Negations in Refinement Type Systems

T. Tsukada (U. Tokyo)

14th March 2016 Shonan, JAPAN

This Talk

About refinement intersection type systems that refute judgements of other type systems.

 $\nvdash M: \tau$

$\iff \Vdash M: \neg \tau$

Background

Refinement intersection type systems are the basis for

- model checkers for higher-order model checking (cf. [Kobayashi 09] [Broadbent&Kobayashi 11] [Ramsay+ 14]),
- software model-checker for higher-order programs (cf. MoCHi [Kobayashi+ 11]).

In those type systems,

- a derivation gives a witness of derivability,
- but nothing witnesses that a given derivation is not derivable.

Motivation

A witness of underivability would be useful for

- a compact representation of an error trace
- an efficient model-checker in collaboration with the affirmative system
 - Cf. [Ramsay+ 14] [Godefroid+ 10]
- development of a type system proving safety
 - In some cases (e.g. [T&Kobayashi 14]), a type system proving failure is easier to be developed.

Contribution

Development of type systems refuting derivability in some type systems such as

- a basic type system for the λ -calculus
- a type system for call-by-value reachability

Theoretical study of the development

Outline

- Negations in type systems for
 - the call-by-name λ^{\rightarrow} -calculus
 - Target language
 - Affirmative System
 - Negative System
 - the call-by-name λ^{\rightarrow} -calculus + recursion

- Semantic analysis
- Discussions

A simply typed calculus equipped with $\beta\eta$ -equivalence.

Kinds (i.e. simple types):

$$A,B ::= o \mid A \to A$$

Terms:

$$M, N ::= x \mid \lambda x^A . M \mid M M$$

A simply typed calculus equipped with $\beta\eta$ -equivalence.

Typing rules: $\frac{(x :: A) \in \Delta}{\Delta \vdash x :: A}$ $\Delta, x :: A \vdash M :: B$ $\Lambda \vdash \lambda x^A M :: A \to B$ $\Delta \vdash M :: A \to B \qquad \Delta \vdash N :: A$ $\Lambda \vdash M N :: B$

A simply typed calculus equipped with $\beta\eta$ -equivalence.

Equational theory: $(\lambda x.M) N = M[N/x]$ $\lambda x.M x = M$ (if $x \notin fv(M)$)

Outline

- Negations in type systems for
 - the call-by-name λ^{\rightarrow} -calculus
 - Target language
 - Affirmative System
 - Negative System
 - the call-by-name λ^{\rightarrow} -calculus + recursion

- Semantic analysis
- Discussions

Affirmative system for CbN λ^{\rightarrow}

The type system for higher-order model checking (without the rule for recursion).

Types are parameterised by kinds and ground type sets:

$$\operatorname{Ty}_Q(o) := Q$$
$$\operatorname{Ty}_Q(A \to B) := \mathcal{P}(\operatorname{Ty}_Q(A)) \times \operatorname{Ty}_Q(B)$$

We use the following syntax for types:

$$\tau, \sigma ::= q \mid \bigwedge X \to \tau$$
$$X, Y \in \mathcal{P}(\mathrm{Ty}_Q(A))$$

Sets of Types via Refinement Relation

Let A be a kind.

The set $\operatorname{Ty}_Q(A)$ of types that refines A is given by $\operatorname{Ty}_Q(A) = \{ \, \tau \mid \tau :: A \, \}$

where is the refinement relation:

$q \in Q$	$\forall \sigma \in X. \sigma :: A$	au :: B
q::o	$(\bigwedge X \to \tau) :: A$	$l \rightarrow B$

Subtyping

The subtyping relation is defined by induction on kinds.

$$q \preceq_o q$$

$$\frac{X \succeq_{!A} Y \quad \tau \preceq_B \sigma}{(\bigwedge X \to \tau) \preceq_{A \to B} (\bigwedge Y \to \sigma)}$$

$$\frac{\forall \sigma \in Y. \exists \tau \in X. \tau \preceq_A \sigma}{X \preceq_{!A} Y}$$

Type Environments

A (finite) map from variables to sets of types (or intersection types).

$\Gamma ::= x_1 : X_1, \dots, x_n : X_n \quad (n \ge 0)$

Fact: Invariance under $\beta\eta$ -equivalence

Suppose that $M =_{\beta\eta} N$. Then

$$\Gamma \vdash M : \tau \Leftrightarrow \Gamma \vdash N : \tau$$

• This fact will not be used in the sequel.

Convention: Subtyping closure

In what follows, sets of types are assumed to be closed under the subtyping relation.

$$\tau \succeq \sigma \in X \Rightarrow \tau \in X$$

Now posets of types are simply defined by:

$$\operatorname{Ty}_Q(o) := (Q, =)$$
$$\operatorname{Ty}_Q(A \to B) := u(\operatorname{Ty}_Q(A))^{op} \times \operatorname{Ty}_Q(B)$$

where $u(P, \leq) := (\{X \subseteq P \mid x \geq y \in X \Rightarrow x \in X\}, \supseteq)$ (cf. $X \subseteq Y$ implies $\land X \geq \land Y$)

Convention: Subtyping closure

In what follows, sets of types are assumed to be closed under the subtyping relation.

$$\tau \succeq \sigma \in X \Rightarrow \tau \in X$$

The rule for variables becomes simpler.

$$\frac{(x:X)\in\Gamma\quad \tau\in X}{\Gamma\vdash x:\tau}$$

Outline

- Negations in type systems for
 - the call-by-name λ^{\rightarrow} -calculus
 - Target language
 - Affirmative System
 - Negative System
 - the call-by-name λ^{\rightarrow} -calculus + recursion

- Semantic analysis
- Discussions

Negative Type System

Negative types are those constructed from the negative ground types $\overline{Q} := \{ \overline{q} \mid q \in Q \}$:

$$\overline{\mathrm{Ty}_Q(A)} := \mathrm{Ty}_{\overline{Q}}(A)$$

$$\bar{\tau}, \bar{\sigma} ::= \bar{q} \mid \bigwedge \bar{X} \to \bar{\tau}$$
$$\bar{X}, \bar{Y} \in u(\mathrm{Ty}_{\bar{Q}}(A))$$

Typing rules are the same as the affirmative system.

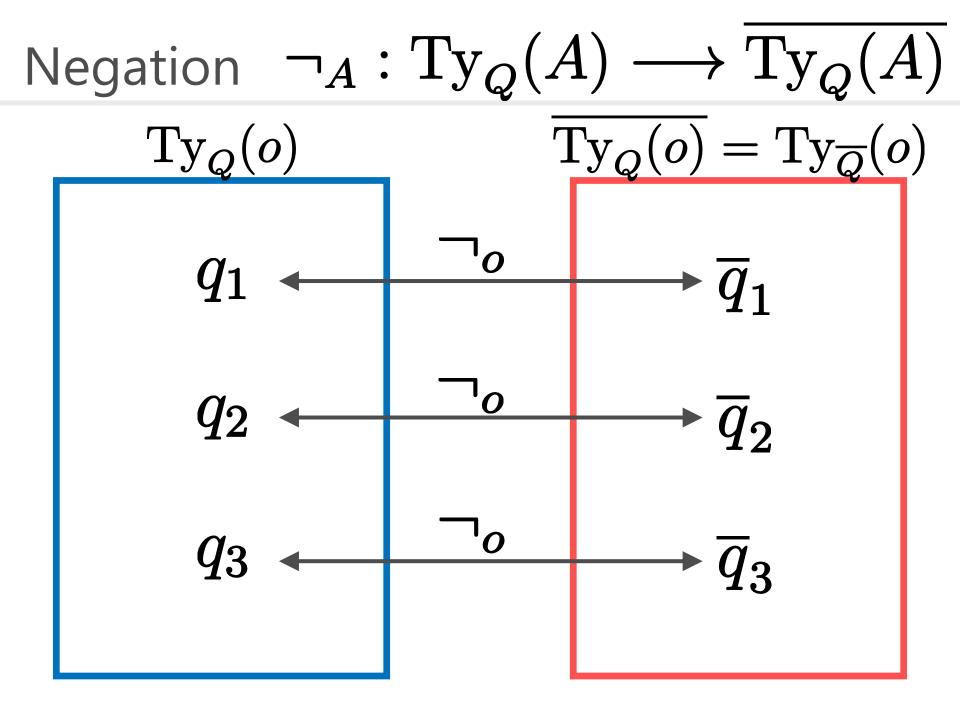
Negation of a type

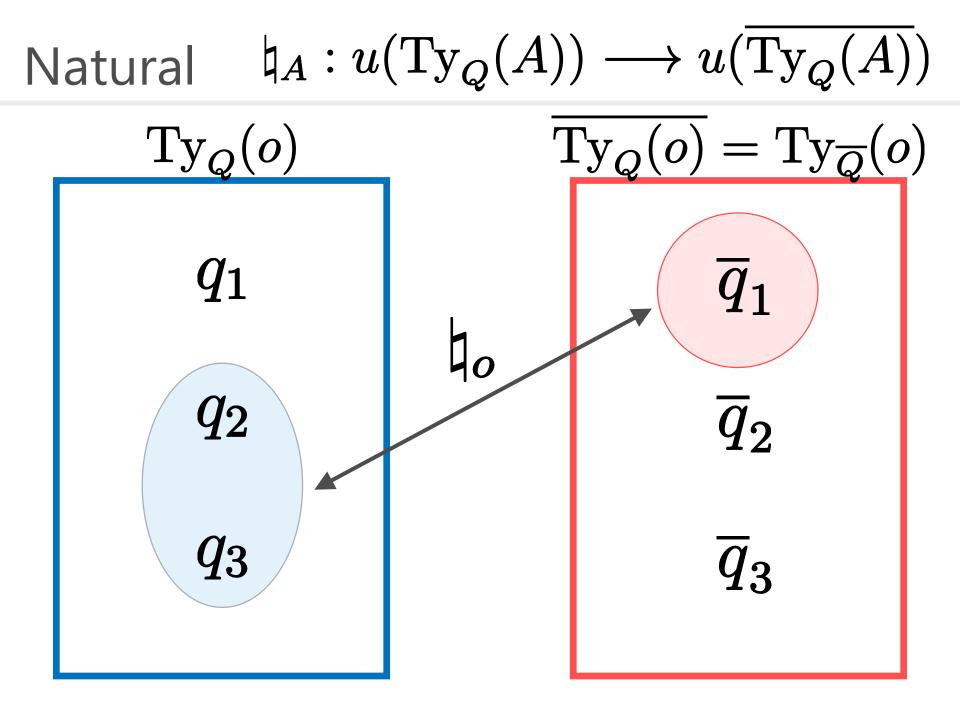
We define the two anti-monotone bijections on types

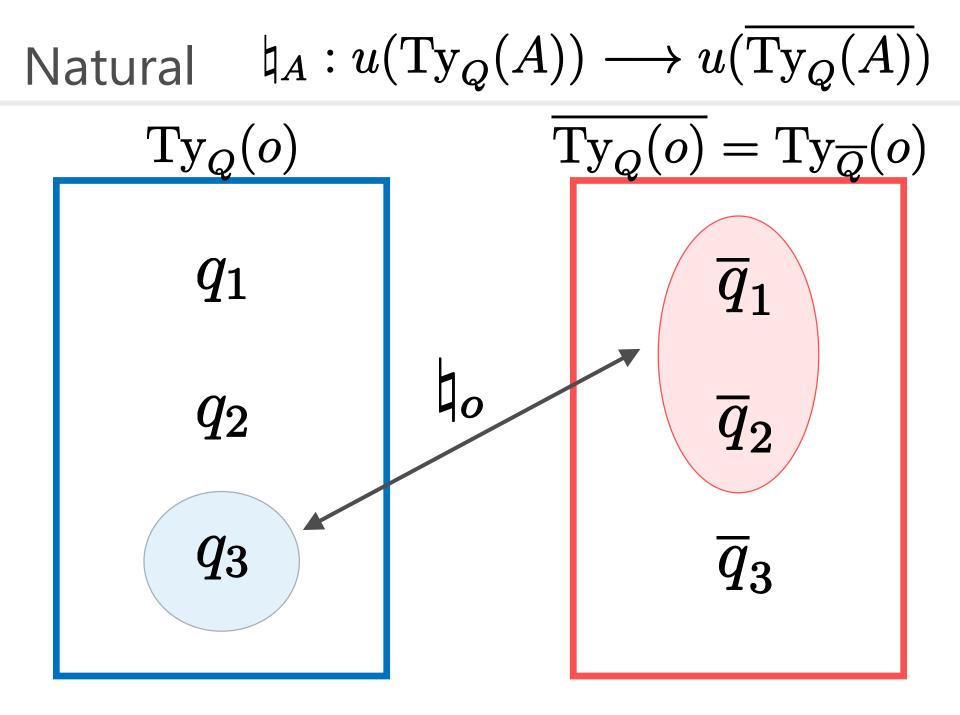
$$\neg_A : \operatorname{Ty}_Q(A) \longrightarrow \overline{\operatorname{Ty}_Q(A)}$$
$$\natural_A : u(\operatorname{Ty}_Q(A)) \longrightarrow u(\overline{\operatorname{Ty}_Q(A)})$$

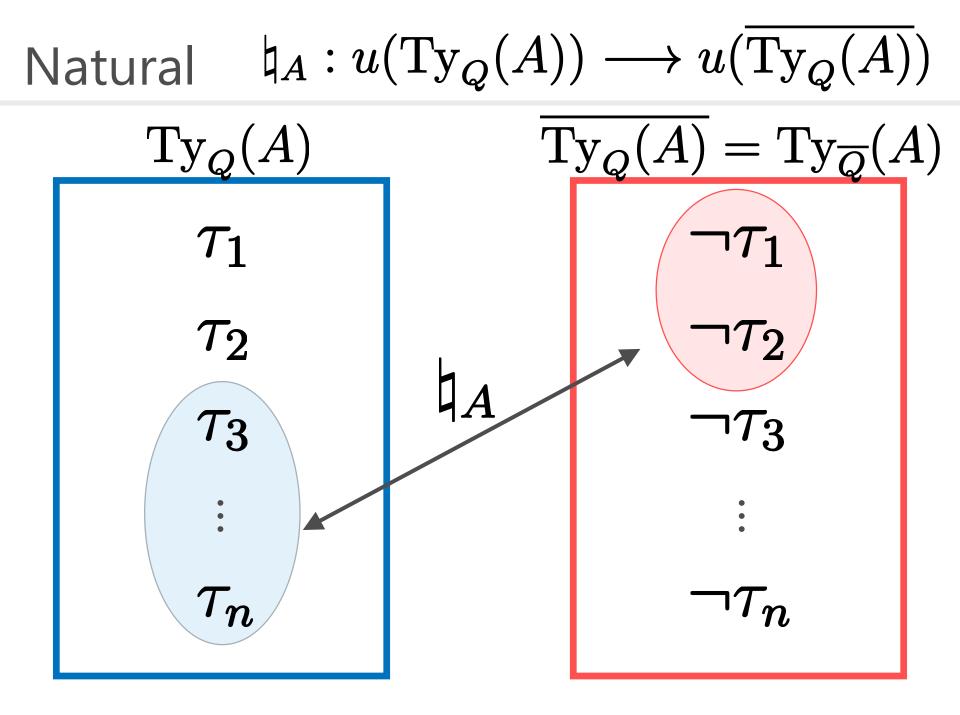
as follows:

$$\neg_o q := \overline{q}$$
$$\neg_{A \to B} (\bigwedge X \to \tau) := \bigwedge (\natural_A X) \to (\neg_B \tau)$$
$$\natural_A X := \{ \neg_A \tau \mid \tau \notin X \}$$









Negation of a type

We define the two anti-monotone bijections on types

$$\neg_A : \operatorname{Ty}_Q(A) \longrightarrow \overline{\operatorname{Ty}_Q(A)}$$
$$\natural_A : u(\operatorname{Ty}_Q(A)) \longrightarrow u(\overline{\operatorname{Ty}_Q(A)})$$

as follows:

$$\neg_o q := \overline{q}$$
$$\neg_{A \to B} (\bigwedge X \to \tau) := \bigwedge (\natural_A X) \to (\neg_B \tau)$$
$$\natural_A X := \{ \neg_A \tau \mid \tau \notin X \}$$

Negation of a type

We
$$x : \bigwedge X \vdash x : \neg \tau \Leftrightarrow x : \bigwedge X \nvDash x : \tau \Leftrightarrow \tau \notin X$$

 $\Leftrightarrow \neg \tau \in \natural X \Leftrightarrow x : \bigwedge (\natural X) \vdash x : \neg \tau$
as f
 $M : \neg(\bigwedge X \to \tau) \text{ iff } x : \bigwedge X \vdash M x : \neg \tau$
 $iff x : \bigwedge (\natural X) \vdash M x : \neg \tau$
 $\neg_{A \to B}(\bigwedge X \to \tau) := \bigwedge (\natural_A X) \to (\neg_B \tau)$
 $\natural_A X := \{ \neg_A \tau \mid \tau \notin X \}$

Main Theorem

Theorem

- $\Gamma \nvDash M : \tau$ if and only if $\natural \Gamma \vdash M : \neg \tau$, where $\natural (x_1 : X_1, \dots, x_n : X_n) := x_1 : (\natural X_1), \dots, x_n : (\natural X_n)$
- Let $X = \{ \tau \mid \Gamma \vdash M : \tau \}$. Then $\natural \Gamma \vdash M : \bigwedge (\natural X)$

Proof) By mutual induction on the structure of the term.

Main Theorem

Theorem

Pro

- $\Gamma \nvDash M : \tau$ if and only if $\natural \Gamma \vdash M : \neg \tau$, where $\natural (x_1 : X_1, \dots, x_n : X_n) := x_1 : (\natural X_1), \dots, x_n : (\natural X_n)$
- Let $X = \{ \tau \mid \Gamma \vdash M : \tau \}$. Then $\Box \Gamma \vdash M : \bigwedge (\natural X)$

$$\Gamma \vdash M : \bigwedge X \quad \text{iff} \quad \natural \Gamma \vdash M : \bigwedge(\natural X)$$

m.

Outline

- Negations in type systems for
 - the call-by-name λ^{\rightarrow} -calculus
 - the call-by-name λ^{\rightarrow} -calculus + recursion

- Semantic analysis
- Discussions

λ^{\rightarrow} + Recursion

Term:

$M, N ::= x \mid \lambda x^A . M \mid M M \mid Y M$

Equational theory:

$$(\lambda x.M) N = M[N/x]$$

$$\lambda x.M x = M \qquad (if x \notin fv(M))$$

$$Y M = M(Y M)$$

Recursion Rule in Affirmative System

The rule for recursion is given by:

$$\frac{\Gamma \vdash M : \bigwedge X \to \tau \qquad \Gamma \vdash Y M : \bigwedge X}{\Gamma \vdash Y M : \tau}$$

This is a co-inductive rule: a derivation can be infinite.

Recursion Rule in Negative System

The rule for recursion is given by:

$$\frac{\Gamma \Vdash M : \bigwedge X \to \tau \qquad \Gamma \Vdash Y M : \bigwedge X}{\Gamma \Vdash Y M : \tau}$$

This is a inductive rule: a derivation must be finite.

Main Theorem

<u>Lemma</u>

$\nvDash \lambda f.Yf: \tau \quad \Longleftrightarrow \quad \Vdash \lambda f.Yf: \neg \tau$

Theorem

- $\Gamma \nvDash M : \tau$ if and only if $\natural \Gamma \Vdash M : \neg \tau$.
- Let $X = \{ \tau \mid \Gamma \vdash M : \tau \}$. Then $\natural \Gamma \Vdash M : \bigwedge (\natural X)$

Outline

- Negations in type systems for
 - the call-by-name λ^{\rightarrow} -calculus
 - the call-by-name λ^{\rightarrow} -calculus + recursion

- Semantic analysis
- Discussions

Category ScottL_u

Definition The category $ScottL_u$ is given by:

- <u>Object</u> Poset (A, \leq_A) .
- $\begin{array}{ll} \underline{\text{Morphism}} & \text{An upward-closed relation} \\ & R \subseteq u(A)^{op} \times B \end{array}$
- $\begin{array}{ll} \underline{\text{Composition}} & \text{Let} & R \subseteq u(A)^{op} \times B \\ S \subseteq u(B)^{op} \times C & \end{array} \end{array} . \ \text{Then} \\ \end{array}$

 $\exists Y \in u(B). \left(\forall b \in Y.(X, b) \in R \text{ and } (Y, c) \in S \right)$

 $(X,c) \in (S \circ R)$

Interpretation of CbN λ^{\rightarrow} in **ScottL**_{*u*}

<u>Fact</u> ScottL_u is a cartesian closed category.

Interpretation of kinds is given by:

$$\llbracket o \rrbracket_Q := (Q, =)$$
$$\llbracket A \to B \rrbracket_Q := u(\llbracket A \rrbracket_Q)^{op} \times \llbracket B \rrbracket_Q$$

Hence $\llbracket A \rrbracket_Q \cong \mathrm{Ty}_Q(A)$.

<u>Fact</u> (see e.g. [Terui 2012]) $\Gamma \vdash M : \tau \quad \Leftrightarrow \quad (\Gamma, \tau) \in \llbracket M \rrbracket$

Negation Functor on ScottL_u

The functor φ : **ScottL**_{*u*} \rightarrow **ScottL**_{*u*} is defined by:

$$\varphi(A) := A^{op}$$
$$\varphi(R) := \{ (A \setminus X, b) \in u(A)^{op} \times B \mid (X, b) \notin R \}$$

Lemma φ is an isomorphism on **ScottL**_{*u*}.

If $R \in u(A)^{op} \times B$ and $A = \emptyset$, then

$$\varphi(R) = \{ (\emptyset, b) \mid (\emptyset, b) \notin R \}$$

which is essentially the complement of *R*.

Outline

- Negations in type systems for
 - the call-by-name λ^{\rightarrow} -calculus
 - the call-by-name λ^{\rightarrow} -calculus + recursion
 - a call-by-value language + nondeterminism
- Semantic analysis
- Discussions

Automata complementation

Corresponds to negation of a 2nd-order judgement.

Boolean Closedness of Types

Let A be a kind and B_A be the set of all Böhm trees of type A. A language is a subset of B_A .

<u>Definition</u> A language $L \subseteq B_A$ is type-definable if there exists a type τ such that

$$L = \{ M \in B_A \mid \vdash M : \tau \}$$

in the type system for higher-order model checking [Kobayashi&Ong 09] [T&Ong 14].

Corollary The class of type-definable languages are closed under Boolean operations on sets.

Further Applications

The technique presented in this talk is applicable to:

- the type system for the full higher-order modelchecking [Kobayashi&Ong 09]
- a type system witnessing call-by-value reachability [T&Kobayashi 14]
- a dependent intersection type system in
 [Kobayashi+ 11], via the translation of dependent
 types to intersection and union types

Consistency and Inconsistency

The negation of a "small" type can be very large. So the negation may not be efficiently computable.

The notion of consistency and inconsistency may be useful in the practical use:

<u>Definition</u> Let $\tau \in \operatorname{Ty}_Q(A)$ and $\overline{\sigma} \in \operatorname{Ty}_Q(A)$. They are consistent if $\neg \tau \preceq \overline{\sigma}$ and inconsistent otherwise.

<u>Proposition</u> If τ and $\overline{\sigma}$ are inconsistent, then

$$\Vdash M:\bar{\sigma} \implies \not\vdash M:\tau$$

Inductive Definition of Consistency

 $\frac{q \neq p}{q \triangleleft_o \bar{p}}$

$$\frac{\forall \tau \in X. \forall \bar{\sigma} \in \bar{Y}. \ \tau \triangleleft_A \bar{\sigma}}{\bigwedge X \triangleleft_{!A} \bigwedge \bar{Y}}$$

$$\frac{\tau_1 \triangleleft_{!A} \bar{\sigma}_1 \implies \tau_2 \triangleleft_B \bar{\sigma}_2}{(\tau_1 \to \tau_2) \triangleleft_{A \to B} (\bar{\sigma}_1 \to \bar{\sigma}_2)}$$

Inductive definition of inconsistency is now trivial.

"Krivine machines and higher-order schemes" [Salvati&Walkiewicz 12]

- The notion of consistency and inconsistency can be found in their work (called complementarity for the former and the latter has no name).
- This talk is partially inspired by their work.

Conclusion

Negation is a definable operation in the refinement intersection type system for the call-by-name λ^{\rightarrow} .

This observation leads to the construction of negative type systems for other refinement type systems, e.g.,

- call-by-name λ^{\rightarrow} + recursion
- the type system for HOMC
- a type system for a call-by-value language

Application to verification needs some work.