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Problem representations

Given a problem with its  
instance(s), how to state it 
to make it easier to solve?   



Example: SAT vs. Integer LP

• FCC spectrum auction:

– Essentially a colouring problem

– ILP: poor

– SAT: good

• TravelingSalesman:

– ILP: good

– SAT: poor



Problem representations

How to choose between 
propositional encoding, numerical 

encoding,  their combination, 
something else? 



Combinatorial vs. algebraic proofs

• Algebraic  

– Uses algebraic concepts

• determinants,  eigenvalues...  

– Relies on their properties for analysis

• Combinatorial 

– Uses  “simple to define” properties  

– Avoids algebra even in proofs

– Algorithms of lower complexity!
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Problem representations

How to choose between algebraic 
and combinatorial view,

e.g.  of expander graphs? 



Some results

• Proof complexity of SMT:
– Combining resolution with theories over 

underlying domain
• Linear arithmetic, equality,  uninterpreted functions with 

equality (EUF)... 
• Models satisfiability modulo theories solvers like 

resolution models SAT solvers  

– With EUF, can polynomially simulate Frege.

• Complexity of expander-based reasoning: 
– Can prove existence of expander graphs using 

purely combinatorial reasoning. 
– Corollary:  monotone Frege is as powerful as non-

monotone. 
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Proof complexity 
of Satisfiability Modulo Theories

with Robert Robere and Vijay Ganesh





PigeonHolePrinciple

• PigeonHole Principle:   there is no injective function from [n] to [n-1] 

• PHP:

⋀𝑖≤𝑛(∨𝑗<𝑛 𝑝𝑖,𝑗) ∧ ሥ

𝑖≠𝑘,𝑗

(¬ 𝑝𝑖,𝑗 ∨ ¬𝑝𝑘,𝑗)

• =-PHP:  

ሥ

𝑖≤n

(∨𝑗<𝑛 𝑝𝑖 = ℎ𝑗 ∧ ሥ

𝑖<𝑘≤n

( 𝑝𝑖 ≠ 𝑝𝑘)

• EUF-PHP: 

ሥ

𝑥∈[𝑛]

( 𝑓 𝑥 ≠ 0) ∧ ሥ

𝑥,𝑦∈[𝑛]

( 𝑥 ≠ 𝑦 → 𝑓 𝑥 ≠ 𝑓(𝑦))

• LA-PHP:  

ሥ

𝑖≤n

(Σ𝑗<𝑛 𝑥𝑖,𝑗 ≥ 1) ∧ ሥ
𝑖,𝑘≤𝑛,

𝑗<𝑛

( 𝑥𝑖,𝑗 + 𝑥𝑘,𝑗 ≤ 1)
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• Propositional

• Theory of equality: 

– 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐

• Equality with uninterpreted
functions  (EUF)

– equality axioms

– Ackermann axioms: (𝑎 =
𝑏 → 𝑓 𝑎 = 𝑓 𝑏 )

• Linear arithmetic



SAT vs. SMT

• PHP:
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SAT solver
F SAT/UNSAT

T-F

SATT 
solver

Is this assignment OK?

SAT solver

No, here 
is why:  C

UNSAT

Propositional



For which theory T 
can a SAT solver 
with a T solver 

simulate Extended Frege?   



Res(T)

Res(T): 
Literals  are atoms of the theory.  
Rules of inference:  

1. Resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥
-----------------------------

(𝐶 ∨ 𝐷)

2. Clauses derivable from  T:  

• Eg:  T is a theory of equality:  
– (𝑎 ≠ 𝑏 ∨ 𝑏 ≠ 𝑐 ∨ 𝑎 = 𝑐)

• Eg: T is linear arithmetic: 
– (𝑎 ≤ 𝑐 ∨ 𝑏 ≤ 𝑑 ∨ 𝑎 + 𝑏 > 𝑐 + 𝑑)

SAT solver
F SAT/UNSAT

T-F

SATT 
solver

Is this assignment OK?

SAT solver

No, here 
is why:  C

UNSAT

Propositional

Resolution

Res(T) Can introduce new literals



New literals

• Theory solver has to be able to return a clause using literals 
not in the original formula: 
– if F contained a=b and b=c, T returns a clause (𝑎 ≠ 𝑏 ∨ 𝑏 ≠ 𝑐 ∨

𝑎0

𝑏0

𝑐0

𝑎1

𝑏1

𝑐1

𝑎2 𝑎𝑛−1

𝑏𝑛−1

𝑐𝑛−1

𝑎𝑛....

𝑎0 ≠ 𝑎𝑛



Res(T) vs. SMT solvers

• CDCL (conflict-driven clause learning  with restarts) 
– Repeat: 

• Assign some variables 
• Do unit clause propagation (set literals in unit clauses)
• If there is an unsatisfied clause, backtrack and learn the conflict as a clause
• Maybe restart, removing variable assignment, but keeping learned clauses

• CDCL(T): 
– Also check whether assignment makes sense for T
– If not, learn a conflict clause.

• Resolution captures CDCL
– Pipatsrisawat/Darwiche’11.

• Res(T) captures CDCL(T) 
– Generalizing Pipatsrisawat/Darwiche’11.



Power of Res(T)

• Res(Theory of Equality) is no more powerful than 
Resolution
– Add all 𝑛3 equality axioms to F, then solve.  

• Res(LA)  polynomially simulates R(lin)  

• Resolution over Equality with Uninterpreted Functions 
theory,  Res(EUF), can effectively p-simulate Frege. 
– Conjunctions of EUF atoms are decidable in 𝑂(𝑛 log 𝑛) time! 

– Using a variant of Union-Find algorithm. 



Equality with uninterpreted functions  
theory (EUF) 

• Signature:  
– uninterpreted function symbols of bounded arity 
– constants a, b, c...  

• Terms:  constants, and inductively 𝑓 ҧ𝑡 for functions. 
• Atoms:   equalities/disequalities over terms:  𝑡1 = 𝑡2,  𝑡1 ≠ 𝑡2

• Formulas: conjunctions of atoms

(𝑓 𝑎 = 𝑏) ∧ (𝑏 = 𝑐) ∧ (𝑔 𝑓 𝑎 ≠ 𝑐)

• Axioms:  
– Equality:  𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐
– Ackermann:  ത𝑎 = ത𝑏 → 𝑓 ത𝑎 = 𝑓(ത𝑏)

• Can decide in near-linear time if a given EUF formula is satisfiable: 
– Downey-Sethi-Tarjan congruence closure (based on Union-Find) 



Sequent calculus (LK)

• Equivalent to Frege.
• Natural deduction   

• Sequents: 𝐴1, … , 𝐴𝑛 −→ 𝐵1, … , 𝐵𝑚
– 𝐴1 ∧ ⋯ ∧ 𝐴𝑛 → 𝐵1 ∨ ⋯ ∨ 𝐵𝑚

– Axioms  𝐴 → 𝐴, 0 → 𝑆, 𝑆 → 1.  

– Rules for ∨,∧, ¬ and cut

• Proof size:  total number of symbols. 

𝐹 → 𝐺, 𝐴 𝐴, 𝐹 → 𝐺
-----------------------------

𝐹 → 𝐺

𝐹 → 𝐺, 𝐴
-------------------

¬𝐴, 𝐹 → 𝐺

𝐹 → 𝐺, 𝐴 𝐹 → 𝐺, 𝐵
-----------------------------

𝐹 → 𝐺 , 𝐴 ∧ 𝐵

𝐴, 𝐵, 𝐹 → 𝐺
-------------------

𝐴 ∧ 𝐵, 𝐹 → 𝐺



Res(EUF) simulates LK

• Suppose there is an LK proof of 𝐹 → 0
– An LK-refutation of F

• Add to 𝐹:
– Two constants: 𝑒0 ≠ 𝑒1

– Definitions of N, O, A (and, or, not): 
• 𝑁 𝑒0 = 𝑒1, 𝑁 𝑒1 = 𝑒0, 𝑂 𝑒1, 𝑒0 = 𝑒1,.... 

– Bounded variable range: ⋀ 𝑥𝑖 = 𝑒0 ∨ 𝑥𝑖 = 𝑒1

• Now simulate an LK proof by constructing terms for all 
formulas in the proof inductively 
– Prove  that at each step of LK proof:  𝐴1 … 𝐴𝑘 → 𝐵1 … 𝐵ℓ

– Either one of the 𝐴 terms is 𝑒0 or one of the 𝐵 terms is 𝑒1
• Also for each subformula in proof so far,  its term = 𝑒0 or = 𝑒1



Open problems

• Is it better to use SMT than propositionalize
completely? If so, when? 
– Flatten:  

• replace nested terms by new variables

– Bit blast:
• represent each variable by log 𝑛 bits. 

– add all relevant axioms explicitly.

• How to choose T given a problem and class of 
instances?
– And how to choose T-representation?

For which theory T would Res(T) 
effectively p-simulate Extended Frege?   



Complexity of Expander-Based Reasoning   
and the Power of Monotone Proofs

with Sam Buss, Valentine Kabanets
and Michal Koucky
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Expander graphs

• Graphs which are both 

– sparse (usually constant degree) 

– and well connected (log length path between any two 
points. 

• Expander graphs are pseudorandom objects.  A 
random graph is an expander with high probability. 

• Random walk on an expander converges fast. 



Uses of expanders

• As pseudorandom objects

– One-way functions of Goldreich’2000

– Cryptographic hash functions: Charles/Goren/Lauter... 

– Error-correcting codes,  derandomization... 

• In complexity theory

– Reingold and Rozenman/Vadhan:  USTCON in LogSpace

– Dinur: combinatorial proof of the PCP theorem

– Ajtai/Komlos/Szemeredi: AKS sorting networks 



Combinatorial definition of  expanders

• d-regular undirected (multi)graphs 

• Edge expansion: 

– min fraction of edges crossing a cut 
(normalized by smaller side size). 

– ℎ 𝐺 = min
∅≠𝑈, 𝑈 ≤

𝑛

2

|𝐸 𝑈,𝑈𝑐 |

|𝑈|

• Expander:  h(G) is constant. 



Algebraic definition of expanders

• Spectral gap:  d-𝜆2, 

– d is the degree of G 

– 𝜆2 is the second largest eigenvalue of adjacency 
matrix 𝑀𝐺 of G. 

• Expander (𝜆-expander): 

– A graph that has a constant spectral gap.  



Combinatorial vs. algebraic

• Cheeger inequality:  

𝑑−𝜆2

2
≤ ℎ 𝐺 ≤ 2𝑑 𝑑 − 𝜆2

– So constant spectral gap ~ constant expansion
– Most proofs use algebraic definition 

• Some loss in parameters in combinatorial setting

– Combinatorial definition allows lower complexity algorithms



Formalizing “combinatorial”

• Take a system of reasoning which cannot 
define algebraic objects 
– No eigenvalues, determinants, etc

– E.g., a system based on  polynomial-size formulas 
(𝑁𝐶1-reasoning) 

• Proofs in this system are combinatorial 
(unless algebra ∈ 𝑁𝐶1) 
– Combinatorial proofs of correctness of 

algorithms or existence of combinatorial objects. 

– Not known to prove AB=I => BA=I



Our results

• We give an 𝑁𝐶1 proof of existence of expander 
graphs of arbitrary size. 
– Includes a combinatorial analysis of a fully explicit 

expander construction. 

– And its formalization in an 𝑁𝐶1 theory

• Corollary:  monotone proofs are as powerful as 
non-monotone. 
– Monotone LK polynomially simulates LK. 

– By adding the last piece to [Atserias-Galesi-
Gavalda’01, Atserias-Galesi-Pudlak’02,  Jerabek’11]



Expander constructions

Example 2:  (from Hoory/Linial/Wigderson) 

Zp: for every v  0, connect 
v to v-1, v+1 and v-1. 
For v=0, connect v to 0,1 and p-1.

Example 1:  Margulis, Gabber/Galil bipartite expanders.

(x,y) -> (x,y), (x,x+y), (x,x+y+1), (x+y,y), (x+y+1,y)
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Iterative constructions

• Start with constant-size expanders. Obtain a large size graph by 
repeatedly applying:
– Powering (to increase expansion) 
– Zig-zag or replacement product (to reduce degree) 
– Tensoring (to grow quickly).  

• Originally by [Reingold-Vadhan-Wigderson’02] 
– Zig-zag product. Proof uses spectral gap. 
– [Alon, Schwartz, Shapira’08] Replacement product with its 

combinatorial analysis.   

• Explicit: given vertex v and 𝑖 ∈ 1 … 𝑑 , produce (w, j) such that 
w is the 𝑖𝑡ℎ neighbour of v, and v is the  𝑗𝑡ℎ neighbour of w in 
resulting graph. 
– In time O(log |G|). 



Our variant of the construction

• Start with 2d-regular 𝐺0 with h G0 = 𝜖 = 1/1296 and 
d-regular H, ℎ 𝐻 = 1/3.

• Apply the following ~log 𝑛 times:
1. Add self-loops to double the degree; tensor with itself 
2. Add self-loops again and power to a constant c 
3. Replace each vertex with H. 

• Each 𝐺𝑖 has ℎ 𝐺𝑖 = 𝜖 and size > squared.

• Fully explicit: 𝑁𝐶1 algorithm to compute 𝑘𝑡ℎ

neighbour w of v in the final G,  and its edge index j  
from (v,k) 



Powering:   𝑀𝐺′ = MG
k

 Easy with eigenvalues:   𝜆2 → 𝜆2
𝑘

 Combinatorially, let h(G)=𝜖.

 First,  add d self-loops to G.

 Using [Mihail’89] mixing lemma 

○ and mixing -> expansion  

 Get ℎ 𝐺′ =
1

2
(1 − 1 −

𝜖2

4
)𝑘/2

Proof : Cauchy-Schwartz and sums. 



Mihail’89 mixing lemma

• A random walk on an expander converges 
to uniform distribution exponentially fast. 

• More precisely, let 
– G be a d-regular graph with edge expansion 𝜖.

• Add d self-loops to each vertex of G to obtain G’ 

– A be a normalized adjacency matrix  of  G’

– 𝜋 be any  distribution on vertices of G’
• u  the uniform distribution on vertices of G’

• Then 𝐴𝑘𝜋 − 𝑢
2

≤ 1 −
𝜖2

4

𝑘

𝜋 − 𝑢
2
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Constructiveness 

• For formalization, need an 𝑁𝐶1 algorithm:
– Given a non-expanding set U’ in G’ 

– Produce a non-expanding set U in G. 

• From [Mihail’89]  proof:  
– Sort vertices in decreasing 𝜋 − 𝑢 order

– If some U’ in G’ is non-expanding, then so is a set 
of first k vertices in G for some k. Test which one.  
• Both sorting and testing are in 𝑁𝐶1



Formalizing “combinatorial”

• Bounded arithmetic:  
– Theories ~  complexity classes. 
– For a class C, a theory V-C can reason about C-definable 

concepts (numbers and strings) 

• Eigenvalues, determinants, etc are not known to be 
computable in 𝑁𝐶1

• So proofs in  V-𝑁𝐶1 are  “combinatorial” in a strict 
sense. 
– If V-𝑁𝐶1 cannot prove existence of eigenvalues
– Then it cannot formalize proofs relying on eigenvalues, even 

in disguise.    



Bounded arithmetic theories 

• 0 : first-order reasoning 

• 0: 0 + “exists numones(y,X)=z”

• 1:  0 + “exists an evaluation of a Boolean 
formula”
– Not known to prove AB=I -> BA = I 
– Uniform version of Frege/Sequent Calculus LK

• 𝑉1 ≈ 𝑆2
1...  



Formalizations

• Approximate counting, randomized computation, 
PRGs  (Jerabek),  PCPs (Pich), Toda’s theorem in higher 
complexity theories. 

• Assuming existence of expanders, correctness of AKS 
sorting networks is provable in a (slightly non-uniform 
version of)  𝑉𝑁𝐶1 (Jerabek) 

• Our result:  Theory 𝑉𝑁𝐶1 proves existence of 
expanders of arbitrary size. 
– Thus, 𝑁𝐶1 reasoning is enough to prove correctness of 

AKS sorting networks. 



Complexity in monotone 

• Monotone functions:

– ∀𝑥, 𝑦, 𝑥 ⊆ 𝑦 ⇒ 𝑓 𝑥 ≤ 𝑓(𝑦)

– Majority, Threshold, Clique... 

• Monotone circuits: 
– AND, OR gates.  

– Cliquek,n requires monotone 

circuits of size  ≥ 2𝜖√𝑘 for some 𝜖.





x1 x2    x3 …     xn

Monotone proof complexity? 



Monotone sequent calculus (MLK)

• Monotone version of LK [Buss-Pudlak’95]

• Sequents: 𝐴1, … , 𝐴𝑛 −→ 𝐵1, … , 𝐵𝑚

– all 𝐴𝑖 , 𝐵𝑗 are formulas over ∧,∨.
– Axioms  𝐴 → 𝐴, 0 → 𝑆, 𝑆 → 1.
–

– Rules for ∨,∧ and cut
• No rule for ¬

• Non-uniform version of 𝑉𝑁𝐶1

• Polynomial-size proofs of PHP

𝐹 → 𝐺, 𝐴 𝐴, 𝐹 → 𝐺
-----------------------------

𝐹 → 𝐺

𝐹 → 𝐺, 𝐴 𝐹 → 𝐺, 𝐵
-----------------------------

𝐹 → 𝐺 , 𝐴 ∧ 𝐵

𝐴, 𝐵, 𝐹 → 𝐺
-------------------

𝐴 ∧ 𝐵, 𝐹 → 𝐺



MLK polynomially simulates LK 

• [Atserias-Galesi-Gavalda’01, Atserias-Galesi-
Pudlak’02]:  
– Simulate ¬𝑥 using threshold formulas:   

• if 𝑘 1s in the input, and still k 1s with 𝑥𝑖 replaced by 0, 
then 𝑥𝑖 = 0 

• Slice functions idea. 

– Recursive definition of  thresholds gives  
quasipolysize proofs.   

– Monotone 𝑁𝐶1 threshold functions? 
• AKS sorting networks 



AKS sorting networks 

• Sorting network:  

– n inputs, n outputs (Boolean) 

– Outputs input bits in sorted order

• [Ajtai-Komlos-Szemeredi’83]

– Monotone log-depth sorting networks

– Based on expanders 

1  0  1 1 1 0 

0  0  1 1 1 1 



AKS sorting networks 

• [Jerabek’11]  Properties of AKS sorting 
networks are in (slightly non-uniform)  𝑉𝑁𝐶1. 
So 

– if  𝑉𝑁𝐶1 proves that expanders exist,

– get polysize proofs for properties of thresholds 

– and polynomial simulation of  LK by MLK. 

• Here: 𝑉𝑁𝐶1 proves that expanders exist. 



Open problems 

• Can existence of expanders be proven in  
𝑉𝑇𝐶0?

• Complexity of USTCONN ∈ L ? 
– Our analysis needs both initial graphs to be 

expanders. 

• Proof complexity of other results that now rely 
on algebra? 



Thank you! 
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