The Diagonal Problem for Higher-Order
Recursion Schemes is Decidable

lgor Walukiewicz
CNRS, Bordeaux

I dak

-

(2 g

The diagonal problem:

Given a language L C X»*, decide if for every n € N there is a
word in L where every letter from > appears at least n times.

a:bhic” aab*c* + a*b*cc

The diagonal problem:

Given a language L C X»*, decide if for every n € N there is a
word in L where every letter from > appears at least n times.

A langue generated by a scheme

S— Fbe Fgr—gx Fgr—a(F(Bg)(cx)) Bgx —b(gx)

generates a"b" 1 e.

Applications k

Pushdown automata |

2-pushdown automata

2-pushdown + collapse |

Schéfmesﬁ{

Downward
closure

Parametrised
systems

Applications }K

Pushdown automata |

2-pushdown automata

2-pushdown + collapse |

Schéfmes%{

Why diagonal problem for schemes?

* It has some applications.
* [t is the first non-regular property that is shown decidable.

The diagonal problem:

Given a language L C X*, decide if for every n € N there is a
word in L where every letter from X appears at least n times.

Computing downward closure of a language

A reduction to the diagonal problem [Zetzsche]:

If a language class is a full trio and has decidable diagonal problem then
It has computable downward closures.

Downward closure is computable for:

- Context-free languages [Courcell€e]
* Petri Nets [Habermehl, Meyer, Wimmel]
 Order 2 pushdown automata [Zetzsche]

 Higher-order pushdown automata [Hague, Kochems, Ong]

Example: parametrised systems [Hague]

- Every process can read and write
to the register

- No locking
- The number of C-processes is not

determined

Thm [Muscholl, La Torre, W.]:

If Class(C) has decidable reachability problem, and
Class(D) has effective downwards closure then
the reachability problem for (Class(C),Class(D))-systems is decidable.

Theorem:

The diagonal problem for higher-order recursive schemes is decidable.

The diagonal problem:

Given a language L C X»*, decide if for every n € N there is a
word in L where every letter from X appears at least n times.

Downward
closure

lications
App T Parametrised

systems

Pushdown automata | _eliminating push and pop

2-pushdown automata

2-pushdown + collapse |

Schefmes%{

A pushdown automaton A:
(p,7) = (' push(v)) (p,7) = (', pop) (p,7) — (p', nop) .

A finite automaton A!:

(p,v,7) —(p',7,7") if (p,v) = (', push(y’)) and Comp (1,7,

C

)

(p,v,r) —(r',v,r) if (p,y) = (p, push(v’)) and Comp.(p',~',7")
(p,v,7) =T if (p,~y) — (r, pop)
)

C C

(p,,r) —(',7,7) if (p,vy) — (p’, nop

Fact:

If A has a run from (p,ys) to (r,s) with m occurrences of b, then
A* has a run from (p,v,7) to T with > log(m) occurrences of b.

Downward
closure

Parametrised
systems

Applications }K

Pushdown automata | _eliminating push and pop

eliminating 2nd-order

2-pushdown automata f, Jcnd’ o

2-pushdown + collapse |

Schémes%

A 2-pushdown automaton

p;

p,e(z1,22) —p, o(b(x

p,e(x1,x1) —p,e(x1,
p;e(a(z1), x2) — ,°(w
o(z1,e (yl,ya)) P e(yi,y

p,e(a(z1), z2) —p', e(a(x
A 2-stack:

1),

o(r1,12))

1),

2)
2)

2)

2)

pushy (b)
push,
popy
Pop2

input

(961,$2
(3717 L1
p,® ((1), 2

T2
p,e® (331, (yl ?JQ) 197‘
p,e(a(z1),z2) —p', 8(a

K
i
Y
s

)
)
)
)

gl
[]
AAAAA
8
—
8
\V)
N——"

Eliminating 2-rules

p,‘(aﬁl,lEg) ép/,'n(CULQ)
if Comp_(q,e(x1,x2))
pa.(ajlax2) é(b.(ajl’x?)
if Comp.(p',e(x1,q))
p; .(x]JQ) é—r
if g =p/

push (b)
pushs
Pop,
Dbopsy

input

choose push,

jump over

Popso

If A has a run (p,t) — (g, s) with n occurrences of b then A* has
a run (p,tlq/s]) — T with > log(m) occurrences of b.

Downward
closure

Parametrised
systems

Applications }K

Pushdown automata | _eliminating push and pop

eliminating 2nd-order
push and pop

2-pushdown automata }\

2-pushdown + collapse | restricting the returns

Schémes%

A 2-pushdown automaton with collapse :

p,o(x1,x0) —p ,e(b(x1,e(x1,22)),22,) pushy(b)

p,o(x1,20) —p',0(x1,0(x1,22))) push.,
p;e(a(x1,y), x2) —p', o(z1,2) pop;
p,®(z1,22) =, T2 pop,
p,e(a(xi,y),z2,) —p,y collapse
p,e(a(z1,y), z2) —p', 8(a(z1,y), 72) Input

[Clemente, Parys, Salvati, W. ’15]

7 A
A 2-pushdown automaton with collapse :
(2131,5132) (($1,C($1,$2)),$2,) pUShl(b)
(mla 2) (5617 (':617372))) pUShZ
p,e(a (331 y),T2) —p, o(z1, T2) popq
,o(r1,y) —=p',y pops
p,e(a (xlay)ax27) =,y collapse
. pa.(a(xlay)ax2) L>pla.(a’(xlay)axé) Input y

Actually some computations will and some will not.

The main idea:
guess what exit will be used and record this guess in the tree.

Convert A to A* working on tree stacks with a highlighted path.

Rule
p,o(z1,z2) —p', 8(b(z1), z2) push(b)

IS translated to
p, o (x1,22) —p', o7 (V" (z1, o' (x1,22)),22,) push, (D)

ift=2then j=2o0r (j=1ANk=1=2).
ifi=1then (j=1Ak=2Al=1)or (j =1Nk=2).

Downward
closure

Parametrised
systems

Applications }K

Pushdown automata | _eliminating push and pop

eliminating 2nd-order
push and pop

2-pushdown automata }\

2-pushdown + collapse | restricting the returns

Schémes%

Back to schemes

A langue generated by a scheme

S—Fbe Fgxr—gx Fgx—a(F(Bg)(cx)) Bgx —b(gx)

generates a”b" T 1c"e.

Downward
closure

Applications

Parametrised
systems

Pushdown automata]-\ eliminating push and pop

eliminating 2nd-order
2-pushdown automata }\ “ush and pop

2-pushdown + collapse | restricting the returns

Counting occurrences of symbols in trees

Schémesu

We will count letters In trees not In words

We extend X5 to Y5/ by adding a’, T : 0, A : 2.

Two trees K and K’ arelequivalent if they have the same number
of occurrences of each symbol counting a and a’ as the same
symbol, and ignoring T, A.

b e A b’

Lowering the order of a scheme

: T4 if 8 = o,
e " pes: oo and ol {(ﬂ 1) = (v!) otherwise.
S —Fe
Translation of a
scheme: Fo—z
Fz —F (bx)

Generated trees: P

Lowering the order of a scheme

Operation on types:

Translation of a
scheme:

Generated trees:

ol=o0, and (B —7v)l= {

S —Fe

Fzx -z

Fz —F (bx)

b"e

7+ if § = o,
(B)) = (v!) otherwise.

Downward
closure

Applications

Parametrised
systems

Pushdown automata]\ eliminating push and pop

eliminating 2nd-order
2-pushdown automata]\ “ush and pop

2-pushdown + collapse | restricting the retums

Counting occurrences of symbols in trees

Narrowing a scheme

Schemeso

Lowering the order

Theorem:

' The diagonal problem for higher-order recursive schemes is decidable.
q V.

1. Narrowing a scheme:

Constructing a narrow scheme which has the diagonal property iff
the original scheme does.

2. Lowering the order of a narrow scheme

Constructing a scheme of a lower order that generates tress
equivalent to those generated by the narrow scheme.

Downward
closure

Applications

Parametrised
systems

Pushdown automata }\ eliminating push and pop

eliminating 2nd-order
2-pushdown automata]\ “ush and pop

2-pushdown + collapse]\ restricting the returns

Counting occurrences of symbols in trees

Use reflection property

Narrowing a scheme - to choose most productive paths

Schemesc

Lowering the order

Narrowing a scheme

A tree K is Ygp-narrow if all leaves of K are labelled with >y and
every constant from >.j appears exactly once.

A HORS is Ygp-narrow if it generates only Xg-narrow trees.

be A b’

Narrowing a scheme

Producing a run tree:

We can create a HORS S’ that is of the same order as S, and
generates run trees of some finite automaton on B on trees gen-
erated by S.

We can restrict to parts of the run determined by some Q' C Q).

Narrowing a HORS:

For a HORS S and a set of symbols X2, one can construct a narrow
HORS &’ of the same order as S, and sets of symbols ¥1,..., 2
such that Diags,(S) holds iff there is ¢ € {1,...,k} for which
Diags, (S') holds.

Downward
closure

Applications

Parametrised
systems

Pushdown automata }\ eliminating push and pop

eliminating 2nd-order

2-pushdown automata }\ push and pop

2-pushdown + collapse }\ restricting the returns

Counting occurrences of symbols in trees

Use reflection property

Narrowing a scheme - to choose most productive paths

0 Eliminating applications of
Schemeso order 0 terms

Lowering the order

Lowering the order of a scheme

4 if B = o,

We omit arguments of type 0: ol=o0, and (8—7)l= {(3 1) = (v]) otherwise.

()\331, 9. M(fCl, ZIZ‘Q))O_W_MK N

Oz, M(T,2:))7*°N K

Example 1

Translation:

Generated trees:

S —Fe

Fzr -z

Fax —F (bx)

b"e

Example 2

S —Fbe

Fgr —gx

Translation: Fgx —a(F(Bg)(cz))

Bgxz —b(gx)

a™b"tlere

Example 2

S —+Fbe S — N
F'y €
Fgr —gx F'g' =g
P It A
Translation: Fgz —a(F(Bg)(cz)) Fg— =0~
F'(B'g) ™ ¢
Bgz —b(gz) B'g"—» _A_
4 g
A
e N
//A\ / t?: 4 &
nin+l n a 5 ¢ d \/\
aihinicle - n b P
///r\z\ , b /A\

Lowering the order of a scheme

74 if 8 = o,

We omit arguments of type o: ol=0, and (8 —=>7)l= {(B1) = (v]) otherwise.

()\331, 9. M(Qfl, 33‘2))0_”—_)0[(N

A

/
Oz, M(T,2:))7*°N K

We need to know that x; is used in M, and that it is used exactly
once.

Downward
closure

Applications

Parametrised
systems

Pushdown automata]-\ eliminating push and pop

eliminating 2nd-order
2-pushdown automata]\ Sush and pop

2-pushdown + collapse | restricting the retumns

Counting occurrences of symbols in trees

. Use reflection property
Narrowing a scheme .
- to choose most productive paths

Eliminating applications of
order O terms

Schemesc

A type system tracking
such applications

Lowering the order

A type system

T = {r}

£7° =

P (o) x 7, e S PO N

T8 = 1(S1,71)s s (Sky o)} = T
(Si,TZ') e LT §;N Sj =

TeTh

W,

ﬁyping restricts what trees can be derived

Cz: Az A I'-A:(0,71) I'+a’: ({a},r)

I'-L:

r>1
L'Fa® 20 {(S,r)} == {(Sr)} =71

(S0, {(S1,71)s.. ., (Sks7k)} = 7) I'-M: (S;,7;) for each i € {1,

W

o k)

T'HLM:(SoU---USk,7)

where Sy N (S U---US,) =0

Downward
closure

Applications

Parametrised
systems

Pushdown automata]-\ eliminating push and pop

eliminating 2nd-order
2-pushdown automata]\ Sush and pop

2-pushdown + collapse | restricting the retumns

Counting occurrences of symbols in trees

. Use reflection property
Narrowing a scheme .
- to choose most productive paths

Eliminating applications of
order O terms

Schemesc

A type system tracking
such applications

Translation of types

Lowering the order

A type system
e —) T8 = (81,71, S i
(Si,Ti) < LTa, S) Sj —1(

LT =P(30)xT*, if a = o then the first component not empty.

Translation on types
e ir(r) =o,
o if = ({(51,7'1), ey (Sk,'rk)} — 7") € 728 then

tr(r e — tr(T tr(7') if a#o,
tT(T):{trET}))—)) = () if a = o.

Remark: if 7 € T, then ord(tr(r)) = max(0, ord(cx) — 1).

Downward
closure

Applications

Parametrised
systems

Pushdown automata }\ eliminating push and pop

eliminating 2nd-order
2-pushdown automata]\ “ush and pop

2-pushdown + collapse | restricting the retumns

Counting occurrences of symbols in trees

Use reflection property

Narrowing a scheme . to choose most productive paths

Eliminating applications of
order O terms

Schemesc

A type system tracking
such applications

Translation of types

Lowering the order | Transiation of derivations

Lz Az A I'-A:(0,7) ['a®: ({a},r)

r>1

I'Fa” 2 (0,{(S1,r)} == {(Sr,r)} = 1)

' L:(So,{(S1,71)y..y(Sks7k)} = 7) I'M:(S;,7) for each i € {1,...,k}
'FLM:(SoU---USk,71)

where So N (S1U---US,) =0

We define a term tr(D), where D is a derivation for I' - K : A,

e If K =a then tr(D) = ad’.
o If K =2z then tr(D) =T if @ = 0, and tr(D) = z[) otherwise.
o If K = A then tr(D) = A]

T'

o If K =L M then tr(D) = tr(Dyp) if M : o;
otherwise tr(D) = tr(Dy) tr(Dy) ... tr(Dg).

Downward
closure

Applications

Parametrised
systems

Pushdown automata }\ eliminating push and pop

eliminating 2nd-order
2-pushdown automata]\ “ush and pop

Diagonal
problem

2-pushdown + collapse }\ restricting the returns

Counting occurrences of symbols in trees

Use reflection property

Narrowing a scheme . to choose most productive paths

- Eliminating applications of
Schemesco order 0 terms

A type system tracking
such applications

Translation of types

Lowering the order | Transiation of derivations

Accumulating all sub-derivations
of type o

Cz: Az I'-A:(0,7) ['+a’: ({a},r)

r>1

L'a® % (0,{(S,r)} == {(S,,r)} =)

I'HL:(So, {(S1,71)y. s (Sky7k)} = 7) ' M: (S;,7;) for each i € {1,...,k}

THLM:(SoU--USk,T)

where SoN (S1U---US,) =0

o If K =L M then tr(D) = tr(Dy) if M : o;
otherwise tr(D) = tr(Dy) tr(D;) ... tr(Dg).

¢ (D) . tT(D), trcum(Dl); oo s I cum (Dm) if o = o,
T cum o trcum(Dl); coay t‘l"cum(Dm) otherwise.
merge(Ny;...; Ni) is Ny A
N T

Example b(gx): F'=x:(e,p),g:(0,{(e,p)} — p)

'tg:(0,{(er)} —>r) 'Fz:(er)
'Fgx:(er)
I'-b(gz): (e,r)

'Hb:(0,{(e,r)} - r)

We have:
tT(D) =V trcum(D) — b,; gr(@,{(e,r)}—w); T
A
/. \
b A
merge(tr cum (D)) = /N
9l@{(ex)}or) A
/

T T

Example 2

Translation:

abntlere

S —Fe

Fgr —gx

Fgx —a(F(Bg)(cz))

Bgx —b(gx)

Downward
closure

Applications

Parametrised
systems

Pushdown automata }\ eliminating push and pop

eliminating 2nd-order
push and pop

2-pushdown automata]\

Diagonal
problem

2-pushdown + collapse }\ restricting the returns

Counting occurrences of symbols in trees

Use reflection property

Narrowing a scheme . to choose most productive paths

- Eliminating applications of
Schemesco order 0 terms

A type system tracking
such applications

Translation of types

Lowering the order | Transiation of derivations

Accumulating all sub-derivations
of type o

Translation of rules

Translation of rules of a scheme

Take Azy — K where T:0, UY:Q

For every pair of types Ap = (S:m?“)a)‘y — (SyaT)

and a derivation D T : Az, ¥ :)\y =K (Sm U Syﬂ“)

weaddarule A yly — merge(treum(D))

Downward
closure

Applications

Parametrised
systems

Pushdown automata }\ eliminating push and pop

eliminating 2nd-order

2-pushdown automata]\ push and pop

Diagonal

problem 2-pushdown + collapse }\ restricting the returns

Counting occurrences of symbols in trees

Use reflection property

Narrowing a scheme . to choose most productive paths

0 Eliminating applications of
Schemeso order 0 terms

A type system tracking
such applications

Translation of types

Lowering the order | Transiation of derivations

Accumulating all sub-derivations
of type o

Translation of rules

Soundness and completeness

Soundness

For every tree generated by Sch’ there is
an equivalent tree generated by Sch.

Reduction step:
Given a derivation D for F L:(S,r)

and a reduction step merge(tr cym (D)) —>g, P

we find L —g L'
and a derivaton D" for FL":(S,r)
~ P

with merge(tr cum (D))

(
Base case:

If merge(trcum (D)) is a tree then it is equivalent to L.

Completeness

For every tree generated by Sch there is
an equivalent tree generated by Sch’.

Backwards reduction step:
Given a derivation D’ for FL':(S,r)

and a reduction step L —s L'
we find a reduction
merge(tr cum (D)) —s P =~ merge(tr cym (D’))

for some derivation D for + L:(S,r)

'Base case:
If K is a S-narrow tree then there is D for - K : (S, r) such that
merge(trcum (D)) ~ K.

Downward
closure

Applications

Parametrised
systems

Pushdown automata]\ eliminating push and pop

eliminating 2nd-order

2-pushdown automata]\ push and pop

2-pushdown + collapse | restricting the returns

Counting occurrences of symbols in trees

Use reflection property

Narrowing a scheme . to choose most productive paths

Eliminating applications of
order O terms

A type system tracking
such applications

Translation of types

Lowering the order | Transiation of derivations

Accumulating all sub-derivations
of type o

Translation of rules

Soundness and completeness

