. Pilipczuk Courcelle’s Conjecture II 5/25

Guidance systems

Guidance system

A guidance system Λ in a graph G is a tuple of rooted forests

(F1,F2, . . . ,Fk)

where V (Fi) = V (G) and E (Fi) ⊆ E (G) for each i .

Note: Forests may overlap!

We think of each tree as oriented towards its root.

For each u ∈ V (G), define k-tuple Λ(u) as

Λ(u) = (v1, v2, . . . , vk),

where vi is the root of the tree of Fi that contains u.

u

v1 v2
v3

A vertex subset X is captured by Λ if X ⊆ Λ(u) for some vertex u.

Mi. Pilipczuk Courcelle’s Conjecture II 6/25

Guidance systems

Guidance system

A guidance system Λ in a graph G is a tuple of rooted forests

(F1,F2, . . . ,Fk)

where V (Fi) = V (G) and E (Fi) ⊆ E (G) for each i .

Note: Forests may overlap!

We think of each tree as oriented towards its root.

For each u ∈ V (G), define k-tuple Λ(u) as

Λ(u) = (v1, v2, . . . , vk),

where vi is the root of the tree of Fi that contains u.

u

v1 v2
v3

A vertex subset X is captured by Λ if X ⊆ Λ(u) for some vertex u.

Mi. Pilipczuk Courcelle’s Conjecture II 6/25

Guidance systems

Guidance system

A guidance system Λ in a graph G is a tuple of rooted forests

(F1,F2, . . . ,Fk)

where V (Fi) = V (G) and E (Fi) ⊆ E (G) for each i .

Note: Forests may overlap!

We think of each tree as oriented towards its root.

For each u ∈ V (G), define k-tuple Λ(u) as

Λ(u) = (v1, v2, . . . , vk),

where vi is the root of the tree of Fi that contains u.

u

v1 v2
v3

A vertex subset X is captured by Λ if X ⊆ Λ(u) for some vertex u.

Mi. Pilipczuk Courcelle’s Conjecture II 6/25

Guidance systems

Guidance system

A guidance system Λ in a graph G is a tuple of rooted forests

(F1,F2, . . . ,Fk)

where V (Fi) = V (G) and E (Fi) ⊆ E (G) for each i .

Note: Forests may overlap!

We think of each tree as oriented towards its root.

For each u ∈ V (G), define k-tuple Λ(u) as

Λ(u) = (v1, v2, . . . , vk),

where vi is the root of the tree of Fi that contains u.

u

v1 v2
v3

A vertex subset X is captured by Λ if X ⊆ Λ(u) for some vertex u.

Mi. Pilipczuk Courcelle’s Conjecture II 6/25

Guidance systems

Guidance system

A guidance system Λ in a graph G is a tuple of rooted forests

(F1,F2, . . . ,Fk)

where V (Fi) = V (G) and E (Fi) ⊆ E (G) for each i .

Note: Forests may overlap!

We think of each tree as oriented towards its root.

For each u ∈ V (G), define k-tuple Λ(u) as

Λ(u) = (v1, v2, . . . , vk),

where vi is the root of the tree of Fi that contains u.

u

v1 v2
v3

A vertex subset X is captured by Λ if X ⊆ Λ(u) for some vertex u.

Mi. Pilipczuk Courcelle’s Conjecture II 6/25

Capturing tree decompositions

Λ captures a tree decomposition iff Λ captures all its bags.

Mi. Pilipczuk Courcelle’s Conjecture II 7/25

Capturing tree decompositions

Λ captures a tree decomposition iff Λ captures all its bags.

Mi. Pilipczuk Courcelle’s Conjecture II 7/25

Capturing tree decompositions

Λ captures a tree decomposition iff Λ captures all its bags.

Mi. Pilipczuk Courcelle’s Conjecture II 7/25

Capturing tree decompositions

Λ captures a tree decomposition iff Λ captures all its bags.

Mi. Pilipczuk Courcelle’s Conjecture II 7/25

Guidance systems and MSO

Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

Obs: To guess a guidance system of size `, one may quantify
existentially ` subsets of edges and ` subsets of vertices.

Theorem

For every graph G of pathwidth 6 k, some tree decomposition of G is
captured by a guidance system of size f (k).

Original proof:

This statement is proved using Simon’s factorization.
Then guess a guidance system and piece together a decomposition.

Intuition: Families of subsets captured by small guidance systems
can be efficiently guessed in MSO.

Mi. Pilipczuk Courcelle’s Conjecture II 8/25

Guidance systems and MSO

Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

Obs: To guess a guidance system of size `, one may quantify
existentially ` subsets of edges and ` subsets of vertices.

Theorem

For every graph G of pathwidth 6 k, some tree decomposition of G is
captured by a guidance system of size f (k).

Original proof:

This statement is proved using Simon’s factorization.
Then guess a guidance system and piece together a decomposition.

Intuition: Families of subsets captured by small guidance systems
can be efficiently guessed in MSO.

Mi. Pilipczuk Courcelle’s Conjecture II 8/25

Guidance systems and MSO

Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

Obs: To guess a guidance system of size `, one may quantify
existentially ` subsets of edges and ` subsets of vertices.

Theorem

For every graph G of pathwidth 6 k , some tree decomposition of G is
captured by a guidance system of size f (k).

Original proof:

This statement is proved using Simon’s factorization.
Then guess a guidance system and piece together a decomposition.

Intuition: Families of subsets captured by small guidance systems
can be efficiently guessed in MSO.

Mi. Pilipczuk Courcelle’s Conjecture II 8/25

Guidance systems and MSO

Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

Obs: To guess a guidance system of size `, one may quantify
existentially ` subsets of edges and ` subsets of vertices.

Theorem

For every graph G of pathwidth 6 k , some tree decomposition of G is
captured by a guidance system of size f (k).

Original proof:

This statement is proved using Simon’s factorization.
Then guess a guidance system and piece together a decomposition.

Intuition: Families of subsets captured by small guidance systems
can be efficiently guessed in MSO.

Mi. Pilipczuk Courcelle’s Conjecture II 8/25

Guidance systems and MSO

Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

Obs: To guess a guidance system of size `, one may quantify
existentially ` subsets of edges and ` subsets of vertices.

Theorem

For every graph G of pathwidth 6 k , some tree decomposition of G is
captured by a guidance system of size f (k).

Original proof:

This statement is proved using Simon’s factorization.

Then guess a guidance system and piece together a decomposition.

Intuition: Families of subsets captured by small guidance systems
can be efficiently guessed in MSO.

Mi. Pilipczuk Courcelle’s Conjecture II 8/25

Guidance systems and MSO

Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

Obs: To guess a guidance system of size `, one may quantify
existentially ` subsets of edges and ` subsets of vertices.

Theorem

For every graph G of pathwidth 6 k , some tree decomposition of G is
captured by a guidance system of size f (k).

Original proof:

This statement is proved using Simon’s factorization.
Then guess a guidance system and piece together a decomposition.

Intuition: Families of subsets captured by small guidance systems
can be efficiently guessed in MSO.

Mi. Pilipczuk Courcelle’s Conjecture II 8/25

Guidance systems and MSO

Intuition: Tree decompositions captured by small guidance systems
are exactly those guessable in MSO.

Obs: To guess a guidance system of size `, one may quantify
existentially ` subsets of edges and ` subsets of vertices.

Theorem

For every graph G of pathwidth 6 k , some tree decomposition of G is
captured by a guidance system of size f (k).

Original proof:

This statement is proved using Simon’s factorization.
Then guess a guidance system and piece together a decomposition.

Intuition: Families of subsets captured by small guidance systems
can be efficiently guessed in MSO.

Mi. Pilipczuk Courcelle’s Conjecture II 8/25

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that

the torso of every bag of s has pathwidth bounded by 2k + 1; and

the adhesions of s are captured by a guid. system of size 4k3 + 2k.

Torso of S in G : take G [S] and turn the neighbors of every conn.
component of G − S into a clique.

Having this, the proof follows easily.

Construct the decomposition s by guessing a guidance system
capturing its adhesions.
Apply the transduction for pathwidth 6 2k + 1 on each bag.
Combine all the obtained decompositions along s.

Mi. Pilipczuk Courcelle’s Conjecture II 9/25

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that

the torso of every bag of s has pathwidth bounded by 2k + 1; and

the adhesions of s are captured by a guid. system of size 4k3 + 2k.

Torso of S in G : take G [S] and turn the neighbors of every conn.
component of G − S into a clique.

Having this, the proof follows easily.

Construct the decomposition s by guessing a guidance system
capturing its adhesions.
Apply the transduction for pathwidth 6 2k + 1 on each bag.
Combine all the obtained decompositions along s.

Mi. Pilipczuk Courcelle’s Conjecture II 9/25

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that

the torso of every bag of s has pathwidth bounded by 2k + 1; and

the adhesions of s are captured by a guid. system of size 4k3 + 2k.

Torso of S in G : take G [S] and turn the neighbors of every conn.
component of G − S into a clique.

Having this, the proof follows easily.

Construct the decomposition s by guessing a guidance system
capturing its adhesions.
Apply the transduction for pathwidth 6 2k + 1 on each bag.
Combine all the obtained decompositions along s.

Mi. Pilipczuk Courcelle’s Conjecture II 9/25

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that

the torso of every bag of s has pathwidth bounded by 2k + 1; and

the adhesions of s are captured by a guid. system of size 4k3 + 2k.

Torso of S in G : take G [S] and turn the neighbors of every conn.
component of G − S into a clique.

Having this, the proof follows easily.

Construct the decomposition s by guessing a guidance system
capturing its adhesions.

Apply the transduction for pathwidth 6 2k + 1 on each bag.
Combine all the obtained decompositions along s.

Mi. Pilipczuk Courcelle’s Conjecture II 9/25

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that

the torso of every bag of s has pathwidth bounded by 2k + 1; and

the adhesions of s are captured by a guid. system of size 4k3 + 2k.

Torso of S in G : take G [S] and turn the neighbors of every conn.
component of G − S into a clique.

Having this, the proof follows easily.

Construct the decomposition s by guessing a guidance system
capturing its adhesions.
Apply the transduction for pathwidth 6 2k + 1 on each bag.

Combine all the obtained decompositions along s.

Mi. Pilipczuk Courcelle’s Conjecture II 9/25

Decomposition into low-pathwidth parts

Decomposition into low-pathwidth parts

Every graph G of treewidth k admits a tree decomposition s such that

the torso of every bag of s has pathwidth bounded by 2k + 1; and

the adhesions of s are captured by a guid. system of size 4k3 + 2k.

Torso of S in G : take G [S] and turn the neighbors of every conn.
component of G − S into a clique.

Having this, the proof follows easily.

Construct the decomposition s by guessing a guidance system
capturing its adhesions.
Apply the transduction for pathwidth 6 2k + 1 on each bag.
Combine all the obtained decompositions along s.

Mi. Pilipczuk Courcelle’s Conjecture II 9/25

Requests

Fix some tree decomposition t0 of width k .

Wlog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

Request: Pair of vertices (u, v) from the adhesion.

Realization: u-v path through vertices in the component below.

Goal: Partition of t0 into subtrees so that:

The torso of the union of bags in each subtree has bnd pathwidth.
We can realize all request in adhesions between pieces using a path
system that can be colored with a bounded number of colors.

Idea: Extract pieces by a top-down induction.

co
m
po
ne
nt

adhesion

Mi. Pilipczuk Courcelle’s Conjecture II 10/25

Requests

Fix some tree decomposition t0 of width k .

Wlog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

Request: Pair of vertices (u, v) from the adhesion.

Realization: u-v path through vertices in the component below.

Goal: Partition of t0 into subtrees so that:

The torso of the union of bags in each subtree has bnd pathwidth.
We can realize all request in adhesions between pieces using a path
system that can be colored with a bounded number of colors.

Idea: Extract pieces by a top-down induction.

co
m
po
ne
nt

adhesion

Mi. Pilipczuk Courcelle’s Conjecture II 10/25

Requests

Fix some tree decomposition t0 of width k .

Wlog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

Request: Pair of vertices (u, v) from the adhesion.

Realization: u-v path through vertices in the component below.

Goal: Partition of t0 into subtrees so that:

The torso of the union of bags in each subtree has bnd pathwidth.
We can realize all request in adhesions between pieces using a path
system that can be colored with a bounded number of colors.

Idea: Extract pieces by a top-down induction.

co
m
po
ne
nt

adhesion

Mi. Pilipczuk Courcelle’s Conjecture II 10/25

Requests

Fix some tree decomposition t0 of width k .

Wlog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

Request: Pair of vertices (u, v) from the adhesion.

Realization: u-v path through vertices in the component below.

Goal: Partition of t0 into subtrees so that:

The torso of the union of bags in each subtree has bnd pathwidth.
We can realize all request in adhesions between pieces using a path
system that can be colored with a bounded number of colors.

Idea: Extract pieces by a top-down induction.

co
m
po
ne
nt

adhesion

Mi. Pilipczuk Courcelle’s Conjecture II 10/25

Requests

Fix some tree decomposition t0 of width k .

Wlog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

Request: Pair of vertices (u, v) from the adhesion.

Realization: u-v path through vertices in the component below.

Goal: Partition of t0 into subtrees so that:

The torso of the union of bags in each subtree has bnd pathwidth.
We can realize all request in adhesions between pieces using a path
system that can be colored with a bounded number of colors.

Idea: Extract pieces by a top-down induction.

co
m
po
ne
nt

adhesion

Mi. Pilipczuk Courcelle’s Conjecture II 10/25

Requests

Fix some tree decomposition t0 of width k .

Wlog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

Request: Pair of vertices (u, v) from the adhesion.

Realization: u-v path through vertices in the component below.

Goal: Partition of t0 into subtrees so that:

The torso of the union of bags in each subtree has bnd pathwidth.

We can realize all request in adhesions between pieces using a path
system that can be colored with a bounded number of colors.

Idea: Extract pieces by a top-down induction.

co
m
po
ne
nt

adhesion

Mi. Pilipczuk Courcelle’s Conjecture II 10/25

Requests

Fix some tree decomposition t0 of width k .

Wlog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

Request: Pair of vertices (u, v) from the adhesion.

Realization: u-v path through vertices in the component below.

Goal: Partition of t0 into subtrees so that:

The torso of the union of bags in each subtree has bnd pathwidth.
We can realize all request in adhesions between pieces using a path
system that can be colored with a bounded number of colors.

Idea: Extract pieces by a top-down induction.

co
m
po
ne
nt

adhesion

Mi. Pilipczuk Courcelle’s Conjecture II 10/25

Requests

Fix some tree decomposition t0 of width k .

Wlog: the component at each node is connected its neighborhood is
exactly the whole adhesion.

Request: Pair of vertices (u, v) from the adhesion.

Realization: u-v path through vertices in the component below.

Goal: Partition of t0 into subtrees so that:

The torso of the union of bags in each subtree has bnd pathwidth.
We can realize all request in adhesions between pieces using a path
system that can be colored with a bounded number of colors.

Idea: Extract pieces by a top-down induction.

co
m
po
ne
nt

adhesion

Mi. Pilipczuk Courcelle’s Conjecture II 10/25

Induction

Assumptions:

A subtree t of t0, with top adhesion S .
A multiset R of 6 p(k) requests on pairs in S .

Goal: A prefix X of t such that

the torso of the union of bags in X has bnd pathwidth; and

requests from R∪
(
S
2

)
can be realized with 6 p(k) requests imposed

on every component below X .

Goal achieved ⇒
Paths can be colored greedily top-down with p(k) +

(
k
2

)
colors.

Every path in conflict with 6 p(k) +
(
k
2

)
− 1 other paths.

Caveat: Not quite true, needs a slightly different choice of kings.

Mi. Pilipczuk Courcelle’s Conjecture II 11/25

Induction

Assumptions:

A subtree t of t0, with top adhesion S .
A multiset R of 6 p(k) requests on pairs in S .

Goal: A prefix X of t such that

the torso of the union of bags in X has bnd pathwidth; and

requests from R∪
(
S
2

)
can be realized with 6 p(k) requests imposed

on every component below X .

Goal achieved ⇒
Paths can be colored greedily top-down with p(k) +

(
k
2

)
colors.

Every path in conflict with 6 p(k) +
(
k
2

)
− 1 other paths.

Caveat: Not quite true, needs a slightly different choice of kings.

Mi. Pilipczuk Courcelle’s Conjecture II 11/25

Induction

Assumptions:

A subtree t of t0, with top adhesion S .
A multiset R of 6 p(k) requests on pairs in S .

Goal: A prefix X of t such that

the torso of the union of bags in X has bnd pathwidth; and
requests from R∪

(
S
2

)
can be realized with 6 p(k) requests imposed

on every component below X .

Goal achieved ⇒
Paths can be colored greedily top-down with p(k) +

(
k
2

)
colors.

Every path in conflict with 6 p(k) +
(
k
2

)
− 1 other paths.

Caveat: Not quite true, needs a slightly different choice of kings.

Mi. Pilipczuk Courcelle’s Conjecture II 11/25

Induction

Assumptions:

A subtree t of t0, with top adhesion S .
A multiset R of 6 p(k) requests on pairs in S .

Goal: A prefix X of t such that

the torso of the union of bags in X has bnd pathwidth; and
requests from R∪

(
S
2

)
can be realized with 6 p(k) requests imposed

on every component below X .

Goal achieved ⇒
Paths can be colored greedily top-down with p(k) +

(
k
2

)
colors.

Every path in conflict with 6 p(k) +
(
k
2

)
− 1 other paths.

Caveat: Not quite true, needs a slightly different choice of kings.

Mi. Pilipczuk Courcelle’s Conjecture II 11/25

Induction

Assumptions:

A subtree t of t0, with top adhesion S .
A multiset R of 6 p(k) requests on pairs in S .

Goal: A prefix X of t such that

the torso of the union of bags in X has bnd pathwidth; and
requests from R∪

(
S
2

)
can be realized with 6 p(k) requests imposed

on every component below X .

Goal achieved ⇒
Paths can be colored greedily top-down with p(k) +

(
k
2

)
colors.

Every path in conflict with 6 p(k) +
(
k
2

)
− 1 other paths.

Caveat: Not quite true, needs a slightly different choice of kings.

Mi. Pilipczuk Courcelle’s Conjecture II 11/25

Induction

Assumptions:

A subtree t of t0, with top adhesion S .
A multiset R of 6 p(k) requests on pairs in S .

Goal: A prefix X of t such that

the torso of the union of bags in X has bnd pathwidth; and
requests from R∪

(
S
2

)
can be realized with 6 p(k) requests imposed

on every component below X .

Goal achieved ⇒
Paths can be colored greedily top-down with p(k) +

(
k
2

)
colors.

Every path in conflict with 6 p(k) +
(
k
2

)
− 1 other paths.

Caveat: Not quite true, needs a slightly different choice of kings.

Mi. Pilipczuk Courcelle’s Conjecture II 11/25

Motivating example

Consider the following tree decomposition of a path,
with p(k) requests on the top vertices.

In this case, X should be the whole t.

Mi. Pilipczuk Courcelle’s Conjecture II 12/25

Motivating example

Consider the following tree decomposition of a path,
with p(k) requests on the top vertices.

In this case, X should be the whole t.

Mi. Pilipczuk Courcelle’s Conjecture II 12/25

Strategy for constructing X

If |R| 6 p(k)− |
(
S
2

)
|, then we can fix X = {root}, route requests

anyhow, and apply the induction assumption in children.

Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

From now on: R′ = R∪
(
S
2

)
has more than p(k) requests.

Key idea: Let (u, v) be the request with highest multiplicity.

Say (u, v) is requested ` > p(k)/
(
k
2

)
times.

Goal: Find X so that (u, v)-requests can be routed in such a
manner that each component below X gets load 6 `/2 from them.

If achieved, then remaining requests are routed arbitrarily, and

p(k) +

(
k

2

)
− p(k)

2
(
k
2

) < p(k)

for a quartic polynomial p(k).

Mi. Pilipczuk Courcelle’s Conjecture II 13/25

Strategy for constructing X

If |R| 6 p(k)− |
(
S
2

)
|, then we can fix X = {root}, route requests

anyhow, and apply the induction assumption in children.

Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

From now on: R′ = R∪
(
S
2

)
has more than p(k) requests.

Key idea: Let (u, v) be the request with highest multiplicity.

Say (u, v) is requested ` > p(k)/
(
k
2

)
times.

Goal: Find X so that (u, v)-requests can be routed in such a
manner that each component below X gets load 6 `/2 from them.

If achieved, then remaining requests are routed arbitrarily, and

p(k) +

(
k

2

)
− p(k)

2
(
k
2

) < p(k)

for a quartic polynomial p(k).

Mi. Pilipczuk Courcelle’s Conjecture II 13/25

Strategy for constructing X

If |R| 6 p(k)− |
(
S
2

)
|, then we can fix X = {root}, route requests

anyhow, and apply the induction assumption in children.

Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

From now on: R′ = R∪
(
S
2

)
has more than p(k) requests.

Key idea: Let (u, v) be the request with highest multiplicity.

Say (u, v) is requested ` > p(k)/
(
k
2

)
times.

Goal: Find X so that (u, v)-requests can be routed in such a
manner that each component below X gets load 6 `/2 from them.

If achieved, then remaining requests are routed arbitrarily, and

p(k) +

(
k

2

)
− p(k)

2
(
k
2

) < p(k)

for a quartic polynomial p(k).

Mi. Pilipczuk Courcelle’s Conjecture II 13/25

Strategy for constructing X

If |R| 6 p(k)− |
(
S
2

)
|, then we can fix X = {root}, route requests

anyhow, and apply the induction assumption in children.

Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

From now on: R′ = R∪
(
S
2

)
has more than p(k) requests.

Key idea: Let (u, v) be the request with highest multiplicity.

Say (u, v) is requested ` > p(k)/
(
k
2

)
times.

Goal: Find X so that (u, v)-requests can be routed in such a
manner that each component below X gets load 6 `/2 from them.

If achieved, then remaining requests are routed arbitrarily, and

p(k) +

(
k

2

)
− p(k)

2
(
k
2

) < p(k)

for a quartic polynomial p(k).

Mi. Pilipczuk Courcelle’s Conjecture II 13/25

Strategy for constructing X

If |R| 6 p(k)− |
(
S
2

)
|, then we can fix X = {root}, route requests

anyhow, and apply the induction assumption in children.

Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

From now on: R′ = R∪
(
S
2

)
has more than p(k) requests.

Key idea: Let (u, v) be the request with highest multiplicity.

Say (u, v) is requested ` > p(k)/
(
k
2

)
times.

Goal: Find X so that (u, v)-requests can be routed in such a
manner that each component below X gets load 6 `/2 from them.

If achieved, then remaining requests are routed arbitrarily, and

p(k) +

(
k

2

)
− p(k)

2
(
k
2

) < p(k)

for a quartic polynomial p(k).

Mi. Pilipczuk Courcelle’s Conjecture II 13/25

Strategy for constructing X

If |R| 6 p(k)− |
(
S
2

)
|, then we can fix X = {root}, route requests

anyhow, and apply the induction assumption in children.

Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

From now on: R′ = R∪
(
S
2

)
has more than p(k) requests.

Key idea: Let (u, v) be the request with highest multiplicity.

Say (u, v) is requested ` > p(k)/
(
k
2

)
times.

Goal: Find X so that (u, v)-requests can be routed in such a
manner that each component below X gets load 6 `/2 from them.

If achieved, then remaining requests are routed arbitrarily, and

p(k) +

(
k

2

)
− p(k)

2
(
k
2

) < p(k)

for a quartic polynomial p(k).

Mi. Pilipczuk Courcelle’s Conjecture II 13/25

Strategy for constructing X

If |R| 6 p(k)− |
(
S
2

)
|, then we can fix X = {root}, route requests

anyhow, and apply the induction assumption in children.

Anyhow: Take any path realizing the request (exists by connectivity)
and replace visits of components at children by requests.

From now on: R′ = R∪
(
S
2

)
has more than p(k) requests.

Key idea: Let (u, v) be the request with highest multiplicity.

Say (u, v) is requested ` > p(k)/
(
k
2

)
times.

Goal: Find X so that (u, v)-requests can be routed in such a
manner that each component below X gets load 6 `/2 from them.

If achieved, then remaining requests are routed arbitrarily, and

p(k) +

(
k

2

)
− p(k)

2
(
k
2

) < p(k)

for a quartic polynomial p(k).

Mi. Pilipczuk Courcelle’s Conjecture II 13/25

Constructing X

Construct the following hypergraph H:

The vertex set is the root bag.
Each child node gives rise to a hyperedge equal to the adhesion.

Note: Edges of the graph are in leaves.

Paths in H: Alternating sequences of vertices and hyperedges.

Flow-cut duality: If there is no hyperedge cutting u from v , then
there are two hyperedge-disjoint paths from u to v .

Then we can split the (u, v)-requests equally between them.

Ergo: If no cutedge, then again X = {root} does the job.

u v

u v

Mi. Pilipczuk Courcelle’s Conjecture II 14/25

Constructing X

Construct the following hypergraph H:

The vertex set is the root bag.
Each child node gives rise to a hyperedge equal to the adhesion.

Note: Edges of the graph are in leaves.

Paths in H: Alternating sequences of vertices and hyperedges.

Flow-cut duality: If there is no hyperedge cutting u from v , then
there are two hyperedge-disjoint paths from u to v .

Then we can split the (u, v)-requests equally between them.

Ergo: If no cutedge, then again X = {root} does the job.

u v

u v

Mi. Pilipczuk Courcelle’s Conjecture II 14/25

Constructing X

Construct the following hypergraph H:

The vertex set is the root bag.
Each child node gives rise to a hyperedge equal to the adhesion.

Note: Edges of the graph are in leaves.

Paths in H: Alternating sequences of vertices and hyperedges.

Flow-cut duality: If there is no hyperedge cutting u from v , then
there are two hyperedge-disjoint paths from u to v .

Then we can split the (u, v)-requests equally between them.

Ergo: If no cutedge, then again X = {root} does the job.

u v

u v

Mi. Pilipczuk Courcelle’s Conjecture II 14/25

Constructing X

Construct the following hypergraph H:

The vertex set is the root bag.
Each child node gives rise to a hyperedge equal to the adhesion.

Note: Edges of the graph are in leaves.

Paths in H: Alternating sequences of vertices and hyperedges.

Flow-cut duality: If there is no hyperedge cutting u from v , then
there are two hyperedge-disjoint paths from u to v .

Then we can split the (u, v)-requests equally between them.

Ergo: If no cutedge, then again X = {root} does the job.

u v

u v

Mi. Pilipczuk Courcelle’s Conjecture II 14/25

Constructing X

Construct the following hypergraph H:

The vertex set is the root bag.
Each child node gives rise to a hyperedge equal to the adhesion.

Note: Edges of the graph are in leaves.

Paths in H: Alternating sequences of vertices and hyperedges.

Flow-cut duality: If there is no hyperedge cutting u from v , then
there are two hyperedge-disjoint paths from u to v .

Then we can split the (u, v)-requests equally between them.

Ergo: If no cutedge, then again X = {root} does the job.

u v

u v

Mi. Pilipczuk Courcelle’s Conjecture II 14/25

Constructing X

Construct the following hypergraph H:

The vertex set is the root bag.
Each child node gives rise to a hyperedge equal to the adhesion.

Note: Edges of the graph are in leaves.

Paths in H: Alternating sequences of vertices and hyperedges.

Flow-cut duality: If there is no hyperedge cutting u from v , then
there are two hyperedge-disjoint paths from u to v .

Then we can split the (u, v)-requests equally between them.

Ergo: If no cutedge, then again X = {root} does the job.

u v

u v

Mi. Pilipczuk Courcelle’s Conjecture II 14/25

Constructing X

Otherwise, there is a sequence of cutedges.

Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
Ergo: We can have load `/2 on all hyperedges apart from cutedges.

Construction: Extend X to the roots of those subtrees that
correspond to cutedges, and recurse.

Observation: After unraveling all the recursive calls and examining
the torso of

⋃
X , we see one long path decomposition.

This is exactly what happens in the motivating example.

 e1 e2 e3

sinksource

Mi. Pilipczuk Courcelle’s Conjecture II 15/25

Constructing X

Otherwise, there is a sequence of cutedges.

Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.

Ergo: We can have load `/2 on all hyperedges apart from cutedges.

Construction: Extend X to the roots of those subtrees that
correspond to cutedges, and recurse.

Observation: After unraveling all the recursive calls and examining
the torso of

⋃
X , we see one long path decomposition.

This is exactly what happens in the motivating example.

 e1 e2 e3

sinksource

Mi. Pilipczuk Courcelle’s Conjecture II 15/25

Constructing X

Otherwise, there is a sequence of cutedges.

Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
Ergo: We can have load `/2 on all hyperedges apart from cutedges.

Construction: Extend X to the roots of those subtrees that
correspond to cutedges, and recurse.

Observation: After unraveling all the recursive calls and examining
the torso of

⋃
X , we see one long path decomposition.

This is exactly what happens in the motivating example.

 e1 e2 e3

sinksource

Mi. Pilipczuk Courcelle’s Conjecture II 15/25

Constructing X

Otherwise, there is a sequence of cutedges.

Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
Ergo: We can have load `/2 on all hyperedges apart from cutedges.

Construction: Extend X to the roots of those subtrees that
correspond to cutedges, and recurse.

Observation: After unraveling all the recursive calls and examining
the torso of

⋃
X , we see one long path decomposition.

This is exactly what happens in the motivating example.

 e1 e2 e3

sinksource

Mi. Pilipczuk Courcelle’s Conjecture II 15/25

Constructing X

Otherwise, there is a sequence of cutedges.

Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
Ergo: We can have load `/2 on all hyperedges apart from cutedges.

Construction: Extend X to the roots of those subtrees that
correspond to cutedges, and recurse.

Observation: After unraveling all the recursive calls and examining
the torso of

⋃
X , we see one long path decomposition.

This is exactly what happens in the motivating example.

 e1 e2 e3

sinksource

Mi. Pilipczuk Courcelle’s Conjecture II 15/25

Constructing X

Otherwise, there is a sequence of cutedges.

Observation: Between every two consecutive cutedges, there are two
hyperedge-disjoint paths.
Ergo: We can have load `/2 on all hyperedges apart from cutedges.

Construction: Extend X to the roots of those subtrees that
correspond to cutedges, and recurse.

Observation: After unraveling all the recursive calls and examining
the torso of

⋃
X , we see one long path decomposition.

This is exactly what happens in the motivating example.

 e1 e2 e3

sinksource

Mi. Pilipczuk Courcelle’s Conjecture II 15/25

Part II
(linear) cliquewidth

Mi. Pilipczuk Courcelle’s Conjecture II 16/25

Cliquewidth

Treewidth algebra:

Support: Graphs with 6 k interfaces, numbered from 1 to k.
Operations: introduce, forget, join, leaf.

Cliquewidth algebra:

Support: k-colored graphs, colors from 1 to k.
Operations:

A single Vertex of color i .
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j .
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.
Linear cliquewidth: Vertices have to be added one by one.

Add Vertex instead of Vertex, Connect, and Disjoint Union.

⊕

Mi. Pilipczuk Courcelle’s Conjecture II 17/25

Cliquewidth

Treewidth algebra:

Support: Graphs with 6 k interfaces, numbered from 1 to k.

Operations: introduce, forget, join, leaf.

Cliquewidth algebra:

Support: k-colored graphs, colors from 1 to k.
Operations:

A single Vertex of color i .
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j .
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.
Linear cliquewidth: Vertices have to be added one by one.

Add Vertex instead of Vertex, Connect, and Disjoint Union.

⊕

Mi. Pilipczuk Courcelle’s Conjecture II 17/25

Cliquewidth

Treewidth algebra:

Support: Graphs with 6 k interfaces, numbered from 1 to k.
Operations: introduce, forget, join, leaf.

Cliquewidth algebra:

Support: k-colored graphs, colors from 1 to k.
Operations:

A single Vertex of color i .
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j .
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.
Linear cliquewidth: Vertices have to be added one by one.

Add Vertex instead of Vertex, Connect, and Disjoint Union.

⊕

Mi. Pilipczuk Courcelle’s Conjecture II 17/25

Cliquewidth

Treewidth algebra:

Support: Graphs with 6 k interfaces, numbered from 1 to k.
Operations: introduce, forget, join, leaf.

Cliquewidth algebra:

Support: k-colored graphs, colors from 1 to k.
Operations:

A single Vertex of color i .
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j .
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.
Linear cliquewidth: Vertices have to be added one by one.

Add Vertex instead of Vertex, Connect, and Disjoint Union.

⊕

Mi. Pilipczuk Courcelle’s Conjecture II 17/25

Cliquewidth

Treewidth algebra:

Support: Graphs with 6 k interfaces, numbered from 1 to k.
Operations: introduce, forget, join, leaf.

Cliquewidth algebra:

Support: k-colored graphs, colors from 1 to k.

Operations:

A single Vertex of color i .
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j .
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.
Linear cliquewidth: Vertices have to be added one by one.

Add Vertex instead of Vertex, Connect, and Disjoint Union.

⊕

Mi. Pilipczuk Courcelle’s Conjecture II 17/25

Cliquewidth

Treewidth algebra:

Support: Graphs with 6 k interfaces, numbered from 1 to k.
Operations: introduce, forget, join, leaf.

Cliquewidth algebra:

Support: k-colored graphs, colors from 1 to k.
Operations:

A single Vertex of color i .
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j .
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.
Linear cliquewidth: Vertices have to be added one by one.

Add Vertex instead of Vertex, Connect, and Disjoint Union.

⊕

Mi. Pilipczuk Courcelle’s Conjecture II 17/25

Cliquewidth

Treewidth algebra:

Support: Graphs with 6 k interfaces, numbered from 1 to k.
Operations: introduce, forget, join, leaf.

Cliquewidth algebra:

Support: k-colored graphs, colors from 1 to k.
Operations:

A single Vertex of color i .
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j .
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.

Linear cliquewidth: Vertices have to be added one by one.

Add Vertex instead of Vertex, Connect, and Disjoint Union.

⊕

Mi. Pilipczuk Courcelle’s Conjecture II 17/25

Cliquewidth

Treewidth algebra:

Support: Graphs with 6 k interfaces, numbered from 1 to k.
Operations: introduce, forget, join, leaf.

Cliquewidth algebra:

Support: k-colored graphs, colors from 1 to k.
Operations:

A single Vertex of color i .
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j .
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.
Linear cliquewidth: Vertices have to be added one by one.

Add Vertex instead of Vertex, Connect, and Disjoint Union.

⊕

Mi. Pilipczuk Courcelle’s Conjecture II 17/25

Cliquewidth

Treewidth algebra:

Support: Graphs with 6 k interfaces, numbered from 1 to k.
Operations: introduce, forget, join, leaf.

Cliquewidth algebra:

Support: k-colored graphs, colors from 1 to k.
Operations:

A single Vertex of color i .
Connect all vertices of colors i and j by making them adjacent.
Recolor all vertices of color i to color j .
Disjoint Union of two k-colored graphs.

Cliquewidth: Min. number of colors needed to construct a graph.
Linear cliquewidth: Vertices have to be added one by one.

Add Vertex instead of Vertex, Connect, and Disjoint Union.

⊕

Mi. Pilipczuk Courcelle’s Conjecture II 17/25

VR-recognizability

We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

Myhill-Nerode relation for a graph language L:

k-colored graphs G1 and G2 are L-equivalent if for every context H,

H ◦ G1 ∈ L ⇔ H ◦ G2 ∈ L.

L is recognizable if for each k this relation has finite index.

Homomorphism definition:

Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.
Homomorphism h recognizes L if L = h−1(S) for some S ⊆ A.
L is recognizable if for each k it is recognized as above.

H

G1

H

G2

⇔Gk
h−−−−−−−−→ A

L
h−1

←−−−−−−−−− S

Mi. Pilipczuk Courcelle’s Conjecture II 18/25

VR-recognizability

We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

Myhill-Nerode relation for a graph language L:

k-colored graphs G1 and G2 are L-equivalent if for every context H,

H ◦ G1 ∈ L ⇔ H ◦ G2 ∈ L.

L is recognizable if for each k this relation has finite index.

Homomorphism definition:

Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.
Homomorphism h recognizes L if L = h−1(S) for some S ⊆ A.
L is recognizable if for each k it is recognized as above.

H

G1

H

G2

⇔Gk
h−−−−−−−−→ A

L
h−1

←−−−−−−−−− S

Mi. Pilipczuk Courcelle’s Conjecture II 18/25

VR-recognizability

We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

Myhill-Nerode relation for a graph language L:

k-colored graphs G1 and G2 are L-equivalent if for every context H,

H ◦ G1 ∈ L ⇔ H ◦ G2 ∈ L.

L is recognizable if for each k this relation has finite index.

Homomorphism definition:

Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.
Homomorphism h recognizes L if L = h−1(S) for some S ⊆ A.
L is recognizable if for each k it is recognized as above.

H

G1

H

G2

⇔

Gk
h−−−−−−−−→ A

L
h−1

←−−−−−−−−− S

Mi. Pilipczuk Courcelle’s Conjecture II 18/25

VR-recognizability

We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

Myhill-Nerode relation for a graph language L:

k-colored graphs G1 and G2 are L-equivalent if for every context H,

H ◦ G1 ∈ L ⇔ H ◦ G2 ∈ L.

L is recognizable if for each k this relation has finite index.

Homomorphism definition:

Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.
Homomorphism h recognizes L if L = h−1(S) for some S ⊆ A.
L is recognizable if for each k it is recognized as above.

H

G1

H

G2

⇔

Gk
h−−−−−−−−→ A

L
h−1

←−−−−−−−−− S

Mi. Pilipczuk Courcelle’s Conjecture II 18/25

VR-recognizability

We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

Myhill-Nerode relation for a graph language L:

k-colored graphs G1 and G2 are L-equivalent if for every context H,

H ◦ G1 ∈ L ⇔ H ◦ G2 ∈ L.

L is recognizable if for each k this relation has finite index.

Homomorphism definition:

Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.
Homomorphism h recognizes L if L = h−1(S) for some S ⊆ A.
L is recognizable if for each k it is recognized as above.

H

G1

H

G2

⇔Gk
h−−−−−−−−→ A

L
h−1

←−−−−−−−−− S

Mi. Pilipczuk Courcelle’s Conjecture II 18/25

VR-recognizability

We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

Myhill-Nerode relation for a graph language L:

k-colored graphs G1 and G2 are L-equivalent if for every context H,

H ◦ G1 ∈ L ⇔ H ◦ G2 ∈ L.

L is recognizable if for each k this relation has finite index.

Homomorphism definition:

Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.

Homomorphism h recognizes L if L = h−1(S) for some S ⊆ A.
L is recognizable if for each k it is recognized as above.

H

G1

H

G2

⇔

Gk
h−−−−−−−−→ A

L
h−1

←−−−−−−−−− S

Mi. Pilipczuk Courcelle’s Conjecture II 18/25

VR-recognizability

We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

Myhill-Nerode relation for a graph language L:

k-colored graphs G1 and G2 are L-equivalent if for every context H,

H ◦ G1 ∈ L ⇔ H ◦ G2 ∈ L.

L is recognizable if for each k this relation has finite index.

Homomorphism definition:

Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.
Homomorphism h recognizes L if L = h−1(S) for some S ⊆ A.

L is recognizable if for each k it is recognized as above.

H

G1

H

G2

⇔

Gk
h−−−−−−−−→ A

L
h−1

←−−−−−−−−− S

Mi. Pilipczuk Courcelle’s Conjecture II 18/25

VR-recognizability

We define recognizability for the cliquewidth algebra similarly as for
the treewidth algebra.

Myhill-Nerode relation for a graph language L:

k-colored graphs G1 and G2 are L-equivalent if for every context H,

H ◦ G1 ∈ L ⇔ H ◦ G2 ∈ L.

L is recognizable if for each k this relation has finite index.

Homomorphism definition:

Consider a homomorphism h from the algebra of k-colored graphs to
some finite algebra A over the same operations.
Homomorphism h recognizes L if L = h−1(S) for some S ⊆ A.
L is recognizable if for each k it is recognized as above.

H

G1

H

G2

⇔

Gk
h−−−−−−−−→ A

L
h−1

←−−−−−−−−− S

Mi. Pilipczuk Courcelle’s Conjecture II 18/25

Conjecture for cliquewidth

Conjecture

Let L be a language of graphs of cliquewidth 6 k , for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

(⇒) Follows as in the treewidth case.
(⇐) The same issue as in the treewidth case.

Conjecture

For each k ∈ N there is an MSO1 transduction that given a graph of
cliquewidth at most k outputs some its clique decomposition.

Theorem [BGP,17+]

For each k ∈ N there is an MSO1 transduction that given a graph of
linear cliquewidth at most k outputs some its clique decomposition.

Corollary [BGP,17+]

Let L be a language of graphs of linear cliquewidth 6 k , for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

Mi. Pilipczuk Courcelle’s Conjecture II 19/25

Conjecture for cliquewidth

Conjecture

Let L be a language of graphs of cliquewidth 6 k , for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

(⇒) Follows as in the treewidth case.

(⇐) The same issue as in the treewidth case.

Conjecture

For each k ∈ N there is an MSO1 transduction that given a graph of
cliquewidth at most k outputs some its clique decomposition.

Theorem [BGP,17+]

For each k ∈ N there is an MSO1 transduction that given a graph of
linear cliquewidth at most k outputs some its clique decomposition.

Corollary [BGP,17+]

Let L be a language of graphs of linear cliquewidth 6 k, for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

Mi. Pilipczuk Courcelle’s Conjecture II 19/25

Conjecture for cliquewidth

Conjecture

Let L be a language of graphs of cliquewidth 6 k , for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

(⇒) Follows as in the treewidth case.
(⇐) The same issue as in the treewidth case.

Conjecture

For each k ∈ N there is an MSO1 transduction that given a graph of
cliquewidth at most k outputs some its clique decomposition.

Theorem [BGP,17+]

For each k ∈ N there is an MSO1 transduction that given a graph of
linear cliquewidth at most k outputs some its clique decomposition.

Corollary [BGP,17+]

Let L be a language of graphs of linear cliquewidth 6 k, for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

Mi. Pilipczuk Courcelle’s Conjecture II 19/25

Conjecture for cliquewidth

Conjecture

Let L be a language of graphs of cliquewidth 6 k , for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

(⇒) Follows as in the treewidth case.
(⇐) The same issue as in the treewidth case.

Conjecture

For each k ∈ N there is an MSO1 transduction that given a graph of
cliquewidth at most k outputs some its clique decomposition.

Theorem [BGP,17+]

For each k ∈ N there is an MSO1 transduction that given a graph of
linear cliquewidth at most k outputs some its clique decomposition.

Corollary [BGP,17+]

Let L be a language of graphs of linear cliquewidth 6 k, for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

Mi. Pilipczuk Courcelle’s Conjecture II 19/25

Conjecture for cliquewidth

Conjecture

Let L be a language of graphs of cliquewidth 6 k , for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

(⇒) Follows as in the treewidth case.
(⇐) The same issue as in the treewidth case.

Conjecture

For each k ∈ N there is an MSO1 transduction that given a graph of
cliquewidth at most k outputs some its clique decomposition.

Theorem [BGP,17+]

For each k ∈ N there is an MSO1 transduction that given a graph of
linear cliquewidth at most k outputs some its clique decomposition.

Corollary [BGP,17+]

Let L be a language of graphs of linear cliquewidth 6 k, for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

Mi. Pilipczuk Courcelle’s Conjecture II 19/25

Conjecture for cliquewidth

Conjecture

Let L be a language of graphs of cliquewidth 6 k , for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

(⇒) Follows as in the treewidth case.
(⇐) The same issue as in the treewidth case.

Conjecture

For each k ∈ N there is an MSO1 transduction that given a graph of
cliquewidth at most k outputs some its clique decomposition.

Theorem [BGP,17+]

For each k ∈ N there is an MSO1 transduction that given a graph of
linear cliquewidth at most k outputs some its clique decomposition.

Corollary [BGP,17+]

Let L be a language of graphs of linear cliquewidth 6 k, for some k ∈ N.
Then L is definable in CMSO1 iff it is recognizable.

Mi. Pilipczuk Courcelle’s Conjecture II 19/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.
Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.
Construct Simon’s factorization of the linear clique decomposition.
Combine transductions by a bottom-up induction.
Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.
Far more technical details than in the pathwidth case.
Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.
Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.
Construct Simon’s factorization of the linear clique decomposition.
Combine transductions by a bottom-up induction.
Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.
Far more technical details than in the pathwidth case.
Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.
Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.
Construct Simon’s factorization of the linear clique decomposition.
Combine transductions by a bottom-up induction.
Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.
Far more technical details than in the pathwidth case.
Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.

Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.
Construct Simon’s factorization of the linear clique decomposition.
Combine transductions by a bottom-up induction.
Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.
Far more technical details than in the pathwidth case.
Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.
Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.

Construct Simon’s factorization of the linear clique decomposition.
Combine transductions by a bottom-up induction.
Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.
Far more technical details than in the pathwidth case.
Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.
Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.
Construct Simon’s factorization of the linear clique decomposition.

Combine transductions by a bottom-up induction.
Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.
Far more technical details than in the pathwidth case.
Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.
Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.
Construct Simon’s factorization of the linear clique decomposition.
Combine transductions by a bottom-up induction.

Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.
Far more technical details than in the pathwidth case.
Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.
Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.
Construct Simon’s factorization of the linear clique decomposition.
Combine transductions by a bottom-up induction.
Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.
Far more technical details than in the pathwidth case.
Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.
Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.
Construct Simon’s factorization of the linear clique decomposition.
Combine transductions by a bottom-up induction.
Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.
Far more technical details than in the pathwidth case.
Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.
Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.
Construct Simon’s factorization of the linear clique decomposition.
Combine transductions by a bottom-up induction.
Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.

Far more technical details than in the pathwidth case.
Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.
Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.
Construct Simon’s factorization of the linear clique decomposition.
Combine transductions by a bottom-up induction.
Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.
Far more technical details than in the pathwidth case.

Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Proof strategy

The definable cliquewidth of a graph is the minimum size of an
MSO transduction that constructs some its clique decomposition.

Goal: Def. cliquewidth is bounded by a function of lin. cliquewidth.

Strategy:

View linear clique decomposition as a word over instructions.
Define bounded-size abstraction for subwords of instructions,
endowed with structure of a semigroup.
Construct Simon’s factorization of the linear clique decomposition.
Combine transductions by a bottom-up induction.
Key: Implement binary and idempotent nodes.

Message:

The plan above can be implemented.
Far more technical details than in the pathwidth case.
Lack of combinatorial abstraction is a nuisance.

Mi. Pilipczuk Courcelle’s Conjecture II 20/25

Instructions and derivations

A linear cw decomposition of width k is a word over instructions:

Recolor according to a function φ : [k]→ [k].
Add vertex of color i and adjacent to colors X ⊆ [k].

k-derivation corresponds to a word of instructions, and consists of:

the underlying k-colored graph G ;
for each u ∈ G , its profile λ(u) ⊆ [k];
recoloring φ : [k]→ [k].

Derivations have a natural semigroup structure.

past futurepast futurepast future

profiles

past future

profiles

Mi. Pilipczuk Courcelle’s Conjecture II 21/25

Instructions and derivations

A linear cw decomposition of width k is a word over instructions:

Recolor according to a function φ : [k]→ [k].

Add vertex of color i and adjacent to colors X ⊆ [k].

k-derivation corresponds to a word of instructions, and consists of:

the underlying k-colored graph G ;
for each u ∈ G , its profile λ(u) ⊆ [k];
recoloring φ : [k]→ [k].

Derivations have a natural semigroup structure.

past futurepast futurepast future

profiles

past future

profiles

Mi. Pilipczuk Courcelle’s Conjecture II 21/25

Instructions and derivations

A linear cw decomposition of width k is a word over instructions:

Recolor according to a function φ : [k]→ [k].
Add vertex of color i and adjacent to colors X ⊆ [k].

k-derivation corresponds to a word of instructions, and consists of:

the underlying k-colored graph G ;
for each u ∈ G , its profile λ(u) ⊆ [k];
recoloring φ : [k]→ [k].

Derivations have a natural semigroup structure.

past futurepast futurepast future

profiles

past future

profiles

Mi. Pilipczuk Courcelle’s Conjecture II 21/25

Instructions and derivations

A linear cw decomposition of width k is a word over instructions:

Recolor according to a function φ : [k]→ [k].
Add vertex of color i and adjacent to colors X ⊆ [k].

k-derivation corresponds to a word of instructions, and consists of:

the underlying k-colored graph G ;
for each u ∈ G , its profile λ(u) ⊆ [k];
recoloring φ : [k]→ [k].

Derivations have a natural semigroup structure.

past future

past futurepast future

profiles

past future

profiles

Mi. Pilipczuk Courcelle’s Conjecture II 21/25

Instructions and derivations

A linear cw decomposition of width k is a word over instructions:

Recolor according to a function φ : [k]→ [k].
Add vertex of color i and adjacent to colors X ⊆ [k].

k-derivation corresponds to a word of instructions, and consists of:

the underlying k-colored graph G ;

for each u ∈ G , its profile λ(u) ⊆ [k];
recoloring φ : [k]→ [k].

Derivations have a natural semigroup structure.

past future

past future

past future

profiles

past future

profiles

Mi. Pilipczuk Courcelle’s Conjecture II 21/25

Instructions and derivations

A linear cw decomposition of width k is a word over instructions:

Recolor according to a function φ : [k]→ [k].
Add vertex of color i and adjacent to colors X ⊆ [k].

k-derivation corresponds to a word of instructions, and consists of:

the underlying k-colored graph G ;
for each u ∈ G , its profile λ(u) ⊆ [k];

recoloring φ : [k]→ [k].

Derivations have a natural semigroup structure.

past futurepast future

past future

profiles

past future

profiles

Mi. Pilipczuk Courcelle’s Conjecture II 21/25

Instructions and derivations

A linear cw decomposition of width k is a word over instructions:

Recolor according to a function φ : [k]→ [k].
Add vertex of color i and adjacent to colors X ⊆ [k].

k-derivation corresponds to a word of instructions, and consists of:

the underlying k-colored graph G ;
for each u ∈ G , its profile λ(u) ⊆ [k];
recoloring φ : [k]→ [k].

Derivations have a natural semigroup structure.

past futurepast futurepast future

profiles

past future

profiles

Mi. Pilipczuk Courcelle’s Conjecture II 21/25

Instructions and derivations

A linear cw decomposition of width k is a word over instructions:

Recolor according to a function φ : [k]→ [k].
Add vertex of color i and adjacent to colors X ⊆ [k].

k-derivation corresponds to a word of instructions, and consists of:

the underlying k-colored graph G ;
for each u ∈ G , its profile λ(u) ⊆ [k];
recoloring φ : [k]→ [k].

Derivations have a natural semigroup structure.

past futurepast futurepast future

profiles

past future

profiles

Mi. Pilipczuk Courcelle’s Conjecture II 21/25

Binary Lemma

Binary Lemma

For two k-derivations σ1, σ2, we have

dcw(σ1 · σ2) 6 f (dcw(σ1),dcw(σ2)).

Proof: We are given the underlying graph G of σ1 · σ2.

Guess the partition of G into G1 and G2.

Apply transductions to G1 and G2, obtaining clique decompositions.

Cut between G1 and G2 has modular width at most 2k .

Enrich decompositions with neighborhoods on the other side.

Combine.

Mi. Pilipczuk Courcelle’s Conjecture II 22/25

Binary Lemma

Binary Lemma

For two k-derivations σ1, σ2, we have

dcw(σ1 · σ2) 6 f (dcw(σ1),dcw(σ2)).

Proof: We are given the underlying graph G of σ1 · σ2.

Guess the partition of G into G1 and G2.

Apply transductions to G1 and G2, obtaining clique decompositions.

Cut between G1 and G2 has modular width at most 2k .

Enrich decompositions with neighborhoods on the other side.

Combine.

Mi. Pilipczuk Courcelle’s Conjecture II 22/25

Binary Lemma

Binary Lemma

For two k-derivations σ1, σ2, we have

dcw(σ1 · σ2) 6 f (dcw(σ1),dcw(σ2)).

Proof: We are given the underlying graph G of σ1 · σ2.

Guess the partition of G into G1 and G2.

Apply transductions to G1 and G2, obtaining clique decompositions.

Cut between G1 and G2 has modular width at most 2k .

Enrich decompositions with neighborhoods on the other side.

Combine.

Mi. Pilipczuk Courcelle’s Conjecture II 22/25

Binary Lemma

Binary Lemma

For two k-derivations σ1, σ2, we have

dcw(σ1 · σ2) 6 f (dcw(σ1),dcw(σ2)).

Proof: We are given the underlying graph G of σ1 · σ2.

Guess the partition of G into G1 and G2.

Apply transductions to G1 and G2, obtaining clique decompositions.

Cut between G1 and G2 has modular width at most 2k .

Enrich decompositions with neighborhoods on the other side.

Combine.

Mi. Pilipczuk Courcelle’s Conjecture II 22/25

Binary Lemma

Binary Lemma

For two k-derivations σ1, σ2, we have

dcw(σ1 · σ2) 6 f (dcw(σ1),dcw(σ2)).

Proof: We are given the underlying graph G of σ1 · σ2.

Guess the partition of G into G1 and G2.

Apply transductions to G1 and G2, obtaining clique decompositions.

Cut between G1 and G2 has modular width at most 2k .

Enrich decompositions with neighborhoods on the other side.

Combine.

Mi. Pilipczuk Courcelle’s Conjecture II 22/25

Binary Lemma

Binary Lemma

For two k-derivations σ1, σ2, we have

dcw(σ1 · σ2) 6 f (dcw(σ1),dcw(σ2)).

Proof: We are given the underlying graph G of σ1 · σ2.

Guess the partition of G into G1 and G2.

Apply transductions to G1 and G2, obtaining clique decompositions.

Cut between G1 and G2 has modular width at most 2k .

Enrich decompositions with neighborhoods on the other side.

Combine.

Mi. Pilipczuk Courcelle’s Conjecture II 22/25

Binary Lemma

Binary Lemma

For two k-derivations σ1, σ2, we have

dcw(σ1 · σ2) 6 f (dcw(σ1),dcw(σ2)).

Proof: We are given the underlying graph G of σ1 · σ2.

Guess the partition of G into G1 and G2.

Apply transductions to G1 and G2, obtaining clique decompositions.

Cut between G1 and G2 has modular width at most 2k .

Enrich decompositions with neighborhoods on the other side.

Combine.

Mi. Pilipczuk Courcelle’s Conjecture II 22/25

Abstraction and Idempotent Lemma

Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let σ1, . . . , σn be k-derivations with same idempotent abstraction. Then

dcw(σ1 · · ·σn) 6 f (max
i∈[n]

dcw(σi)).

Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size 6 f (k).

In our case:

All σi use the same idempotent recoloring φ.
In all σi the set of nonempty cells is the same.
We keep some information about paths between the cells.

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φφ φ φ φ φ φ φ φ

Mi. Pilipczuk Courcelle’s Conjecture II 23/25

Abstraction and Idempotent Lemma

Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let σ1, . . . , σn be k-derivations with same idempotent abstraction. Then

dcw(σ1 · · ·σn) 6 f (max
i∈[n]

dcw(σi)).

Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size 6 f (k).

In our case:

All σi use the same idempotent recoloring φ.
In all σi the set of nonempty cells is the same.
We keep some information about paths between the cells.

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φφ φ φ φ φ φ φ φ

Mi. Pilipczuk Courcelle’s Conjecture II 23/25

Abstraction and Idempotent Lemma

Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let σ1, . . . , σn be k-derivations with same idempotent abstraction. Then

dcw(σ1 · · ·σn) 6 f (max
i∈[n]

dcw(σi)).

Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size 6 f (k).

In our case:

All σi use the same idempotent recoloring φ.
In all σi the set of nonempty cells is the same.
We keep some information about paths between the cells.

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φφ φ φ φ φ φ φ φ

Mi. Pilipczuk Courcelle’s Conjecture II 23/25

Abstraction and Idempotent Lemma

Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let σ1, . . . , σn be k-derivations with same idempotent abstraction. Then

dcw(σ1 · · ·σn) 6 f (max
i∈[n]

dcw(σi)).

Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size 6 f (k).

In our case:

All σi use the same idempotent recoloring φ.

In all σi the set of nonempty cells is the same.
We keep some information about paths between the cells.

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

Mi. Pilipczuk Courcelle’s Conjecture II 23/25

Abstraction and Idempotent Lemma

Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let σ1, . . . , σn be k-derivations with same idempotent abstraction. Then

dcw(σ1 · · ·σn) 6 f (max
i∈[n]

dcw(σi)).

Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size 6 f (k).

In our case:

All σi use the same idempotent recoloring φ.
In all σi the set of nonempty cells is the same.

We keep some information about paths between the cells.

φ φ φ φ φ φ φ φφ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

Mi. Pilipczuk Courcelle’s Conjecture II 23/25

Abstraction and Idempotent Lemma

Abstraction: Constant-size compositional information about a
k-derivation that enables the following.

Idempotent Lemma

Let σ1, . . . , σn be k-derivations with same idempotent abstraction. Then

dcw(σ1 · · ·σn) 6 f (max
i∈[n]

dcw(σi)).

Intuition: We can pack into abstraction all information that is
relevant, provided it remains of size 6 f (k).

In our case:

All σi use the same idempotent recoloring φ.
In all σi the set of nonempty cells is the same.
We keep some information about paths between the cells.

φ φ φ φ φ φ φ φφ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ

Mi. Pilipczuk Courcelle’s Conjecture II 23/25

Definable Order Lemma

Block order on σ1 · · ·σn: u � v iff u ∈ σi , v ∈ σj , and i 6 j .

Flip of k-derivation τ :
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let σ1, . . . , σn be k-derivations with the same idempotent abstraction.
Then there is some flip H of σ1 · · ·σn such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

Using the Definable Order Lemma:

Guess partition into cells and the flip.
Interpret the block order in each connected component.
Apply the assumed transductions to each block in parallel.
Combine everything along the block order.

Proving the Definable Order Lemma:

Analyze interactions between cells.
Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture II 24/25

Definable Order Lemma

Block order on σ1 · · ·σn: u � v iff u ∈ σi , v ∈ σj , and i 6 j .

Flip of k-derivation τ :
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let σ1, . . . , σn be k-derivations with the same idempotent abstraction.
Then there is some flip H of σ1 · · ·σn such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k.

Using the Definable Order Lemma:

Guess partition into cells and the flip.
Interpret the block order in each connected component.
Apply the assumed transductions to each block in parallel.
Combine everything along the block order.

Proving the Definable Order Lemma:

Analyze interactions between cells.
Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture II 24/25

Definable Order Lemma

Block order on σ1 · · ·σn: u � v iff u ∈ σi , v ∈ σj , and i 6 j .

Flip of k-derivation τ :
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let σ1, . . . , σn be k-derivations with the same idempotent abstraction.
Then there is some flip H of σ1 · · ·σn such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k .

Using the Definable Order Lemma:

Guess partition into cells and the flip.
Interpret the block order in each connected component.
Apply the assumed transductions to each block in parallel.
Combine everything along the block order.

Proving the Definable Order Lemma:

Analyze interactions between cells.
Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture II 24/25

Definable Order Lemma

Block order on σ1 · · ·σn: u � v iff u ∈ σi , v ∈ σj , and i 6 j .

Flip of k-derivation τ :
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let σ1, . . . , σn be k-derivations with the same idempotent abstraction.
Then there is some flip H of σ1 · · ·σn such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k .

Using the Definable Order Lemma:

Guess partition into cells and the flip.
Interpret the block order in each connected component.
Apply the assumed transductions to each block in parallel.
Combine everything along the block order.

Proving the Definable Order Lemma:

Analyze interactions between cells.
Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture II 24/25

Definable Order Lemma

Block order on σ1 · · ·σn: u � v iff u ∈ σi , v ∈ σj , and i 6 j .

Flip of k-derivation τ :
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let σ1, . . . , σn be k-derivations with the same idempotent abstraction.
Then there is some flip H of σ1 · · ·σn such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k .

Using the Definable Order Lemma:
Guess partition into cells and the flip.

Interpret the block order in each connected component.
Apply the assumed transductions to each block in parallel.
Combine everything along the block order.

Proving the Definable Order Lemma:

Analyze interactions between cells.
Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture II 24/25

Definable Order Lemma

Block order on σ1 · · ·σn: u � v iff u ∈ σi , v ∈ σj , and i 6 j .

Flip of k-derivation τ :
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let σ1, . . . , σn be k-derivations with the same idempotent abstraction.
Then there is some flip H of σ1 · · ·σn such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k .

Using the Definable Order Lemma:
Guess partition into cells and the flip.
Interpret the block order in each connected component.

Apply the assumed transductions to each block in parallel.
Combine everything along the block order.

Proving the Definable Order Lemma:

Analyze interactions between cells.
Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture II 24/25

Definable Order Lemma

Block order on σ1 · · ·σn: u � v iff u ∈ σi , v ∈ σj , and i 6 j .

Flip of k-derivation τ :
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let σ1, . . . , σn be k-derivations with the same idempotent abstraction.
Then there is some flip H of σ1 · · ·σn such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k .

Using the Definable Order Lemma:
Guess partition into cells and the flip.
Interpret the block order in each connected component.
Apply the assumed transductions to each block in parallel.

Combine everything along the block order.

Proving the Definable Order Lemma:

Analyze interactions between cells.
Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture II 24/25

Definable Order Lemma

Block order on σ1 · · ·σn: u � v iff u ∈ σi , v ∈ σj , and i 6 j .

Flip of k-derivation τ :
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let σ1, . . . , σn be k-derivations with the same idempotent abstraction.
Then there is some flip H of σ1 · · ·σn such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k .

Using the Definable Order Lemma:
Guess partition into cells and the flip.
Interpret the block order in each connected component.
Apply the assumed transductions to each block in parallel.
Combine everything along the block order.

Proving the Definable Order Lemma:

Analyze interactions between cells.
Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture II 24/25

Definable Order Lemma

Block order on σ1 · · ·σn: u � v iff u ∈ σi , v ∈ σj , and i 6 j .

Flip of k-derivation τ :
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let σ1, . . . , σn be k-derivations with the same idempotent abstraction.
Then there is some flip H of σ1 · · ·σn such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k .

Using the Definable Order Lemma:
Guess partition into cells and the flip.
Interpret the block order in each connected component.
Apply the assumed transductions to each block in parallel.
Combine everything along the block order.

Proving the Definable Order Lemma:

Analyze interactions between cells.
Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture II 24/25

Definable Order Lemma

Block order on σ1 · · ·σn: u � v iff u ∈ σi , v ∈ σj , and i 6 j .

Flip of k-derivation τ :
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let σ1, . . . , σn be k-derivations with the same idempotent abstraction.
Then there is some flip H of σ1 · · ·σn such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k .

Using the Definable Order Lemma:
Guess partition into cells and the flip.
Interpret the block order in each connected component.
Apply the assumed transductions to each block in parallel.
Combine everything along the block order.

Proving the Definable Order Lemma:
Analyze interactions between cells.

Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture II 24/25

Definable Order Lemma

Block order on σ1 · · ·σn: u � v iff u ∈ σi , v ∈ σj , and i 6 j .

Flip of k-derivation τ :
for some pairs of cells, revert the adjacency between them.

Definable Order Lemma

Let σ1, . . . , σn be k-derivations with the same idempotent abstraction.
Then there is some flip H of σ1 · · ·σn such that within every connected
component of H, the block order can be expressed by an MSO formula of
size bounded by a function of k .

Using the Definable Order Lemma:
Guess partition into cells and the flip.
Interpret the block order in each connected component.
Apply the assumed transductions to each block in parallel.
Combine everything along the block order.

Proving the Definable Order Lemma:
Analyze interactions between cells.
Flip: turn full adjacencies into full non-adjacencies to make
connections local.

Mi. Pilipczuk Courcelle’s Conjecture II 24/25

Conclusions

Treewidth and HR-recognizability:

First prove the pathwidth case using Simon’s factorization.
Then lift to the treewidth case via reduction to the pathwidth case.
First step robust, second treewidth-specific.
Direct attempts via Simon-like factorizations so far unsuccessful.
Bonus: One can compute even a decomposition of optimum width.

Cliquewidth and VR-recognizability:

Linear cliquewidth case can be done using Simon’s factorization.
Full conjecture for cliquewidth remains wide open.

Thank you for your attention!

Mi. Pilipczuk Courcelle’s Conjecture II 25/25

Conclusions

Treewidth and HR-recognizability:

First prove the pathwidth case using Simon’s factorization.

Then lift to the treewidth case via reduction to the pathwidth case.
First step robust, second treewidth-specific.
Direct attempts via Simon-like factorizations so far unsuccessful.
Bonus: One can compute even a decomposition of optimum width.

Cliquewidth and VR-recognizability:

Linear cliquewidth case can be done using Simon’s factorization.
Full conjecture for cliquewidth remains wide open.

Thank you for your attention!

Mi. Pilipczuk Courcelle’s Conjecture II 25/25

Conclusions

Treewidth and HR-recognizability:

First prove the pathwidth case using Simon’s factorization.
Then lift to the treewidth case via reduction to the pathwidth case.

First step robust, second treewidth-specific.
Direct attempts via Simon-like factorizations so far unsuccessful.
Bonus: One can compute even a decomposition of optimum width.

Cliquewidth and VR-recognizability:

Linear cliquewidth case can be done using Simon’s factorization.
Full conjecture for cliquewidth remains wide open.

Thank you for your attention!

Mi. Pilipczuk Courcelle’s Conjecture II 25/25

Conclusions

Treewidth and HR-recognizability:

First prove the pathwidth case using Simon’s factorization.
Then lift to the treewidth case via reduction to the pathwidth case.
First step robust, second treewidth-specific.

Direct attempts via Simon-like factorizations so far unsuccessful.
Bonus: One can compute even a decomposition of optimum width.

Cliquewidth and VR-recognizability:

Linear cliquewidth case can be done using Simon’s factorization.
Full conjecture for cliquewidth remains wide open.

Thank you for your attention!

Mi. Pilipczuk Courcelle’s Conjecture II 25/25

Conclusions

Treewidth and HR-recognizability:

First prove the pathwidth case using Simon’s factorization.
Then lift to the treewidth case via reduction to the pathwidth case.
First step robust, second treewidth-specific.
Direct attempts via Simon-like factorizations so far unsuccessful.

Bonus: One can compute even a decomposition of optimum width.

Cliquewidth and VR-recognizability:

Linear cliquewidth case can be done using Simon’s factorization.
Full conjecture for cliquewidth remains wide open.

Thank you for your attention!

Mi. Pilipczuk Courcelle’s Conjecture II 25/25

Conclusions

Treewidth and HR-recognizability:

First prove the pathwidth case using Simon’s factorization.
Then lift to the treewidth case via reduction to the pathwidth case.
First step robust, second treewidth-specific.
Direct attempts via Simon-like factorizations so far unsuccessful.
Bonus: One can compute even a decomposition of optimum width.

Cliquewidth and VR-recognizability:

Linear cliquewidth case can be done using Simon’s factorization.
Full conjecture for cliquewidth remains wide open.

Thank you for your attention!

Mi. Pilipczuk Courcelle’s Conjecture II 25/25

Conclusions

Treewidth and HR-recognizability:

First prove the pathwidth case using Simon’s factorization.
Then lift to the treewidth case via reduction to the pathwidth case.
First step robust, second treewidth-specific.
Direct attempts via Simon-like factorizations so far unsuccessful.
Bonus: One can compute even a decomposition of optimum width.

Cliquewidth and VR-recognizability:

Linear cliquewidth case can be done using Simon’s factorization.
Full conjecture for cliquewidth remains wide open.

Thank you for your attention!

Mi. Pilipczuk Courcelle’s Conjecture II 25/25

Conclusions

Treewidth and HR-recognizability:

First prove the pathwidth case using Simon’s factorization.
Then lift to the treewidth case via reduction to the pathwidth case.
First step robust, second treewidth-specific.
Direct attempts via Simon-like factorizations so far unsuccessful.
Bonus: One can compute even a decomposition of optimum width.

Cliquewidth and VR-recognizability:

Linear cliquewidth case can be done using Simon’s factorization.

Full conjecture for cliquewidth remains wide open.

Thank you for your attention!

Mi. Pilipczuk Courcelle’s Conjecture II 25/25

Conclusions

Treewidth and HR-recognizability:

First prove the pathwidth case using Simon’s factorization.
Then lift to the treewidth case via reduction to the pathwidth case.
First step robust, second treewidth-specific.
Direct attempts via Simon-like factorizations so far unsuccessful.
Bonus: One can compute even a decomposition of optimum width.

Cliquewidth and VR-recognizability:

Linear cliquewidth case can be done using Simon’s factorization.
Full conjecture for cliquewidth remains wide open.

Thank you for your attention!

Mi. Pilipczuk Courcelle’s Conjecture II 25/25

Conclusions

Treewidth and HR-recognizability:

First prove the pathwidth case using Simon’s factorization.
Then lift to the treewidth case via reduction to the pathwidth case.
First step robust, second treewidth-specific.
Direct attempts via Simon-like factorizations so far unsuccessful.
Bonus: One can compute even a decomposition of optimum width.

Cliquewidth and VR-recognizability:

Linear cliquewidth case can be done using Simon’s factorization.
Full conjecture for cliquewidth remains wide open.

Thank you for your attention!

Mi. Pilipczuk Courcelle’s Conjecture II 25/25

