
Power of reasoning over richer domains

Antonina Kolokolova (MUN)

NII Shonan meeting
“Logic and computational complexity”,

Sep 21, 2017

𝑎11 ⋯ 𝑎1𝑚

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

0

4 3

1

2

6

5

https://simons.berkeley.edu/talks/antonina-kolokolova-12-15-2016

Problem representations

Given a problem with its
instance(s), how to state it
to make it easier to solve?

Example: SAT vs. Integer LP

• FCC spectrum auction:

– Essentially a colouring problem

– ILP: poor

– SAT: good

• TravelingSalesman:

– ILP: good

– SAT: poor

Problem representations

How to choose between
propositional encoding, numerical

encoding, their combination,
something else?

Combinatorial vs. algebraic proofs

• Algebraic

– Uses algebraic concepts

• determinants, eigenvalues...

– Relies on their properties for analysis

• Combinatorial

– Uses “simple to define” properties

– Avoids algebra even in proofs

– Algorithms of lower complexity!

𝑎11 ⋯ 𝑎1𝑚

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

0

4 3

1

2

6

5

Problem representations

How to choose between algebraic
and combinatorial view,

e.g. of expander graphs?

Some results

• Proof complexity of SMT:
– Combining resolution with theories over

underlying domain
• Linear arithmetic, equality, uninterpreted functions with

equality (EUF)...
• Models satisfiability modulo theories solvers like

resolution models SAT solvers

– With EUF, can polynomially simulate Frege.

• Complexity of expander-based reasoning:
– Can prove existence of expander graphs using

purely combinatorial reasoning.
– Corollary: monotone Frege is as powerful as non-

monotone.

0

4 3

1

2

6

5

Proof complexity
of Satisfiability Modulo Theories

with Robert Robere and Vijay Ganesh

PigeonHolePrinciple

• PigeonHole Principle: there is no injective function from [n] to [n-1]

• PHP:

⋀𝑖≤𝑛(∨𝑗<𝑛 𝑝𝑖,𝑗) ∧ ሥ

𝑖≠𝑘,𝑗

(¬ 𝑝𝑖,𝑗 ∨ ¬𝑝𝑘,𝑗)

• =-PHP:

ሥ

𝑖≤n

(∨𝑗<𝑛 𝑝𝑖 = ℎ𝑗 ∧ ሥ

𝑖<𝑘≤n

(𝑝𝑖 ≠ 𝑝𝑘)

• EUF-PHP:

ሥ

𝑥∈[𝑛]

(𝑓 𝑥 ≠ 0) ∧ ሥ

𝑥,𝑦∈[𝑛]

(𝑥 ≠ 𝑦 → 𝑓 𝑥 ≠ 𝑓(𝑦))

• LA-PHP:

ሥ

𝑖≤n

(Σ𝑗<𝑛 𝑥𝑖,𝑗 ≥ 1) ∧ ሥ
𝑖,𝑘≤𝑛,

𝑗<𝑛

(𝑥𝑖,𝑗 + 𝑥𝑘,𝑗 ≤ 1)

PigeonHolePrinciple

• PigeonHole Principle: there is no injective function from [n] to [n-1]

• PHP:

⋀𝑖≤𝑛(∨𝑗<𝑛 𝑝𝑖,𝑗) ∧ ሥ

𝑖≠𝑘,𝑗

(¬ 𝑝𝑖,𝑗 ∨ ¬𝑝𝑘,𝑗)

• =-PHP:

ሥ

𝑖≤n

(∨𝑗<𝑛 𝑝𝑖 = ℎ𝑗 ∧ ሥ

𝑖<𝑘≤n

(𝑝𝑖 ≠ 𝑝𝑘)

• EUF-PHP:

ሥ

𝑥∈[𝑛]

(𝑓 𝑥 ≠ 0) ∧ ሥ

𝑥,𝑦∈[𝑛]

(𝑥 ≠ 𝑦 → 𝑓 𝑥 ≠ 𝑓(𝑦))

• LA-PHP:

ሥ

𝑖≤n

(Σ𝑗<𝑛 𝑥𝑖,𝑗 ≥ 1) ∧ ሥ
𝑖,𝑘≤𝑛,

𝑗<𝑛

(𝑥𝑖,𝑗 + 𝑥𝑘,𝑗 ≤ 1)

• Propositional

• Theory of equality:

– 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐

• Equality with uninterpreted
functions (EUF)

– equality axioms

– Ackermann axioms: (𝑎 =
𝑏 → 𝑓 𝑎 = 𝑓 𝑏)

• Linear arithmetic

SAT vs. SMT

• PHP:

⋀𝑖≤𝑛(∨𝑗<𝑛 𝑝𝑖,𝑗) ∧ ሥ

𝑖≠𝑘,𝑗

(¬ 𝑝𝑖,𝑗 ∨ ¬𝑝𝑘,𝑗)

• =-PHP:

ሥ

𝑖≤n

(∨𝑗<𝑛 𝑝𝑖 = ℎ𝑗 ∧ ሥ

𝑖<𝑘≤n

(𝑝𝑖 ≠ 𝑝𝑘)

• EUF-PHP:

ሥ

𝑥∈[𝑛]

(𝑓 𝑥 ≠ 0) ∧ ሥ

𝑥,𝑦∈[𝑛]

(𝑥 ≠ 𝑦 → 𝑓 𝑥 ≠ 𝑓(𝑦))

• LA-PHP:

ሥ

𝑖≤n

(Σ𝑗<𝑛 𝑥𝑖,𝑗 ≥ 1) ∧ ሥ
𝑖,𝑘≤𝑛,

𝑗<𝑛

(𝑥𝑖,𝑗 + 𝑥𝑘,𝑗 ≤ 1)

SAT solver
F SAT/UNSAT

T-F

SATT
solver

Is this assignment OK?

SAT solver

No, here
is why: C

UNSAT

Propositional

For which theory T
can a SAT solver
with a T solver

simulate Extended Frege?

Res(T)

Res(T):
Literals are atoms of the theory.
Rules of inference:

1. Resolution rule

𝐶 ∨ 𝑥 𝐷 ∨ ¬𝑥

(𝐶 ∨ 𝐷)

2. Clauses derivable from T:

• Eg: T is a theory of equality:
– (𝑎 ≠ 𝑏 ∨ 𝑏 ≠ 𝑐 ∨ 𝑎 = 𝑐)

• Eg: T is linear arithmetic:
– (𝑎 ≤ 𝑐 ∨ 𝑏 ≤ 𝑑 ∨ 𝑎 + 𝑏 > 𝑐 + 𝑑)

SAT solver
F SAT/UNSAT

T-F

SATT
solver

Is this assignment OK?

SAT solver

No, here
is why: C

UNSAT

Propositional

Resolution

Res(T) Can introduce new literals

New literals

• Theory solver has to be able to return a clause using literals
not in the original formula:
– if F contained a=b and b=c, T returns a clause (𝑎 ≠ 𝑏 ∨ 𝑏 ≠ 𝑐 ∨

𝑎0

𝑏0

𝑐0

𝑎1

𝑏1

𝑐1

𝑎2 𝑎𝑛−1

𝑏𝑛−1

𝑐𝑛−1

𝑎𝑛....

𝑎0 ≠ 𝑎𝑛

Res(T) vs. SMT solvers

• CDCL (conflict-driven clause learning with restarts)
– Repeat:

• Assign some variables
• Do unit clause propagation (set literals in unit clauses)
• If there is an unsatisfied clause, backtrack and learn the conflict as a clause
• Maybe restart, removing variable assignment, but keeping learned clauses

• CDCL(T):
– Also check whether assignment makes sense for T
– If not, learn a conflict clause.

• Resolution captures CDCL
– Pipatsrisawat/Darwiche’11.

• Res(T) captures CDCL(T)
– Generalizing Pipatsrisawat/Darwiche’11.

Power of Res(T)

• Res(Theory of Equality) is no more powerful than
Resolution
– Add all 𝑛3 equality axioms to F, then solve.

• Res(LA) polynomially simulates R(lin)

• Resolution over Equality with Uninterpreted Functions
theory, Res(EUF), can effectively p-simulate Frege.
– Conjunctions of EUF atoms are decidable in 𝑂(𝑛 log 𝑛) time!

– Using a variant of Union-Find algorithm.

Equality with uninterpreted functions
theory (EUF)

• Signature:
– uninterpreted function symbols of bounded arity
– constants a, b, c...

• Terms: constants, and inductively 𝑓 ҧ𝑡 for functions.
• Atoms: equalities/disequalities over terms: 𝑡1 = 𝑡2, 𝑡1 ≠ 𝑡2

• Formulas: conjunctions of atoms

(𝑓 𝑎 = 𝑏) ∧ (𝑏 = 𝑐) ∧ (𝑔 𝑓 𝑎 ≠ 𝑐)

• Axioms:
– Equality: 𝑎 = 𝑏 ∧ 𝑏 = 𝑐 → 𝑎 = 𝑐
– Ackermann: ത𝑎 = ത𝑏 → 𝑓 ത𝑎 = 𝑓(ത𝑏)

• Can decide in near-linear time if a given EUF formula is satisfiable:
– Downey-Sethi-Tarjan congruence closure (based on Union-Find)

Sequent calculus (LK)

• Equivalent to Frege.
• Natural deduction

• Sequents: 𝐴1, … , 𝐴𝑛 −→ 𝐵1, … , 𝐵𝑚
– 𝐴1 ∧ ⋯ ∧ 𝐴𝑛 → 𝐵1 ∨ ⋯ ∨ 𝐵𝑚

– Axioms 𝐴 → 𝐴, 0 → 𝑆, 𝑆 → 1.

– Rules for ∨,∧, ¬ and cut

• Proof size: total number of symbols.

𝐹 → 𝐺, 𝐴 𝐴, 𝐹 → 𝐺

𝐹 → 𝐺

𝐹 → 𝐺, 𝐴

¬𝐴, 𝐹 → 𝐺

𝐹 → 𝐺, 𝐴 𝐹 → 𝐺, 𝐵

𝐹 → 𝐺 , 𝐴 ∧ 𝐵

𝐴, 𝐵, 𝐹 → 𝐺

𝐴 ∧ 𝐵, 𝐹 → 𝐺

Res(EUF) simulates LK

• Suppose there is an LK proof of 𝐹 → 0
– An LK-refutation of F

• Add to 𝐹:
– Two constants: 𝑒0 ≠ 𝑒1

– Definitions of N, O, A (and, or, not):
• 𝑁 𝑒0 = 𝑒1, 𝑁 𝑒1 = 𝑒0, 𝑂 𝑒1, 𝑒0 = 𝑒1,....

– Bounded variable range: ⋀ 𝑥𝑖 = 𝑒0 ∨ 𝑥𝑖 = 𝑒1

• Now simulate an LK proof by constructing terms for all
formulas in the proof inductively
– Prove that at each step of LK proof: 𝐴1 … 𝐴𝑘 → 𝐵1 … 𝐵ℓ

– Either one of the 𝐴 terms is 𝑒0 or one of the 𝐵 terms is 𝑒1
• Also for each subformula in proof so far, its term = 𝑒0 or = 𝑒1

Open problems

• Is it better to use SMT than propositionalize
completely? If so, when?
– Flatten:

• replace nested terms by new variables

– Bit blast:
• represent each variable by log 𝑛 bits.

– add all relevant axioms explicitly.

• How to choose T given a problem and class of
instances?
– And how to choose T-representation?

For which theory T would Res(T)
effectively p-simulate Extended Frege?

Complexity of Expander-Based Reasoning
and the Power of Monotone Proofs

with Sam Buss, Valentine Kabanets
and Michal Koucky

𝑎11 ⋯ 𝑎1𝑚

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

0

4 3

1

2

6

5

Expander graphs

• Graphs which are both

– sparse (usually constant degree)

– and well connected (log length path between any two
points.

• Expander graphs are pseudorandom objects. A
random graph is an expander with high probability.

• Random walk on an expander converges fast.

Uses of expanders

• As pseudorandom objects

– One-way functions of Goldreich’2000

– Cryptographic hash functions: Charles/Goren/Lauter...

– Error-correcting codes, derandomization...

• In complexity theory

– Reingold and Rozenman/Vadhan: USTCON in LogSpace

– Dinur: combinatorial proof of the PCP theorem

– Ajtai/Komlos/Szemeredi: AKS sorting networks

Combinatorial definition of expanders

• d-regular undirected (multi)graphs

• Edge expansion:

– min fraction of edges crossing a cut
(normalized by smaller side size).

– ℎ 𝐺 = min
∅≠𝑈, 𝑈 ≤

𝑛

2

|𝐸 𝑈,𝑈𝑐 |

|𝑈|

• Expander: h(G) is constant.

Algebraic definition of expanders

• Spectral gap: d-𝜆2,

– d is the degree of G

– 𝜆2 is the second largest eigenvalue of adjacency
matrix 𝑀𝐺 of G.

• Expander (𝜆-expander):

– A graph that has a constant spectral gap.

Combinatorial vs. algebraic

• Cheeger inequality:

𝑑−𝜆2

2
≤ ℎ 𝐺 ≤ 2𝑑 𝑑 − 𝜆2

– So constant spectral gap ~ constant expansion
– Most proofs use algebraic definition

• Some loss in parameters in combinatorial setting

– Combinatorial definition allows lower complexity algorithms

Formalizing “combinatorial”

• Take a system of reasoning which cannot
define algebraic objects
– No eigenvalues, determinants, etc

– E.g., a system based on polynomial-size formulas
(𝑁𝐶1-reasoning)

• Proofs in this system are combinatorial
(unless algebra ∈ 𝑁𝐶1)
– Combinatorial proofs of correctness of

algorithms or existence of combinatorial objects.

– Not known to prove AB=I => BA=I

Our results

• We give an 𝑁𝐶1 proof of existence of expander
graphs of arbitrary size.
– Includes a combinatorial analysis of a fully explicit

expander construction.

– And its formalization in an 𝑁𝐶1 theory

• Corollary: monotone proofs are as powerful as
non-monotone.
– Monotone LK polynomially simulates LK.

– By adding the last piece to [Atserias-Galesi-
Gavalda’01, Atserias-Galesi-Pudlak’02, Jerabek’11]

Expander constructions

Example 2: (from Hoory/Linial/Wigderson)

Zp: for every v  0, connect
v to v-1, v+1 and v-1.
For v=0, connect v to 0,1 and p-1.

Example 1: Margulis, Gabber/Galil bipartite expanders.

(x,y) -> (x,y), (x,x+y), (x,x+y+1), (x+y,y), (x+y+1,y)

0

4 3

1

2

6

5

Iterative constructions

• Start with constant-size expanders. Obtain a large size graph by
repeatedly applying:
– Powering (to increase expansion)
– Zig-zag or replacement product (to reduce degree)
– Tensoring (to grow quickly).

• Originally by [Reingold-Vadhan-Wigderson’02]
– Zig-zag product. Proof uses spectral gap.
– [Alon, Schwartz, Shapira’08] Replacement product with its

combinatorial analysis.

• Explicit: given vertex v and 𝑖 ∈ 1 … 𝑑 , produce (w, j) such that
w is the 𝑖𝑡ℎ neighbour of v, and v is the 𝑗𝑡ℎ neighbour of w in
resulting graph.
– In time O(log |G|).

Our variant of the construction

• Start with 2d-regular 𝐺0 with h G0 = 𝜖 = 1/1296 and
d-regular H, ℎ 𝐻 = 1/3.

• Apply the following ~log 𝑛 times:
1. Add self-loops to double the degree; tensor with itself
2. Add self-loops again and power to a constant c
3. Replace each vertex with H.

• Each 𝐺𝑖 has ℎ 𝐺𝑖 = 𝜖 and size > squared.

• Fully explicit: 𝑁𝐶1 algorithm to compute 𝑘𝑡ℎ

neighbour w of v in the final G, and its edge index j
from (v,k)

Powering: 𝑀𝐺′ = MG
k

 Easy with eigenvalues: 𝜆2 → 𝜆2
𝑘

 Combinatorially, let h(G)=𝜖.

 First, add d self-loops to G.

 Using [Mihail’89] mixing lemma

○ and mixing -> expansion

 Get ℎ 𝐺′ =
1

2
(1 − 1 −

𝜖2

4
)𝑘/2

Proof : Cauchy-Schwartz and sums.

Mihail’89 mixing lemma

• A random walk on an expander converges
to uniform distribution exponentially fast.

• More precisely, let
– G be a d-regular graph with edge expansion 𝜖.

• Add d self-loops to each vertex of G to obtain G’

– A be a normalized adjacency matrix of G’

– 𝜋 be any distribution on vertices of G’
• u the uniform distribution on vertices of G’

• Then 𝐴𝑘𝜋 − 𝑢
2

≤ 1 −
𝜖2

4

𝑘

𝜋 − 𝑢
2

0

4 3

1

2

6

5

Constructiveness

• For formalization, need an 𝑁𝐶1 algorithm:
– Given a non-expanding set U’ in G’

– Produce a non-expanding set U in G.

• From [Mihail’89] proof:
– Sort vertices in decreasing 𝜋 − 𝑢 order

– If some U’ in G’ is non-expanding, then so is a set
of first k vertices in G for some k. Test which one.
• Both sorting and testing are in 𝑁𝐶1

Formalizing “combinatorial”

• Bounded arithmetic:
– Theories ~ complexity classes.
– For a class C, a theory V-C can reason about C-definable

concepts (numbers and strings)

• Eigenvalues, determinants, etc are not known to be
computable in 𝑁𝐶1

• So proofs in V-𝑁𝐶1 are “combinatorial” in a strict
sense.
– If V-𝑁𝐶1 cannot prove existence of eigenvalues
– Then it cannot formalize proofs relying on eigenvalues, even

in disguise.

Bounded arithmetic theories

• 0 : first-order reasoning

• 0: 0 + “exists numones(y,X)=z”

• 1: 0 + “exists an evaluation of a Boolean
formula”
– Not known to prove AB=I -> BA = I
– Uniform version of Frege/Sequent Calculus LK

• 𝑉1 ≈ 𝑆2
1...

Formalizations

• Approximate counting, randomized computation,
PRGs (Jerabek), PCPs (Pich), Toda’s theorem in higher
complexity theories.

• Assuming existence of expanders, correctness of AKS
sorting networks is provable in a (slightly non-uniform
version of) 𝑉𝑁𝐶1 (Jerabek)

• Our result: Theory 𝑉𝑁𝐶1 proves existence of
expanders of arbitrary size.
– Thus, 𝑁𝐶1 reasoning is enough to prove correctness of

AKS sorting networks.

Complexity in monotone

• Monotone functions:

– ∀𝑥, 𝑦, 𝑥 ⊆ 𝑦 ⇒ 𝑓 𝑥 ≤ 𝑓(𝑦)

– Majority, Threshold, Clique...

• Monotone circuits:
– AND, OR gates.

– Cliquek,n requires monotone

circuits of size ≥ 2𝜖√𝑘 for some 𝜖.





x1 x2 x3 … xn

Monotone proof complexity?

Monotone sequent calculus (MLK)

• Monotone version of LK [Buss-Pudlak’95]

• Sequents: 𝐴1, … , 𝐴𝑛 −→ 𝐵1, … , 𝐵𝑚

– all 𝐴𝑖 , 𝐵𝑗 are formulas over ∧,∨.
– Axioms 𝐴 → 𝐴, 0 → 𝑆, 𝑆 → 1.
–

– Rules for ∨,∧ and cut
• No rule for ¬

• Non-uniform version of 𝑉𝑁𝐶1

• Polynomial-size proofs of PHP

𝐹 → 𝐺, 𝐴 𝐴, 𝐹 → 𝐺

𝐹 → 𝐺

𝐹 → 𝐺, 𝐴 𝐹 → 𝐺, 𝐵

𝐹 → 𝐺 , 𝐴 ∧ 𝐵

𝐴, 𝐵, 𝐹 → 𝐺

𝐴 ∧ 𝐵, 𝐹 → 𝐺

MLK polynomially simulates LK

• [Atserias-Galesi-Gavalda’01, Atserias-Galesi-
Pudlak’02]:
– Simulate ¬𝑥 using threshold formulas:

• if 𝑘 1s in the input, and still k 1s with 𝑥𝑖 replaced by 0,
then 𝑥𝑖 = 0

• Slice functions idea.

– Recursive definition of thresholds gives
quasipolysize proofs.

– Monotone 𝑁𝐶1 threshold functions?
• AKS sorting networks

AKS sorting networks

• Sorting network:

– n inputs, n outputs (Boolean)

– Outputs input bits in sorted order

• [Ajtai-Komlos-Szemeredi’83]

– Monotone log-depth sorting networks

– Based on expanders

1 0 1 1 1 0

0 0 1 1 1 1

AKS sorting networks

• [Jerabek’11] Properties of AKS sorting
networks are in (slightly non-uniform) 𝑉𝑁𝐶1.
So

– if 𝑉𝑁𝐶1 proves that expanders exist,

– get polysize proofs for properties of thresholds

– and polynomial simulation of LK by MLK.

• Here: 𝑉𝑁𝐶1 proves that expanders exist.

Open problems

• Can existence of expanders be proven in
𝑉𝑇𝐶0?

• Complexity of USTCONN ∈ L ?
– Our analysis needs both initial graphs to be

expanders.

• Proof complexity of other results that now rely
on algebra?

Thank you!

0

4 3

1

2

6

5

𝑎11 ⋯ 𝑎1𝑚

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑚

