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Problem representations

Given a problem with its
instance(s), how to state it
to make it easier to solve?




Example: SAT vs. Integer LP

* FCC spectrum auction:

— Essentially a coIouring problem

— |LP: poor ¢ ))
— SAT: good ((”)) R

e Travelin Salesman(@) )
c Py Tk ' ®
— ILP: good . ‘
(<<>>)
— SAT: poor «"))



Problem representations

How to choose between
propositional encoding, numerical
encoding, their combination,
something else?



Combinatorial vs. algebraic proofs

* Algebraic
. a1 A1m

— Uses algebraic concepts ( T )
 determinants, eigenvalues...

— Relies on their properties for analysis

 Combinatorial
— Uses “simple to define” properties
— Avoids algebra even in proofs

— Algorithms of lower complexity!



Problem representations

How to choose between algebraic
and combinatorial view,
e.g. of expander graphs?



Some results

* Proof complexity of SMT:

— Combining resolution with theories over
underlying domain

* Linear arithmetic, equality, uninterpreted functions W|th
equality (EUF)...

* Models satisfiability modulo theories solvers like
resolution models SAT solvers

— With EUF, can polynomially simulate Frege.

 Complexity of expander-based reasoning:

— Can prove existence of expander graphs using
purely combinatorial reasoning.

— Corollary: monotone Frege is as powerful as non-
monotone.
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Proof complexity
of Satisfiability Modulo Theories

with Robert Robere and Vijay Ganesh







PigeonHolePrinciple

PigeonHole Principle: there is no injective function from [n] to [n-1]

PHP:
Nisn(Vj<n Dij) A /\ (mpijV k)
i=k,j
=PHP:
/\(Vj<n (pi = hj) A /\ (pi # Di)
i<n i<k<n
EUF-PHP:
Nv@=oa \ Gy f=fon
xX€[n] x,yE[n]
LA-PHP:

/\(2j<nxi,j = 1) AN /\ (xi,j +xk,j < 1)

i<n i,k<n,
j<n




PigeonHolePrinciple

PigeonHole Principle: there is no injective function from [n] to [n-1]

PHP:
* Propositional
Nisn(Vj<n Dij) A /\ (—pi; vV Dk,j)
i#k,j
- PHP: * Theory of equality:
| — (a=bAb=c—-a=c
/\(Vj<n (pi = ;) A /\ (pi # pr) ( )
i<n i<ksn
EUE-PHP: e Equality with uninterpreted
functions (EUF
N\ (£ % 0) A /\(x¢y—>f(x)¢f(y))  (EUF)
x€[n] xy€n] — equality axioms
— Ackermann axioms: (a =
LA-PHP: b - f(a) = f(b))
/\(Zj<nxi’j > 1) N /\ (xi,j +xk,j < 1)
ten Lksn, e Linear arithmetic

j<n



SAT vs. SMT

Propositional

= SAT/UNSAT
d SAT solver >
SAT
>
Is this assignment OK? No, here
is why: C
TF UNSAT
> >

PHP:
Nisn(Vj<n Dij) A /\ (mpi; vV Dk,j)

i#k,j

=-PHP:

/\(Vj<n (pi =hj) A /\ (pi # Pr)

i<n i<ks=n
EUF-PHP:
N@=oa \ Gy fe0=fon
x€[n]

x,y€[n]
LA-PHP:
/\(Ej<n xij=1) A /\ (xij +x;<1)

i<n i,k<n,
j<n



For which theory T
can a SAT solver
with a T solver
simulate Extended Frege?




Res(T)

Propositional

F SAT/UNSAT  Res(T):
a=d SAT solver —> Literals are atoms of the theory.

Rules of inference:

RESOlution 1.  Resolution rule

(Cvx) (DV-—x)

2. Clauses derivable from T:
No, here

is why: C
 Eg: Tisatheory of equality:
UNSAT — (a#bVb#cVa=rc)

e Eg:Tis linear arithmetic:
— (a<cVvb<dva+b>c+d)

Res(T) Can introduce new literals



New literals

Theory solver has to be able to return a clause using literals
not in the original formula:

— if F contained a=b and b=c, Treturnsaclause (a # hVb # cV



Res(T) vs. SMT solvers

CDCL (conflict-driven clause learning with restarts)
— Repeat:
e Assign some variables
* Do unit clause propagation (set literals in unit clauses)
* |f thereis an unsatisfied clause, backtrack and learn the conflict as a clause
* Maybe restart, removing variable assignment, but keeping learned clauses

CDCL(T):
— Also check whether assignment makes sense for T
— If not, learn a conflict clause.

Resolution captures CDCL
— Pipatsrisawat/Darwiche’11.

Res(T) captures CDCL(T)
— Generalizing Pipatsrisawat/Darwiche’11.



Power of Res(T)

Res(Theory of Equality) is no more powerful than
Resolution

— Add all n3 equality axioms to F, then solve.

Res(LA) polynomially simulates R(lin)

Resolution over Equality with Uninterpreted Functions
theory, Res(EUF), can effectively p-simulate Frege.

— Conjunctions of EUF atoms are decidable in O(nlogn) time!
— Using a variant of Union-Find algorithm.



Equality with uninterpreted functions
theory (EUF)

Signature:
— uninterpreted function symbols of bounded arity
— constants a, b, c...

Terms: constants, and inductively f (t) for functions.
Atoms: equalities/disequalities over terms: t; = t,, t; # t,
Formulas: conjunctions of atoms

(f(@=b)A(b=c)A(g(f(@) # c)

Axioms:
— Equality: (a = bAb=c—a= c)_
— Ackermann: a=b - f(a) = f(b)

Can decide in near-linear time if a given EUF formula is satisfiable:
— Downey-Sethi-Tarjan congruence closure (based on Union-Find)



Sequent calculus

Equivalent to Frege.
* Natural deduction

Sequents: 44, ...,4,, —— B4,..,Bp
— A A-ANA, > B, V-VBy,

(LK)

— Axioms A - 4,0 - S, S - 1.

F-G
— Rules for V,A, = and cut
F-GA F-GA F—-G,B ABF -G
-AF -G F->G,ANB ANB,F - G

Proof size: total number of symbols.




Res(EUF) simulates LK

e Suppose thereis an LK proof of F = 0
— An LK-refutation of F

e Addto F:

— Two constants: ey # e4
— Definitions of N, O, A (and, or, not):

— Bounded variable range: A(x; = ey V x; = eq)

 Now simulate an LK proof by constructing terms for all
formulas in the proof inductively

— Prove that at each step of LK proof: A ...A, = B ... By

— Either one of the A terms is ey or one of the B terms is e;
* Also for each subformula in proof so far, itsterm = ej or = ¢4



Open problems

s it better to use SMT than propositionalize
completely? If so, when?

— Flatten:
* replace nested terms by new variables

— Bit blast:
* represent each variable by logn bits.

— add all relevant axioms explicitly.

How to choose T given a problem and class of
instances?

— And how to choose T-representation?

For which theory T would Res(T)
effectively p-simulate Extended Frege?




Complexity of Expander-Based Reasoning
and the Power of Monotone Proofs

with Sam Buss, Valentine Kabanets
and Michal Koucky
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Expander graphs

* Graphs which are both ‘ B
— sparse (usually constant degree)

— and well connected (log length path between any two
points.

* Expander graphs are pseudorandom objects. A
random graph is an expander with high probability.

 Random walk on an expander converges fast.



Uses of expanders

* As pseudorandom objects
— One-way functions of Goldreich’2000
— Cryptographic hash functions: Charles/Goren/Lauter...
— Error-correcting codes, derandomization...

* In complexity theory
— Reingold and Rozenman/Vadhan: USTCON in LogSpace
— Dinur: combinatorial proof of the PCP theorem
— Ajtai/Komlos/Szemeredi: AKS sorting networks



Combinatorial definition of expanders
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* Edge expansion:

— min fraction of edges crossing a cut
(normalized by smaller side size).
|E(U,U°)|

—h(G) = min
{o=u|Uu|<Z} i

 Expander: h(G) is constant.



Algebraic definition of expanders
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— d is the degree of G

— A, is the second largest eigenvalue of adjacency
matrix M of G.

Expander (A-expander):
— A graph that has a constant spectral gap.



Combinatorial vs. algebraic

ty

Cheeger inequali
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— So constant spectral gap ~ constant expansion

— Most proofs use algebraic def

INItion

Some loss in parameters in combinatorial setting

Combinatorial def

ion allows lower complexity algorithms

ini



Formalizing “combinatorial”

* Take a system of reasoning which cannot
define algebraic objects

— No eigenvalues, determinants, etc

— E.g., a system based on polynomial-size formulas
(NC*!-reasoning)

* Proofs in this system are combinatorial
(unless algebra € NC1)

— Combinatorial proofs of correctness of
algorithms or existence of combinatorial objects.

— Not known to prove AB=| => BA=|



Our results

» We give an NC*! proof of existence of expander
graphs of arbitrary size.

— Includes a combinatorial analysis of a fully explicit
expander construction.

— And its formalization in an NC?* theory

* Corollary: monotone proofs are as powerful as
non-monotone.

— Monotone LK polynomially simulates LK.

— By adding the last piece to [Atserias-Galesi-
Gavalda’01, Atserias-Galesi-Pudlak’02, Jerabek’11]



Expander constructions

Example 1: Margulis, Gabber/Galil bipartite expanders.

(x,¥) > (x,y), (x,x+y), (x,x+y+1), (x+y,y), (x+y+1,y)

Example 2: (from Hoory/Linial/Wigderson)

Z,: for every v # 0, connect
vtov-1, v+1 and v1i.
For v=0, connect v to 0,1 and p-1.




Iterative constructions

Start with constant-size expanders. Obtain a large size graph by
repeatedly applying:

— Powering (to increase expansion)

— Zig-zag or replacement product (to reduce degree)

— Tensoring (to grow quickly).

Originally by [Reingold-Vadhan-Wigderson’02]
— Zig-zag product. Proof uses spectral gap.

— [Alon, Schwartz, Shapira’08] Replacement product with its
combinatorial analysis.

Explicit: given vertexvand i € [1...d], produce (w, j) such that
w is the it" neighbour of v, and v is the jth neighbour of w in
resulting graph.

— In time O(log | G|).



Our variant of the construction

* Start with 2d-regular G, with h(Gy) = € = 1/1296 and
d-regular H, h(H) = 1/3.

* Apply the following ~log n times:
1. Add self-loops to double the degree; tensor with itself
2. Add self-loops again and power to a constant c
3. Replace each vertex with H.

* Each G; has h(G;) = € and size > squared.

* Fully explicit: NC algorithm to compute k"
neighbour w of v in the final G, and its edge index j
from (v,k)



Powering: M., = ME

® Easy with eigenvalues: A1, — /1’2‘

® Combinatorially, let h(G)=€. = |
* First, add d self-loops to G.
e Using [Mihail’89] mixing lemma
o and mixing -> expansion

o Get h(G') = %(1 _ (1 _ %))k/z

Proof : Cauchy-Schwartz and sumes.




Mihail’89 mixing lemma

* Arandom walk on an expander converges
to uniform distribution exponentially fast.

* More precisely, let

— G be a d-regular graph with edge expansion e.
» Add d self-loops to each vertex of G to obtain G’

— A be a normalized adjacency matrix of G’

— 1 be any distribution on vertices of G’
U the uniform distribution on vertices of G’

k
* Then “Akn—u“z < <1 —(é)) “n—u”z




Constructiveness

* For formalization, need an NC*! algorithm:
— Given a non-expanding set U’ in G’
— Produce a non-expanding set U in G.

* From [Mihail’89] proof:
— Sort vertices in decreasing ™ — u order

— If some U’ in G’ is non-expanding, then so is a set
of first k vertices in G for some k. Test which one.

* Both sorting and testing are in NC?



IH

Formalizing “combinatoria

Bounded arithmetic:

— Theories ~ complexity classes.

— For aclass C, a theory V-C can reason about C-definable
concepts (numbers and strings)

Eigenvalues, determinants, etc are not known to be
computable in NC?

So proofsin V-NC! are “combinatorial” in a strict
sense.
— If V-NC* cannot prove existence of eigenvalues

— Then it cannot formalize proofs relying on eigenvalues, even
in disguise.



Bounded arithmetic theories

VU : first-order reasoning
VTCY: VY + “exists numones(y,X)=z"

VNCI: VO + “exists an evaluation of a Boolean
formula”

— Not known to prove AB=| -> BA = |
— Uniform version of Frege/Sequent Calculus LK

Vi~ Si.



Formalizations

* Approximate counting, randomized computation,
PRGs (Jerabek), PCPs (Pich), Toda’s theorem in higher
complexity theories.

* Assuming existence of expanders, correctness of AKS

sorting networks is provable in a (slightly non-uniform
version of) VNC? (Jerabek)

» Our result: Theory VNC? proves existence of
expanders of arbitrary size.

— Thus, NC? reasoning is enough to prove correctness of
AKS sorting networks.



Complexity in monotone

e Monotone functions:

—-Vx,y, xSy =fx) < f(y)
— Majority, Threshold, Clique...

* Monotone circuits:
— AND, OR gates. X; Xy X3 oo X,
— Clique, , requires monotone
circuits of size = 26Vk for some e.

Monotone proof complexity?



Monotone sequent calculus (MLK)

* Monotone version of LK [Buss-Pudlak’95]

* Sequents: A4,...,4, —— B4, ..,Bp
— all 4;, Bj are formulas over A,V.
— Axioms A - 4,0 -5, S - 1.

— Rules for V,A and cut
* No rule for —

F->G,ANB AANBF - G F-G

* Non-uniform version of VNC*
* Polynomial-size proofs of PHP



MLK polynomially simulates LK

e [Atserias-Galesi-Gavalda’01, Atserias-Galesi-
Pudlak’02]:

— Simulate —x using threshold formulas:

* if k 1sin the input, and still k 1s with x; replaced by O,
then x; =0

e Slice functions idea.

— Recursive definition of thresholds gives
qguasipolysize proofs.

— Monotone NC1 threshold functions?
* AKS sorting networks



AKS sorting networks

101110

* Sorting network:

— n inputs, n outputs (Boolean)

— Outputs input bits in sorted order

001111

e [Ajtai-Komlos-Szemeredi’83]
— Monotone log-depth sorting networks
— Based on expanders



AKS sorting networks

* [Jerabek’11] Properties of AKS sorting
networks are in (slightly non-uniform) VNC?.
So
—if VNC?! proves that expanders exist,

— get polysize proofs for properties of thresholds
— and polynomial simulation of LK by MLK.

e Here: VNC1 proves that expanders exist.



Open problems

* Can existence of expanders be proven in
VTCO?

* Complexity of USTCONN € L ?

— Our analysis needs both initial graphs to be
expanders.

* Proof complexity of other results that now rely
on algebra?
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