

The diagonal problem:

Given a language $L \subseteq \Sigma^*$, decide if for every $n \in \mathbb{N}$ there is a word in L where every letter from Σ appears at least n times.

a*b*c*

aab*c* + a*b*cc

The diagonal problem:

Given a language $L \subseteq \Sigma^*$, decide if for every $n \in \mathbb{N}$ there is a word in L where every letter from Σ appears at least n times.

A langue generated by a scheme

$$S \to F b e$$
 $F g x \to g x$ $F g x \to a (F (B g) (c x))$ $B g x \to b (g x)$

generates $a^n b^{n+1} c^n e$.

Why diagonal problem for schemes?

- It has some applications.
- It is the first non-regular property that is shown decidable.

The diagonal problem:

Given a language $L \subseteq \Sigma^*$, decide if for every $n \in \mathbb{N}$ there is a word in L where every letter from Σ appears at least n times.

Computing downward closure of a language

A reduction to the diagonal problem [Zetzsche]:

If a language class is a full trio and has decidable diagonal problem then it has computable downward closures.

Downward closure is computable for:

- Context-free languages [Courcelle]
- Petri Nets [Habermehl, Meyer, Wimmel]
- Order 2 pushdown automata [Zetzsche]
- Higher-order pushdown automata [Hague, Kochems, Ong]

Example: parametrised systems [Hague]

- Every process can read and write to the register
- No locking
- The number of C-processes is not determined

Thm [Muscholl, La Torre, W.]:

If Class(C) has decidable reachability problem, and Class(D) has effective downwards closure then the reachability problem for (Class(C),Class(D))-systems is decidable.

Theorem:

The diagonal problem for higher-order recursive schemes is decidable.

The diagonal problem:

Given a language $L \subseteq \Sigma^*$, decide if for every $n \in \mathbb{N}$ there is a word in L where every letter from Σ appears at least n times.

A pushdown automaton \mathcal{A} :

 $(p,\gamma) \to (p', push(\gamma'))$ $(p,\gamma) \to (p', pop)$ $(p,\gamma) \xrightarrow{c} (p', nop)$.

A finite automaton \mathcal{A}^{\sharp} : $(p, \gamma, r) \xrightarrow{c} (p', \gamma', r')$ if $(p, \gamma) \to (p', push(\gamma'))$ and $Comp_c(r', \gamma, r)$ $(p, \gamma, r) \xrightarrow{c} (r', \gamma, r)$ if $(p, \gamma) \to (p', push(\gamma'))$ and $Comp_c(p', \gamma', r')$ $(p, \gamma, r) \to \top$ if $(p, \gamma) \to (r, pop)$ $(p, \gamma, r) \xrightarrow{c} (p', \gamma, r)$ if $(p, \gamma) \xrightarrow{c} (p', nop)$

Fact:

If \mathcal{A} has a run from $(p, \gamma s)$ to (r, s) with m occurrences of b, then \mathcal{A}^{\sharp} has a run from (p, γ, r) to \top with $\geq \log(m)$ occurrences of b.

A 2-pushdown automaton :

$$p, \bullet(x_1, x_2) \to p', \bullet(b(x_1), x_2) \qquad push_1(b)$$

$$p, \bullet(x_1, x_1) \to p', \bullet(x_1, \bullet(x_1, x_2)) \qquad push_2$$

$$p, \bullet(a(x_1), x_2) \to p', \bullet(x_1, x_2) \qquad pop_1$$

$$p, \bullet(x_1, \bullet(y_1, y_2)) \to p', \bullet(y_1, y_2) \qquad pop_2$$

$$p, \bullet(a(x_1), x_2) \stackrel{c}{\longrightarrow} p', \bullet(a(x_1), x_2) \qquad \text{input}$$

$$p, \bullet(x_1, x_2) \to p', \bullet(b(x_1), x_2) \qquad push_1(b)$$

$$p, \bullet(x_1, x_1) \to p', \bullet(x_1, \bullet(x_1, x_2)) \qquad push_2$$

$$p, \bullet(a(x_1), x_2) \to p', \bullet(x_1, x_2) \qquad pop_1$$

$$p, \bullet(x_1, \bullet(y_1, y_2)) \to p', \bullet(y_1, y_2) \qquad pop_2$$

$$p, \bullet(a(x_1), x_2) \stackrel{c}{\longrightarrow} p', \bullet(a(x_1), x_2) \qquad \text{input}$$

Eliminating 2-rules

$$p, \bullet(x_1, x_2) \stackrel{c}{\longrightarrow} p', \bullet^n(x_1, q) \qquad \text{choose } push_2$$

$$if \ Comp_c(q, \bullet(x_1, x_2)) \qquad \text{jump over}$$

$$p, \bullet(x_1, x_2) \stackrel{c}{\longrightarrow} q, \bullet(x_1, x_2) \qquad \text{jump over}$$

$$if \ Comp_c(p', \bullet(x_1, q)) \qquad pop_2$$

$$if \ q = p'$$

If \mathcal{A} has a run $(p, t) \to (q, s)$ with n occurrences of b then \mathcal{A}^{\sharp} has a run $(p, t[q/s]) \to \top$ with $\geq \log(m)$ occurrences of b.

A 2-pushdown automaton with collapse :

$$p, \bullet(x_1, x_2) \to p', \bullet(b(x_1, \bullet(x_1, x_2)), x_2,) \qquad push_1(b)$$

$$p, \bullet(x_1, x_2) \to p', \bullet(x_1, \bullet(x_1, x_2))) \qquad push_2$$

$$p, \bullet(a(x_1, y), x_2) \to p', \bullet(x_1, x_2) \qquad pop_1$$

$$p, \bullet(x_1, x_2) \to p', x_2 \qquad \qquad pop_2$$

$$p, \bullet(a(x_1, y), x_2,) \to p', y$$
 collapse

$$p, \bullet(a(x_1, y), x_2) \xrightarrow{c} p', \bullet(a(x_1, y), x_2)$$
 input

[Clemente, Parys, Salvati, W. '15]

A 2-pushdown automaton with collapse :

$$p, \bullet(x_1, x_2) \to p', \bullet(b(x_1, \bullet(x_1, x_2)), x_2,) \quad push_1(b_1)$$

$$p, \bullet(x_1, x_2) \to p', \bullet(x_1, \bullet(x_1, x_2))) \qquad push_2$$

$$p, \bullet(a(x_1, y), x_2) \to p', \bullet(x_1, x_2) \qquad pop_1$$

$$p, \bullet(x_1, y) \to p', y \qquad pop_2$$

$$p, \bullet(a(x_1, y), x_2,) \to p', y$$
 collapse

$$p, \bullet(a(x_1, y), x_2) \xrightarrow{c} p', \bullet(a(x_1, y), x_2)$$
 input

Problem: When doing $push_2$ we cannot be sure that the computation will go back to x_2 .

Actually some computations will and some will not.

The main idea: guess what exit will be used and record this guess in the tree.

Convert \mathcal{A} to \mathcal{A}^{\downarrow} working on tree stacks with a highlighted path.

Rule

$$p, \bullet(x_1, x_2) \to p', \bullet(b(x_1), x_2)$$
 $push_1(b)$

is translated to

$$p, \bullet^{i}(x_{1}, x_{2}) \to p', \bullet^{j}(b^{k}(x_{1}, \bullet^{l}(x_{1}, x_{2})), x_{2},) \quad push_{1}(b)$$

if $i = 2$ then $j = 2$ or $(j = 1 \land k = l = 2)$.

if i = 1 then $(j = 1 \land k = 2 \land l = 1)$ or $(j = 1 \land k = 2)$.

Back to schemes

A langue generated by a scheme

 $S \to F b e$ $F g x \to g x$ $F g x \to a (F (B g) (c x))$ $B g x \to b (g x)$

generates $a^n b^{n+1} c^n e$.

We will count letters in trees not in words

We extend $\Sigma_{\mathcal{S}}$ to $\Sigma_{\mathcal{S}'}$ by adding $a', \top : 0, \wedge : 2$.

Two trees K and K' are equivalent if they have the same number of occurrences of each symbol counting a and a' as the same symbol, and ignoring \top , \wedge .

 $b^n e$

Lowering the order of a scheme

Operation on types:

$$o \downarrow = o$$
, and $(\beta \to \gamma) \downarrow = \begin{cases} \gamma \downarrow & \text{if } \beta = o, \\ (\beta \downarrow) \to (\gamma \downarrow) & \text{otherwise.} \end{cases}$

Translation of a scheme:

$$o \downarrow = o, \text{ and } (\beta \rightarrow \gamma) \downarrow = \begin{cases} \uparrow \downarrow & f \downarrow \\ (\beta \downarrow) \rightarrow (\gamma \downarrow) & \text{otherwise} \end{cases}$$

 $S \rightarrow F e$
 $F x \rightarrow x$
 $F x \rightarrow F (b x)$

Generated trees:

Lowering the order of a scheme

Operation on types:

$$o \downarrow = o$$
, and $(\beta \to \gamma) \downarrow = \begin{cases} \gamma \downarrow & \text{if } \beta = o, \\ (\beta \downarrow) \to (\gamma \downarrow) & \text{otherwise.} \end{cases}$

Translation of a scheme:

 $S \rightarrow F e \qquad S' \rightarrow F' \qquad f' \sim e$ $F x \rightarrow x \qquad F' \rightarrow T$ $F x \rightarrow F (b x) \qquad F' \rightarrow F' \qquad h'$

Generated trees:

 $b^n e$

Theorem:

The diagonal problem for higher-order recursive schemes is decidable.

1. Narrowing a scheme:

Constructing a narrow scheme which has the diagonal property iff the original scheme does.

2. Lowering the order of a narrow scheme

Constructing a scheme of a lower order that generates tress equivalent to those generated by the narrow scheme.

Narrowing a scheme

A tree K is Σ_0 -narrow if all leaves of K are labelled with Σ_0 and every constant from Σ_0 appears exactly once.

A HORS is Σ_0 -narrow if it generates only Σ_0 -narrow trees.

Narrowing a scheme

Producing a run tree:

We can create a HORS \mathcal{S}' that is of the same order as \mathcal{S} , and generates run trees of some finite automaton on \mathcal{B} on trees generated by \mathcal{S} .

We can restrict to parts of the run determined by some $Q' \subseteq Q$.

Narrowing a HORS:

For a HORS S and a set of symbols Σ , one can construct a narrow HORS S' of the same order as S, and sets of symbols $\Sigma_1, \ldots, \Sigma_k$ such that $Diag_{\Sigma}(S)$ holds iff there is $i \in \{1, \ldots, k\}$ for which $Diag_{\Sigma_i}(S')$ holds.

Lowering the order of a scheme

We omit arguments of type o: $o \downarrow = o$, and $(\beta \rightarrow \gamma) \downarrow = \begin{cases} \gamma \downarrow & \text{if } \beta = o, \\ (\beta \downarrow) \rightarrow (\gamma \downarrow) & \text{otherwise.} \end{cases}$

$$(\lambda x_1, x_2. \ M(x_1, x_2))^{o \to \tau \to o} K \ N$$
$$(\lambda x_2. \ M(\top, x_2))^{\tau \to o} N \qquad K$$

Translation:

Generated trees:

 $b^n e$

Translation:

$S \rightarrow F b e$

 $Fg x \rightarrow g x$

 $Fg x \rightarrow a (F(Bg)(cx))$

 $B\,g\,x\,{\rightarrow}b\,(g\,x)$

$$a^n b^{n+1} c^n e$$

Translation:

 $S \rightarrow F b e$ $S' \rightarrow F' b' \wedge e$ $F g x \rightarrow g x$ $F' g' \rightarrow g'$ $F g x \rightarrow a (F (B g) (c x))$ $F' g' \rightarrow f' (B' g') - c'$ $B g x \rightarrow b (g x)$ $B' g' \rightarrow f' (B' g') - c'$

 $a^n b^{n+1} c^n e$

Lowering the order of a scheme

We omit arguments of type o: $o \downarrow = o$, and $(\beta \rightarrow \gamma) \downarrow = \begin{cases} \gamma \downarrow & \text{if } \beta = o, \\ (\beta \downarrow) \rightarrow (\gamma \downarrow) & \text{otherwise.} \end{cases}$

$$(\lambda x_1, x_2. \ M(x_1, x_2))^{o \to \tau \to o} K N$$

$$(\lambda x_2. \ M(\top, x_2))^{\tau \to o} N K$$

We need to know that x_1 is used in M, and that it is used exactly once.

A type system $\mathcal{T}^{o} = \{\mathbf{r}\}$ $\mathcal{T}^{\alpha \to \beta} = \{ (S_1, \tau_1), \dots, (S_k, \tau_k) \} \to \tau$ $(S_i, \tau_i) \in \mathcal{LT}^{\alpha}, \quad S_i \cap S_j = \emptyset$ $au \in \mathcal{T}^{\beta}$ $\mathcal{LT}^{\alpha} = \mathcal{P}(\Sigma_0) \times \mathcal{T}^{\alpha}$, if $\alpha = o$ then the first component not empty. Typing restricts what trees can be derived $\overline{\Gamma, x: \lambda \vdash x: \lambda}$ $\overline{\Gamma \vdash A: (\emptyset, \tau)}$ $\Gamma \vdash a^o: (\{a\}, \mathbf{r})$ $r \ge 1$ $\Gamma \vdash a^{o^r \to o} : (\emptyset, \{(S_1, \mathbf{r})\} \to \cdots \to \{(S_r, \mathbf{r})\} \to \mathbf{r})$ $\Gamma \vdash L : (S_0, \{(S_1, \tau_1), \dots, (S_k, \tau_k)\} \to \tau) \qquad \Gamma \vdash M : (S_i, \tau_i) \text{ for each } i \in \{1, \dots, k\}$ $\Gamma \vdash LM : (S_0 \cup \cdots \cup S_k, \tau)$ where $S_0 \cap (S_1 \cup \cdots \cup S_k) = \emptyset$

A type system $\mathcal{T}^{o} = \{\mathbf{r}\}$ $\mathcal{T}^{\alpha \to \beta} = \{(S_1, \tau_1), \dots, (S_k, \tau_k)\} \to \tau$ $(S_i, \tau_i) \in \mathcal{LT}^{\alpha}, \quad S_i \cap S_j = \emptyset$

 $\mathcal{LT}^{\alpha} = \mathcal{P}(\Sigma_0) \times \mathcal{T}^{\alpha}$, if $\alpha = o$ then the first component not empty.

Translation on types

•
$$tr(\mathbf{r}) = o$$
,

• if
$$\tau = (\{(S_1, \tau_1), \dots, (S_k, \tau_k)\} \to \tau') \in \mathcal{T}^{\alpha \to \beta}$$
 then

$$tr(\tau) = \begin{cases} tr(\tau_1) \to \dots \to tr(\tau_k) \to tr(\tau') & \text{if } \alpha \neq o, \\ tr(\tau') & \text{if } \alpha = o. \end{cases}$$

Remark: if $\tau \in \mathcal{T}^{\alpha}$, then $ord(tr(\tau)) = \max(0, ord(\alpha) - 1)$.

We define a term tr(D), where D is a derivation for $\Gamma \vdash K : \lambda$,

- If K = a then tr(D) = a'.
- If $K = x^{\alpha}$ then $tr(D) = \top$ if $\alpha = o$, and $tr(D) = x \restriction_{\lambda}$ otherwise.

• If
$$K = A$$
 then $tr(D) = A \restriction_{\tau}$.

• If K = L M then $tr(D) = tr(D_0)$ if M : o; otherwise $tr(D) = tr(D_0) tr(D_1) \dots tr(D_k)$.

where $S_0 \cap (S_1 \cup \cdots \cup S_k) = \emptyset$

• If K = L M then $tr(D) = tr(D_0)$ if M : o; otherwise $tr(D) = tr(D_0) tr(D_1) \dots tr(D_k)$.

$$tr_{cum}(D) = \begin{cases} tr(D); tr_{cum}(D_1); \dots; tr_{cum}(D_m) & \text{if } \alpha = o, \\ tr_{cum}(D_1); \dots; tr_{cum}(D_m) & \text{otherwise.} \end{cases}$$

$$merge(N_1; \ldots; N_k)$$
 is N_1 , N_1 , N_k , T

Example b(gx):
$$\Gamma \equiv x : (e, \rho), g : (\emptyset, \{(e, \rho)\} \to \rho)$$
 $\Gamma \vdash b : (\emptyset, \{(e, \mathbf{r})\} \to \mathbf{r})$ $\frac{\Gamma \vdash g : (\emptyset, \{(e, \mathbf{r})\} \to \mathbf{r}) \quad \Gamma \vdash x : (e, \mathbf{r})}{\Gamma \vdash g x : (e, \mathbf{r})}$ $\Gamma \vdash b (g x) : (e, \mathbf{r})$

We have:

$$tr(D) = b' \qquad tr_{cum}(D) = b'; g \upharpoonright_{(\emptyset, \{(e, \mathbf{r})\} \to \mathbf{r})}; \top$$

$$merge(tr_{cum}(D)) =$$

Λ

b \wedge $g \upharpoonright_{(\emptyset, \{(e, \mathbf{r})\} \to \mathbf{r})} \land$

Т

Translation:

 $S \to F e$ $F g x \to g x$ $F' g' \to g'$ $F g x \to a (F (B g) (c x))$ $F' g' \to a' \xrightarrow{\wedge} F' (B' g') \to c'$ $B g x \to b (g x)$ $B' g' \to b' \xrightarrow{\wedge} g'$

 $a^n b^{n+1} c^n e$

Translation of rules of a scheme

Take $Axy \to K$ where $x:o, y:\alpha$

For every pair of types $\lambda_x = (S_x, r), \ \lambda_y = (S_y, \tau)$

and a derivation D
$$x: \lambda_x, y: \lambda_y \vdash K: (S_x \cup S_y, r)$$

we add a rule $A y |_{\lambda_y} \to merge(tr_{cum}(D))$

Soundness

For every tree generated by Sch' there is an equivalent tree generated by Sch.

Reduction step:Given a derivation D for $\vdash L: (S, \mathbf{r})$ and a reduction step $merge(tr_{cum}(D)) \rightarrow^{lf}_{S'} P$ we find $L \rightarrow_{S} L'$ and a derivationD' for $\vdash L': (S, \mathbf{r})$ with $merge(tr_{cum}(D')) \simeq P$

Base case:

If $merge(tr_{cum}(D))$ is a tree then it is equivalent to L.

Completeness

For every tree generated by Sch there is an equivalent tree generated by Sch'.

```
Backwards reduction step:

Given a derivation D' for \vdash L' : (S, \mathbf{r})

and a reduction step L \rightarrow_{\mathcal{S}} L'

we find a reduction

merge(tr_{cum}(D)) \rightarrow_{\mathcal{S}'} P \simeq merge(tr_{cum}(D'))

for some derivation D for \vdash L : (S, \mathbf{r})
```

Base case: If K is a S-narrow tree then there is D for $\vdash K : (S, \mathbf{r})$ such that $merge(tr_{cum}(D)) \simeq K.$

