
Taking updates seriously

Tarmo Uustalu

NII Shonan Meeting on BX, 25–29 Sept. 2016



My creed

Delta-based is superior to state-based; state-based is a special case

State-based lenses must be required to satisfy put-put.
For weaker forms of overwriting (e.g., stated stored in “wearing
memory”) delta-based lenses are suitable and they satisfy their own
appropriate put-put.

By deltas I do not mean diffs, but updates (or edits) acting on
states

Around delta lenses, there is lots of structure

This talk deals with asymmetric lenses only, but the symmetric case
can be dealt with spans



This talk

From state-based lenses

. . . to (simply and dep. typed) update lenses

. . . to a further generalization
(versions of Diskin’s delta-lenses)

emphasizing that . . .

. . . different types lenses are the same as comonad coalgebras or
comonad morphisms for appropriate comonads and

. . . special cases of proof-relevant simulations à la McKinna



State-based lenses (Foster et al.)

Let S be a set (of view states).

A (state-based) lens for S is a set S0 (of source states) with maps
get : S0 → S and put : S0 × S → S0 such that

get (put (s0, s)) = s
s0 = put (s0, get s0)

put (put (s0, s), s ′) = put (s0, s
′)

s0

��

get

!)
s

��
s ′0 s ′

putu}



Lenses for S are the same as coalgebras of the costate comonad for
S , defined by DX =df S × (S ⇒ X ).

Incidentally, they are also the same as morphisms between the
costate comonads for S0 and S .

Given a lens (S0, get, put), the coalgebra carrier is S0 and the
structure map is

S0 → S × (S ⇒ S0)
s0 7→ (get s0, λs. put (s0, s))

while the underlying natural transformation of the comonad
morphism is

S0 × (S0 ⇒ X ) → S × (S ⇒ X )
(s0, v) 7→ (get s0, λs. v (put (s0, s)))



Update lenses (Ahman, Uustalu, MFPS XXX, 2014)

Let S be a set (of view states), (P, o,⊕) be a monoid (of view
updates) and ↓ : S × P → S a right action of S on (P, o,⊕)
(application of view updates to view states).

An update lens for (S , (P, o,⊕), ↓) is a set S0 (of source states) with
maps get : S0 → S and put : S0 × P → S0 (application of view
updates to source states) such that

get (put (s0, p)) = get s0 ↓ p
s0 = put (s0, o)

put (put (s0, p), p′) = put (s0, p ⊕ p′)

s0

��

get

!)
s

↓

��

p

��
put

{�
s ′0 s ′

In other words, an update lens is an action put of (P, o,⊕) on S0
together with an action morphism get from put to ↓.



Update lenses for S are the same as coalgebras of the coupdate
comonad for (S , (P, o,⊕), ↓), defined by D X =df S × (P ⇒ X ).

Right actions of (P, o,⊕) on S are in a bijective correspondence
with distributive laws of the product comonad D0X = S × X and
the exponent comonad D1X = P ⇒ X .
Coupdate comonads are exactly the compatible compositions of the
product and exponent comonads for S resp. (P, o,⊕).

This leads to a number of further characterizations of update lenses,
e.g., as pairs of coalgebras, bialgebras (pairs of a coalgebra and an
algebra) etc.



Directed containers

A directed container is a set S (of states) and an S-indexed family P
of sets (of updates enabled in each state) with

↓ : Πs : S .P s → S (application of updates to states),
o : Π{s : S}.P s (the trivial update),
⊕ : Π{s : S}.Πp : P s.P (s ↓ p)→ P s (composition of updates)

such that
s ↓ o = s

s ↓ (p ⊕ p′) = (s ↓ p) ↓ p′
p ⊕ o = p
o ⊕ p = p

(p ⊕ p′) ⊕ p′′ = p ⊕ (p′ ⊕ p′′)

The data and laws are like for a monoid and an action, modulo the
dependent typing.

A directed container defines a comonad by
D X = Σs : S . (P s ⇒ X ).



A directed container is the same as a category.

The set of objects is S .
The set of maps with domain s : S is P s.
The codomain of map p : P s with domain s : S is s ↓ p.
The identity map on object s is o {s}.
A map p : P s with domain s : S can only be composed with a map
p′ : P (s ↓ p) with domain s ↓ p : S , which is the codomain of p.

Morphisms between two directed containers are in a bijection with
morphisms between the corresponding comonads.

While a directed container is the same as a category, we will see that
a directed container morphism is not a functor, but something
entirely different (a “relative split pre-opcleavage”).



Dependently typed update lenses

Let (S ,P, ↓, o,⊕) be a directed container.

An dep. typed update lens for (S ,P, ↓, o,⊕) is a set S0 (of source
states) with maps get : S0 → S and put : Σs0 : S0. P (get s0)→ S0
(application of view updates to source states) such that

get (put (s0, p)) = get s0 ↓ p
s0 = put (s0, o {get s0})

put (put (s0, p), p′) = put (s0, p ⊕ p′)

s0

��

get

!)
s

↓

��

p

��
put

{�
s ′0 s ′

(Note there is no difference from simply-typed update lenses apart
from the dependent typing.)



It should not come as a surprise that dependently typed update
lenses for (S ,P, ↓, o,⊕) are the same as coalgebras of the
corresponding comonad D, defined by DX =df Σs : S . (P s ⇒ X ).

State-based lenses for S cannot be cast as simply typed update
lenses, but are the same as dep. typed update lenses for
(S ,P, ↓, o,⊕) defined by

P s =df S
s ↓ s ′ =df s ′

o {s} =df s —not available in simply typed case
s ⊕ s ′ =df s ′

Neither in the case of simply typed nor dep. typed update lenses do
we speak about about source updates; view updates apply to both
view states and source states.
This will change on next slide.



A generalization (yet unpublished, but obvious to me now)

Let (S ,P, ↓, o,⊕) be a directed container (for view states, updates
and update application).

An generalized update lens for (S ,P, ↓, o,⊕) is another directed
container (S0,P0, ↓0, o0,⊕0) (for source states, updates and update
application) with maps get : S0 → S and
put : Σs0 : S0. P (get s0)→ P0 s such that

get (s0 ↓0 put (s0, p)) = get s0 ↓ p
o0{s0} = put (s0, o {get s0})

put (s0, p) ⊕0 put (s0 ↓0 put (s0, p), p′) = put (s0, p ⊕ p′)

s0

get

!)

↓0

��

s

↓

��

p0

��

p

��

putrz

s ′0 s ′



Update lenses in this generalized sense are the same as comonad
morphisms between the comonads corresponding to the two directed
containers.



Takeaway

Update lenses have a lot of structure around them; this makes that
they be characterized in many ways

They are a realization of McKinna’s “lenses as proof-relevant
(bi)simulations” doctrine

Update lenses are coalgebras of a coupdate comonad, generalized
update lenses are morphisms between coupdate comonads.



Directed container papers

Ahman, Chapman, Uustalu, When is a container a comonad?
FoSSaCS ’12 / LMCS (2014)

Ahman, Uustalu, Distributive laws for directed containers, Progress
in Inform. ’13

Ahman, Uustalu, Update monads: cointerpreting directed
containers, TYPES ’13 post-proc. (2014)

Ahman, Uustalu, Coalgebraic update lenses, MFPS XXX (2014)

Ahman, Uustalu, Directed containers as categories, MSFP ’16


