
The Diagonal Problem for Higher-Order
Recursion Schemes is Decidable

Igor Walukiewicz
CNRS, Bordeaux

§

The diagonal problem:

a*b*c* aab*c* + a*b*cc

A langue generated by a scheme

The diagonal problem:

Why diagonal problem for schemes?

The diagonal problem:

• It has some applications.
• It is the first non-regular property that is shown decidable.

Computing downward closure of a language
A reduction to the diagonal problem [Zetzsche]:
If a language class is a full trio and has decidable diagonal problem then

it has computable downward closures.

Downward closure is computable for:

• Context-free languages [Courcelle]

• Petri Nets [Habermehl, Meyer, Wimmel]

• Order 2 pushdown automata [Zetzsche]

• Higher-order pushdown automata [Hague, Kochems, Ong]

Thm [Muscholl, La Torre, W.]:

If Class(C) has decidable reachability problem, and

Class(D) has effective downwards closure then

the reachability problem for (Class(C),Class(D))-systems is decidable.

Example: parametrised systems [Hague]

• Every process can read and write
to the register

• No locking

• The number of C-processes is not

determined

D

C C

Register

The diagonal problem for higher-order recursive schemes is decidable.

Theorem:

The diagonal problem:

Fact:

A finite automaton :

A pushdown automaton :

A 2-pushdown automaton :

A 2-stack:

Eliminating 2-rules

A 2-pushdown automaton with collapse :

[Clemente, Parys, Salvati, W. ’15]

A 2-pushdown automaton with collapse :

The main idea:
guess what exit will be used and record this guess in the tree.

Rule

is translated to

Back to schemes

A langue generated by a scheme

We will count letters in trees not in words

Lowering the order of a scheme

Operation on types:

Translation of a

scheme:

Generated trees:

Lowering the order of a scheme

Operation on types:

Translation of a

scheme:

Generated trees:

1. Narrowing a scheme:

Constructing a narrow scheme which has the diagonal property iff

the original scheme does.

2. Lowering the order of a narrow scheme

Constructing a scheme of a lower order that generates tress
equivalent to those generated by the narrow scheme.

The diagonal problem for higher-order recursive schemes is decidable.

Theorem:

Narrowing a scheme

Producing a run tree:

Narrowing a HORS:

Narrowing a scheme

Lowering the order of a scheme

We omit arguments of type o:

Example 1

Generated trees:

Translation:

Example 2

Translation:

Example 2

Translation:

Lowering the order of a scheme

We omit arguments of type o:

Typing restricts what trees can be derived

A type system

A type system

Translation on types

Remark:

is

Example b(gx):

We have:

Example 2

Translation:

Translation of rules of a scheme

Take where

For every pair of types

and a derivation D

we add a rule

Reduction step:

Given a derivation

Soundness
For every tree generated by Sch’ there is

an equivalent tree generated by Sch.

and a reduction step

we find

and a derivation

with

Given a derivationBase case:

Backwards reduction step:

Given a derivation

Completeness
For every tree generated by Sch there is

an equivalent tree generated by Sch’.

and a reduction step
we find a reduction

for some derivation

Given a derivationBase case:

