Negations
In Refinement Type Systems

T. Tsukada (U. Tokyo)

14th March 2016
Shonan, JAPAN

This Talk

About refinement intersection type systems that refute
judgements of other type systems.

M T
— |F M :—T

Background

Refinement intersection type systems are the basis for

* model checkers for higher-order model checking
(Cf. [Kobayashi 09] [Broadbent&Kobayashi 11] [Ramsay+ 14]),

« software model-checker for higher-order
programs (cf. MoCHi [Kobayashi+ 11]).
In those type systemes,

 a derivation gives a witness of derivability,
* but nothing witnesses that a given derivation is
not derivable.

Motivation

A witness of underivability would be useful for

* a compact representation of an error trace

e an efficient model-checker in collaboration with
the affirmative system
o cf [Ramsay+ 14] [Godefroid+ 10]

» development of a type system proving safety

* |In some cases (e.g. [T&Kobayashi 14]), a type system
proving failure is easier to be developed.

Contribution

Development of type systems refuting derivability in
some type systems such as

* a basic type system for the A-calculus
» atype system for call-by-value reachability

Theoretical study of the development

Outline

* Negations in type systems for

* the call-by-name A7 -calculus
« Target language
« Affirmative System
* Negative System
 the call-by-name A™-calculus + recursion

« Semantic analysis

« Discussions

CbN A7 -calculus

A simply typed calculus equipped with fn-equivalence.
Kinds (i.e. simple types):
A B:=0|A— A

Terms:

M,N =z | x* M | MM

CbN A7 -calculus

A simply typed calculus equipped with fn-equivalence.

Typing rules:
(x 2 A) € A
AFx A

Ax:A-M:: B
A+ AXzA M A— B

A+FM:A— B AFN: A
A+FMN: B

CbN A7 -calculus

A simply typed calculus equipped with fn-equivalence.

Equational theory:
(A\z.M) N = M[N/z]
Ae.Mx =M (if x ¢ fv(M))

Outline

* Negations in type systems for

* the call-by-name A7 -calculus
« Target language
« Affirmative System
* Negative System
 the call-by-name A™-calculus + recursion

« Semantic analysis

« Discussions

Affirmative system for CoN A~

The type system for higher-order model checking
(without the rule for recursion).

Types are parameterised by kinds and ground type sets:

TLYQ(O) =@
Tyo(A — B) :="P(Tyg(A)) x Tyo(B)

We use the following syntax for types:

T,0 :i=(/\X — T
X, Y € P(Tyg(A))

Sets of Types via Refinement Relation

Let A be a kind.
The set Ty, (A) of types that refines A is given by

TyQ(A) ={7|7:A}
where is the refinement relation:

qg < Q) Voe Xo: A T B
q:: o0 (NX >7):A— B

Subtyping

The subtyping relation is defined by induction on kinds.

q 2o q

X =Y T B0
(ANX = 7) 248 (ANY = 0)

VoeYdre Xt <40
X Y

Type Environments

A (finite) map from variables to sets of types
(or intersection types).

Typing rules

(x: X)el' r1eX TX0
I'Fx:0o

''e: XEM:T
XM ANX —7

F'-M:ANX —>71 '-N:AX
I'FMN:T

Vre X.T'-M: T
F'-M:AX

Fact: Invariance under n-equivalence

Suppose that M =5, N. Then

I'-M:7<1T'FN:T

* This fact will not be used in the sequel.

Convention: Subtyping closure

In what follows, sets of types are assumed to be closed
under the subtyping relation.

TrroeX=17eX

Now posets of types are simply defined by:

TYQ(O) = (Qa :)
TyQ(A — B) = u(TyQ(A))Op X TyQ(B)

where u(P, <) :

({XCPlz>yeX=>z€cX}, D)
(cf. X € Y implies AX = AY)

Convention: Subtyping closure

In what follows, sets of types are assumed to be closed
under the subtyping relation.

TrroeX=17eX

The rule for variables becomes simpler.

(x: X)ell 71e€X
I'Fx:T

Outline

* Negations in type systems for

* the call-by-name A7 -calculus
« Target language
« Affirmative System
* Negative System
 the call-by-name A™-calculus + recursion

« Semantic analysis

« Discussions

Negative Type System

Negative types are those constructed from the negative
ground types @ :={glqeQ}:

Tyo (A) = Tya(A)

7T q\/\)_{
X,Y € u(Tyg(A))

Typing rules are the same as the affirmative system.

Negation of a type

We define the two anti-monotone bijections on types

as follows:
oG ‘= (

458\ X = 1) = \aX) = (=57)

AX ={aT|T7¢ X}

Negation —4': TYQ(A) — TYQ(A)

Natural 84 :u(Tyg(A)) — u(Tyg(A))
Ty (o) Tyg(0) = Tyg(o)

Natural 84 :u(Tyg(A)) — u(Tyg(A))
Ty (o) Tyg(0) = Tyg(o)

Natural

141 u(Tyg(A)) — u(Tyg(A))

Tyo(A) Tyg(A) = Tyz(A)

Negation of a type

We define the two anti-monotone bijections on types

as follows:
oG ‘= (

458\ X = 1) = \aX) = (=57)

AX ={aT|T7¢ X}

Negation of a type

Wi x:/\Xl—x:—nT & J;:/\XJ":B:T &S 7¢X
& TefX & x:/\(hX)l—a::ﬂ’r

M ﬂ(|/\X/:> 7')/ 1ff:v ; /\XTI— M:E —T
as fi
iff:c:/\(hX)I—Ma::ﬂT
a8\ X = 1) = \aX) = (=57)

Main Theorem

Theorem

« I'FM:7 ifandonlyif gI' = M : =7,
where fi(zy : X1, ..., 20 : Xp) =21 : (81X1), ..., 2, : (1X,)

« let X ={7|T'FM:7} Then
LM : \(5X)

Proof) By mutual induction on the structure of the term.

Main Theorem

Theorem

I'¥M:7 ifandonlyif gI' = M : =71,
where fi(zy : X1, ..., 20 : Xp) =21 : (81X1), ..., 2, : (1X,)

let X ={7|T'HM:7} Then
i M\ (5X)
PEM: AX iff g0-M: A\®EX)

under a certain condition

Pre

Outline

* Negations in type systems for

 the call-by-name A7 -calculus
* the call-by-name A7 -calculus + recursion

* Semantic analysis

 Discussions

A~ + Recursion

Term:

M,N =gz | Xx* M| MM|YM

Equational theory:
(Ax.M)N = M|N/x|
Ae.Mx =M (if x & tv(M))
YM=MY M)

Recursion Rule in Affirmative System

The rule for recursion is given by:

'E-M:NANX — 7 'Y M:AX
'Y M:r

This is a co-inductive rule: a derivation can be infinite.

Recursion Rule in Negative System

The rule for recursion is given by:

F'FM:ANX =71 'Y M:AX
'Y M:7

This is a inductive rule: a derivation must be finite.

Main Theorem

Lemma

KXY f:7 < IFAfY f:—7

Theorem

T¥M:r ifandonlyif bT IF M : —7.

let X ={7|T'FM:7} Then
L IE M : A\ (5X)

Outline

* Negations in type systems for

 the call-by-name A7 -calculus
 the call-by-name A™-calculus + recursion

« Semantic analysis

 Discussions

Category ScottL,

Definition The category ScottL,, is given by:

Object Poset (4, <,).
Morphism An upward-closed relation
R Cu(A)? x B
- R Cu(A)? x B
Composition Let Then
S Cu(B)?xC

Y € u(B).(Vb cY.(X,b) € Rand (Y,c) € S)
(X,¢c) € (SoR)

Interpretation of CbN A71n ScottL,,

Fact ScottL,, is a cartesian closed category.

Interpretation of kinds is given by:

[[O:Q -= (Qa :)
[A = Bl == u([A])” x [Ble

Hence [Alg = Tyg(A).

Fact (see e.g. [Terui 2012])
TFM:7 < (I,7)€[M]

Negation Functor on ScottL,

The functor ¢: ScottL,, — ScottL,, is defined by:
p(A) ;= AP
p(R) :={(A\X,b) e u(A)” x B | (X,b) ¢ R}

Lemma @ IS an iIsomorphism on ScottL,,.

If R € u(4)°? x B and A = @, then

o(R) ={(0,b) | (0,b) ¢ R}

which is essentially the complement of R.

Outline

* Negations in type systems for

 the call-by-name A7 -calculus
 the call-by-name A™-calculus + recursion

 a call-by-value language + nondeterminism

* Semantic analysis

 Discussions

Automata complementation

Corresponds to negation of a 2nd-order judgement.

Boolean Closedness of Types

Let A be a kind and B, be the set of all Bohm trees of
type A. A language is a subset of B,.

Definition A language L € B, is type-definable if
there exists a type t such that

L={Me&eBy| -M:7}

In the type system for higher-order model checking
[Kobayashi&Ong 09] [T&Ong 14].

Corollary The class of type-definable languages are
closed under Boolean operations on sets.

Further Applications

The technique presented in this talk is applicable to:

» the type system for the full higher-order model-
checking [Kobayashi&Ong 09]

« atype system witnessing call-by-value
reachability [T&Kobayashi 14]

» a dependent intersection type system In
[Kobayashi+ 11], via the translation of dependent
types to intersection and union types

Consistency and Inconsistency

The negation of a "small" type can be very large. So
the negation may not be efficiently computable.

The notion of consistency and inconsistency may be
useful in the practical use:

Definition Let 7 € Tygp(A) and 0 € Tyg(A). They
are consistent if 77 = ¢ and inconsistent otherwise.

Proposition If T and & are inconsistent, then

FM:0 — FM:T

Inductive Definition of Consistency

qF#p
q <P

Vre XVaeY. 746
/\X <lia /\Y

1 <Wa01 = To<B 09
(7‘1 — 7'2) <lAB (5’1 — 5‘2)

Inductive definition of inconsistency is now trivial.

Related Work

"Krivine machines and higher-order schemes"
[Salvati&Walkiewicz 12]

* The notion of consistency and inconsistency can
be found in their work (called complementarity
for the former and the latter has no name).

* This talk is partially inspired by their work.

Conclusion

Negation is a definable operation in the refinement
intersection type system for the call-by-name 1.

This observation leads to the construction of negative
type systems for other refinement type systems, e.qg.,

» call-by-name A~ + recursion
« the type system for HOMC
* atype system for a call-by-value language

Application to verification needs some work.

