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My creed

@ Delta-based is superior to state-based; state-based is a special case

@ State-based lenses must be required to satisfy put-put.
For weaker forms of overwriting (e.g., stated stored in “wearing
memory” ) delta-based lenses are suitable and they satisfy their own
appropriate put-put.

@ By deltas | do not mean diffs, but updates (or edits) acting on
states

@ Around delta lenses, there is lots of structure

@ This talk deals with asymmetric lenses only, but the symmetric case
can be dealt with spans



This talk

@ From state-based lenses
@ ...to (simply and dep. typed) update lenses

@ ...to a further generalization
(versions of Diskin's delta-lenses)

@ emphasizing that ...

o ...different types lenses are the same as comonad coalgebras or
comonad morphisms for appropriate comonads and

@ ...special cases of proof-relevant simulations a la McKinna



State-based lenses (Foster et al.)

@ Let S be a set (of view states).

o A (state-based) lens for S is a set Sy (of source states) with maps
get: Sp — S and put: Sp x S — Sp such that

get (put (so,s)) =5
so = put (so, get so)
put (put (sp, s),s’) = put (s, s’)



Lenses for S are the same as coalgebras of the costate comonad for
S, defined by DX =4; S x (S = X).

Incidentally, they are also the same as morphisms between the
costate comonads for Sp and S.

Given a lens (Sp, get, put), the coalgebra carrier is Sp and the
structure map is

50 — S x (5 = 50)
so — (getsp, As.put(so,s))

while the underlying natural transformation of the comonad
morphism is

Sox(So=X) — Sx (5= X)
(s0,v) —  (getso, As. v (put(sg,s)))



Update lenses (Ahman, Uustalu, MFPS XXX, 2014)

o Let S be a set (of view states), (P,0,®) be a monoid (of view
updates) and | : S x P — S a right action of S on (P,0,®)
(application of view updates to view states).

@ An update lens for (S, (P,0,®),]) is a set Sp (of source states) with
maps get : So — S and put : Sop X P — Sy (application of view
updates to source states) such that

get (put (so, p)) = getso | p
so = put(sp,0)
put (put (so, p), p') = put (so, p © p)
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@ In other words, an update lens is an action put of (P,0,®) on Sy
together with an action morphism get from put to |.



@ Update lenses for S are the same as coalgebras of the coupdate
comonad for (S, (P,0,®),]), defined by DX =4¢ S x (P = X).

@ Right actions of (P,0,) on S are in a bijective correspondence
with distributive laws of the product comonad Do X = S x X and
the exponent comonad D: X = P = X.

Coupdate comonads are exactly the compatible compositions of the
product and exponent comonads for S resp. (P, 0, ®).

@ This leads to a number of further characterizations of update lenses,
e.g., as pairs of coalgebras, bialgebras (pairs of a coalgebra and an
algebra) etc.



Directed containers

o A directed containeris a set S (of states) and an S-indexed family P
of sets (of updates enabled in each state) with
e |:Ms:S.Ps— S (application of updates to states),
e 0:M{s:S}.Ps (the trivial update),
o ®:M{s:S}.Mp:Ps.P(s| p)— Ps (composition of updates)

such that
slo=s
si(pop)=(sip)lp
pPo=p
obp=p

(pep)op =po (P ®p’)
@ The data and laws are like for a monoid and an action, modulo the
dependent typing.

@ A directed container defines a comonad by
DX =%s:5.(Ps= X).



@ A directed container is the same as a category.

The set of objects is S.

The set of maps with domains: S is Ps.

The codomain of map p : Ps with domains: Siss | p.

The identity map on object s is o {s}.

A map p: Ps with domain s : S can only be composed with a map
p’ : P(s | p) with domain s | p: S, which is the codomain of p.

@ Morphisms between two directed containers are in a bijection with
morphisms between the corresponding comonads.

@ While a directed container is the same as a category, we will see that
a directed container morphism is not a functor, but something
entirely different (a “relative split pre-opcleavage”).



Dependently typed update lenses

o Let (S,P,],0,®) be a directed container.

@ An dep. typed update lens for (S, P,]},0,®) is a set Sy (of source
states) with maps get : Sp — S and put : Xsp : So. P (getso) — So
(application of view updates to source states) such that

get (put (so, p)) = getso | p
sop = put(sp,0{getso})
put (put (so, p), p’) = put (so0, p © p’)
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(Note there is no difference from simply-typed update lenses apart
from the dependent typing.)



@ It should not come as a surprise that dependently typed update
lenses for (S, P, |,0,®) are the same as coalgebras of the
corresponding comonad D, defined by DX =4 ¥s5: S.(Ps = X).

@ State-based lenses for S cannot be cast as simply typed update
lenses, but are the same as dep. typed update lenses for
(5,P,],0,®) defined by

Ps =df S
sls =4 ¢
o{s} =ar s —not available in simply typed case

s®s =4 5

@ Neither in the case of simply typed nor dep. typed update lenses do
we speak about about source updates; view updates apply to both
view states and source states.

This will change on next slide.



A generalization (yet unpublished, but obvious to me now)

o Let (S,P,],0,®) be a directed container (for view states, updates
and update application).

e An generalized update lens for (S, P, ], 0,®) is another directed
container (So, Po, g, 00, ®o) (for source states, updates and update
application) with maps get : S — S and
put : Xsp: So. P(getsp) — Pos such that

get (so do put(so, p)) = getso | p
oo{so} = put (so,0 {getso})
put (so, p) Bo put (so 4o Put (s0, p), p') = put (so, p & p’)



@ Update lenses in this generalized sense are the same as comonad
morphisms between the comonads corresponding to the two directed
containers.



Takeaway

@ Update lenses have a lot of structure around them; this makes that
they be characterized in many ways

@ They are a realization of McKinna's “lenses as proof-relevant
(bi)simulations” doctrine

@ Update lenses are coalgebras of a coupdate comonad, generalized
update lenses are morphisms between coupdate comonads.
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