
Negations
in Refinement Type Systems

T. Tsukada (U. Tokyo)

14th March 2016

Shonan, JAPAN



This Talk

About refinement intersection type systems that refute 

judgements of other type systems.



Background

Refinement intersection type systems are the basis for

• model checkers for higher-order model checking 

(cf. [Kobayashi 09] [Broadbent&Kobayashi 11] [Ramsay+ 14]),

• software model-checker for higher-order 

programs (cf. MoCHi [Kobayashi+ 11]).

In those type systems,

• a derivation gives a witness of derivability,

• but nothing witnesses that a given derivation is 

not derivable.



Motivation

A witness of underivability would be useful for

• a compact representation of an error trace

• an efficient model-checker in collaboration with 

the affirmative system

• cf. [Ramsay+ 14] [Godefroid+ 10]

• development of a type system proving safety

• In some cases (e.g. [T&Kobayashi 14]), a type system 

proving failure is easier to be developed.



Contribution

Development of type systems refuting derivability in 

some type systems such as

• a basic type system for the 𝜆-calculus

• a type system for call-by-value reachability

Theoretical study of the development
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CbN 𝜆→-calculus

A simply typed calculus equipped with 𝛽𝜂-equivalence.

Kinds (i.e. simple types): 

Terms:
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Affirmative system for CbN 𝜆→

The type system for higher-order model checking 

(without the rule for recursion).

Types are parameterised by kinds and ground type sets:

We use the following syntax for types:



Sets of Types via Refinement Relation

Let A be a kind.

The set Ty𝑄(𝐴) of types that refines A is given by

where is the refinement relation:



Subtyping

The subtyping relation is defined by induction on kinds.



Type Environments

A (finite) map from variables to sets of types

(or intersection types).



Typing rules



Fact: Invariance under 𝛽𝜂-equivalence

Suppose that 𝑀 =𝛽𝜂 𝑁.  Then

• This fact will not be used in the sequel.



Convention: Subtyping closure

In what follows, sets of types are assumed to be closed 

under the subtyping relation.

Now posets of types are simply defined by:

where

(cf. 𝑋 ⊆ 𝑌 implies ⋀𝑋 ≽ ⋀𝑌)



Convention: Subtyping closure

In what follows, sets of types are assumed to be closed 

under the subtyping relation.

The rule for variables becomes simpler.
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Negative Type System

Negative types are those constructed from the negative 

ground types :

Typing rules are the same as the affirmative system.



Negation of a type

We define the two anti-monotone bijections on types

as follows:



Negation



Natural



Natural



Natural

… …
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Main Theorem

Theorem

• if and only if                        ,

where 

• Let                                      .  Then

Proof) By mutual induction on the structure of the term.
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𝜆→ + Recursion

Term:

Equational theory:



Recursion Rule in Affirmative System

The rule for recursion is given by:

This is a co-inductive rule: a derivation can be infinite.



Recursion Rule in Negative System

The rule for recursion is given by:

This is a inductive rule: a derivation must be finite.



Main Theorem

Lemma

Theorem

• if and only if                        .

• Let                                      .  Then
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Category ScottL𝑢

Definition The category ScottL𝒖 is given by:

Object Poset (𝐴,≤𝐴).

Morphism An upward-closed relation

Composition Let .  Then



Interpretation of CbN 𝜆→in ScottL𝑢

Fact ScottL𝑢 is a cartesian closed category.

Interpretation of kinds is given by:

Hence                             .

Fact (see e.g. [Terui 2012])



Negation Functor on ScottL𝑢

The functor 𝜑: ScottL𝑢 → ScottL𝑢 is defined by:

Lemma 𝜑 is an isomorphism on ScottL𝑢.

If R ∈ 𝑢 𝐴 𝑜𝑝 × 𝐵 and 𝐴 = ∅, then

which is essentially the complement of 𝑅.
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Automata complementation

Corresponds to negation of a 2nd-order judgement.



Boolean Closedness of Types

Let 𝐴 be a kind and 𝐵𝐴 be the set of all Böhm trees of 

type 𝐴.  A language is a subset of 𝐵𝐴.

Definition A language 𝐿 ⊆ 𝐵𝐴 is type-definable if 

there exists a type 𝜏 such that

in the type system for higher-order model checking 

[Kobayashi&Ong 09] [T&Ong 14].

Corollary The class of type-definable languages are 

closed under Boolean operations on sets.



Further Applications

The technique presented in this talk is applicable to:

• the type system for the full higher-order model-

checking [Kobayashi&Ong 09]

• a type system witnessing call-by-value 

reachability [T&Kobayashi 14]

• a dependent intersection type system in 

[Kobayashi+ 11], via the translation of dependent 

types to intersection and union types



Consistency and Inconsistency

The negation of a "small" type can be very large.  So 

the negation may not be efficiently computable.

The notion of consistency and inconsistency may be 

useful in the practical use:

Definition Let                        and                       .  They 

are consistent if                and inconsistent otherwise.

Proposition If 𝜏 and  𝜎 are inconsistent, then



Inductive Definition of Consistency

Inductive definition of inconsistency is now trivial.



Related Work

"Krivine machines and higher-order schemes" 
[Salvati&Walkiewicz 12]

• The notion of consistency and inconsistency can 

be found in their work (called complementarity

for the former and the latter has no name).

• This talk is partially inspired by their work.



Conclusion

Negation is a definable operation in the refinement 

intersection type system for the call-by-name 𝜆→.

This observation leads to the construction of negative 

type systems for other refinement type systems, e.g.,

• call-by-name 𝜆→ + recursion

• the type system for HOMC

• a type system for a call-by-value language

Application to verification needs some work.


