Taking updates seriously

Tarmo Uustalu

NII Shonan Meeting on BX, 25-29 Sept. 2016

My creed

- Delta-based is superior to state-based; state-based is a special case
- State-based lenses must be required to satisfy put-put.
 For weaker forms of overwriting (e.g., stated stored in "wearing memory") delta-based lenses are suitable and they satisfy their own appropriate put-put.
- By deltas I do not mean diffs, but updates (or edits) acting on states
- Around delta lenses, there is lots of structure

 This talk deals with asymmetric lenses only, but the symmetric case can be dealt with spans

This talk

- From state-based lenses
- ...to (simply and dep. typed) update lenses
- ...to a further generalization (versions of Diskin's delta-lenses)
- emphasizing that ...
- ... different types lenses are the same as comonad coalgebras or comonad morphisms for appropriate comonads and
- ... special cases of proof-relevant simulations à la McKinna

State-based lenses (Foster et al.)

- Let S be a set (of view states).
- A (state-based) lens for S is a set S_0 (of source states) with maps get : $S_0 \to S$ and put : $S_0 \times S \to S_0$ such that

$$\gcd\left(\operatorname{put}\left(s_{0},s\right)\right)=s$$
 $s_{0}=\operatorname{put}\left(s_{0},\operatorname{get}s_{0}\right)$
 $\operatorname{put}\left(\operatorname{put}\left(s_{0},s\right),s'\right)=\operatorname{put}\left(s_{0},s'\right)$

- Lenses for S are the same as coalgebras of the *costate comonad* for S, defined by $DX =_{\mathrm{df}} S \times (S \Rightarrow X)$.
- Incidentally, they are also the same as morphisms between the costate comonads for S_0 and S.
- Given a lens (S_0 , get, put), the coalgebra carrier is S_0 and the structure map is

$$S_0 \rightarrow S \times (S \Rightarrow S_0)$$

 $s_0 \mapsto (\text{get } s_0, \lambda s. \text{ put } (s_0, s))$

while the underlying natural transformation of the comonad morphism is

$$\begin{array}{ccc} S_0 \times (S_0 \Rightarrow X) & \to & S \times (S \Rightarrow X) \\ (s_0, v) & \mapsto & (\text{get } s_0, \lambda s. \ v \ (\text{put } (s_0, s))) \end{array}$$

Update lenses (Ahman, Uustalu, MFPS XXX, 2014)

- Let S be a set (of view states), (P, o, \oplus) be a monoid (of view updates) and $\downarrow : S \times P \rightarrow S$ a right action of S on (P, o, \oplus) (application of view updates to view states).
- An update lens for $(S, (P, o, \oplus), \downarrow)$ is a set S_0 (of source states) with maps get: $S_0 \to S$ and put: $S_0 \times P \to S_0$ (application of view updates to source states) such that

$$\begin{split} \text{get} \left(\text{put} \left(s_0, p \right) \right) &= \text{get} \, s_0 \downarrow p \\ s_0 &= \text{put} \left(s_0, o \right) \\ \text{put} \left(\text{put} \left(s_0, p \right), p' \right) &= \text{put} \left(s_0, p \oplus p' \right) \end{split}$$

• In other words, an update lens is an action put of (P, o, \oplus) on S_0 together with an action morphism get from put to \downarrow .

- Update lenses for S are the same as coalgebras of the *coupdate* comonad for $(S, (P, o, \oplus), \downarrow)$, defined by $DX =_{\mathrm{df}} S \times (P \Rightarrow X)$.
- Right actions of (P, o, \oplus) on S are in a bijective correspondence with distributive laws of the product comonad $D_0X = S \times X$ and the exponent comonad $D_1X = P \Rightarrow X$. Coupdate comonads are exactly the compatible compositions of the product and exponent comonads for S resp. (P, o, \oplus) .
- This leads to a number of further characterizations of update lenses, e.g., as pairs of coalgebras, bialgebras (pairs of a coalgebra and an algebra) etc.

Directed containers

- A directed container is a set S (of states) and an S-indexed family P
 of sets (of updates enabled in each state) with
 - $\downarrow : \Pi s : S.Ps \rightarrow S$ (application of updates to states),
 - $o: \Pi\{s: S\}$. Ps (the trivial update),
 - \oplus : $\Pi\{s:S\}$. $\Pi p:Ps.P(s\downarrow p)\to Ps$ (composition of updates)

such that

$$s \downarrow o = s
s \downarrow (p \oplus p') = (s \downarrow p) \downarrow p'
p \oplus o = p
o \oplus p = p
(p \oplus p') \oplus p'' = p \oplus (p' \oplus p'')$$

- The data and laws are like for a monoid and an action, modulo the dependent typing.
- A directed container defines a comonad by $DX = \Sigma s : S.(Ps \Rightarrow X)$.

- A directed container is the same as a category.
 - The set of objects is *S*.
 - The set of maps with domain s : S is P s.
 - The codomain of map p : Ps with domain s : S is $s \downarrow p$.
 - The identity map on object s is o $\{s\}$.
 - A map p: Ps with domain s: S can only be composed with a map $p': P(s\downarrow p)$ with domain $s\downarrow p: S$, which is the codomain of p.
- Morphisms between two directed containers are in a bijection with morphisms between the corresponding comonads.
- While a directed container is the same as a category, we will see that
 a directed container morphism is <u>not</u> a functor, but something
 entirely different (a "relative split pre-opcleavage").

Dependently typed update lenses

- Let $(S, P, \downarrow, o, \oplus)$ be a directed container.
- An dep. typed update lens for $(S, P, \downarrow, o, \oplus)$ is a set S_0 (of source states) with maps get : $S_0 \to S$ and put : $\Sigma s_0 : S_0$. $P(\text{get } s_0) \to S_0$ (application of view updates to source states) such that

$$\gcd\left(\mathsf{put}\left(s_0,p\right)\right) = \gcd s_0 \downarrow p$$

$$s_0 = \mathsf{put}\left(s_0, o\left\{\gcd s_0\right\}\right)$$

$$\mathsf{put}\left(\mathsf{put}\left(s_0,p\right), p'\right) = \mathsf{put}\left(s_0, p \oplus p'\right)$$

(Note there is no difference from simply-typed update lenses apart from the dependent typing.)

- It should not come as a surprise that dependently typed update lenses for $(S, P, \downarrow, o, \oplus)$ are the same as coalgebras of the corresponding comonad D, defined by $DX =_{df} \Sigma s : S. (P s \Rightarrow X)$.
- State-based lenses for S cannot be cast as simply typed update lenses, but are the same as dep. typed update lenses for $(S, P, \downarrow, o, \oplus)$ defined by

$$\begin{array}{cccc} P\,s & =_{\mathrm{df}} & S \\ s\downarrow s' & =_{\mathrm{df}} & s' \\ \mathrm{o}\,\{s\} & =_{\mathrm{df}} & s & \text{—not available in simply typed case} \\ s\oplus s' & =_{\mathrm{df}} & s' \end{array}$$

 Neither in the case of simply typed nor dep. typed update lenses do we speak about about source updates; view updates apply to both view states and source states.

This will change on next slide.

A generalization (yet unpublished, but obvious to me now)

- Let $(S, P, \downarrow, o, \oplus)$ be a directed container (for view states, updates and update application).
- An generalized update lens for $(S, P, \downarrow, o, \oplus)$ is another directed container $(S_0, P_0, \downarrow_0, o_0, \oplus_0)$ (for source states, updates and update application) with maps get : $S_0 \to S$ and put : $\Sigma s_0 : S_0$. P (get s_0) $\to P_0 s$ such that

$$\begin{split} \gcd\left(s_0\downarrow_0\operatorname{put}\left(s_0,p\right)\right)&=\gcd s_0\downarrow p\\ \operatorname{o}_0\{s_0\}&=\operatorname{put}\left(s_0,\operatorname{o}\left\{\gcd s_0\right\}\right)\\ \operatorname{put}\left(s_0,p\right)\oplus_0\operatorname{put}\left(s_0\downarrow_0\operatorname{put}\left(s_0,p\right),p'\right)&=\operatorname{put}\left(s_0,p\oplus p'\right) \end{split}$$

 Update lenses in this generalized sense are the same as comonad morphisms between the comonads corresponding to the two directed containers.

Takeaway

- Update lenses have a lot of structure around them; this makes that they be characterized in many ways
- They are a realization of McKinna's "lenses as proof-relevant (bi)simulations" doctrine
- Update lenses are coalgebras of a coupdate comonad, generalized update lenses are morphisms between coupdate comonads.

Directed container papers

- Ahman, Chapman, Uustalu, When is a container a comonad?
 FoSSaCS '12 / LMCS (2014)
- Ahman, Uustalu, Distributive laws for directed containers, Progress in Inform. '13
- Ahman, Uustalu, Update monads: cointerpreting directed containers, TYPES '13 post-proc. (2014)
- Ahman, Uustalu, Coalgebraic update lenses, MFPS XXX (2014)
- Ahman, Uustalu, Directed containers as categories, MSFP '16