Temporal Verification of Higher-Order
Functional Programs

Akihiro Murase!, Tachio Terauchi?

Naoki Kobayashi3, Ryosuke Sato3, Hiroshi Unno?
1 Nagoya U. / Toshiba

2 JAIST

3 U. Tokyo

Appeared in POPL 2016 *U. Tsukuba

Functional program Temporal property

C

/\ Higher-order N

@

letrec repeat =

g (nondet ());repeat g <>A

and f x =
if x > 0 then f (x-1) <>A
else

in X

Events

repeat £

Automata-theoretic approachivardioi)

* |nput:
— Program P
— w-regular temporal property W

1. Make w-automaton A_yrecognizing —\
2. Make product program P x A_y
3. Verify that P x A_y terminates

Theorem: P C WV iff P x A_yterminates

Verifying P x A_ terminates

Instance of “fair termination” problem

Problem Definition:
— Fairness Constraint: C' = {(Aq, By), (A1, B1), ..., (A, B,)}
— Infinite sequence 7 is fair wrt C if for each (A;, B;) € C
« A; occurs only finitely often in 7; or
e B3; occurs infinitely often in 7

* P isfair terminating wrt C if P has no infinite
execution trace that is fair wrt

This Paper’s Contribution:
Sound & complete verification method for fair termination of FP

4

Fair termination for imperative programs

Def: Finite sequence @ is fair wrt C if for each (A, B) € C
— A does not occur in zo; or

— B occursin @

* For binary relation R,
Rtle — {(wijn)

et
VO <i<j<n.(w,w;) €RAN
woto1 . . ., 1S fair wrt C

[Intuition: RT'Cis the subset of R that is fair wrt C]

Theorem[Cook+’07]: P is fair terminating wrt C iff Trans p
is disjunctively well-founded

+le

— Transp = transition relation of P

— Disjunctively well-founded =

finite union of well-founded relations

Why not just apply this to FP?

Just use [Cook+’07] and check Transp™'<is dwf
to verify fair termination of FPs?

e After all, any program (functional, imperative,
concurrent or whatever) can be considered a
transition system...

Unfortunately, this turns out to be an awful idea

let rec ackmn =
ifm=0thenn+1
else if n =0thenack (m—1)1
else ack (m — 1) (ackm (n — 1))
let main () = ack *pos *pos

Terminates, but transition relation is quite complex:

ackmmn — ack (m — 1) (ackm (n — 1))
— ack (m — 1) (ack (m — 1) (ack m (n — 2)))

— ack (m — 1)
— ack (m — 1)

ack (m —1) (..., (ackm0)...))
ack (m—1)(...,(ack (m—1)1)...))

N TN

[Cook+’07] needs to reason about change in calling context / call stack

Theorem[Berardi+’14,Yokoyama’14]: [Cook+'07] can only prove termination of
primitive recursive functions (when usable wf relations have height at most w)

NOTE1L: This is just 15t-order function! Things get worse with higher-order

NOTE2: This is just plain termination! Things get worse with fair termination
7

Our Approach

Check dwf of (transitive closure of fair part of) “calling relation”

Formally,

Callp = {(f U, g W) | g W is called from f ¢ in an execution of P}
Note: Callp™ = {(f 7,9 W) | E[f 6] € Rp A fT—p" E'[g]}
where R pis set of reachable states and — pis 1-step reduction

Theorem[Kuwahara+'14]: P (plain) terminates iff Callp™ is dwf
[Q: P fair-terminates wrt C iff Callp11¢ is dwf?

A: Unfortunately, No (cf. paper for counterexample)

J

ALTERNATIVE >% = {(f¥,9@) | E[f 0] e Rp A f T —p7¢ E'[g @]}
Note: >% is CallpT but with—p™ replaced by —ptie
Theorem[this paper]: P fair-terminates wrt C iff >$ is dwf

8

Checking >% is dwf

Algorithm:

1. Initialize candidate disjunctively well-founded rel. D
2. Build program [P]p.c that is assertion safe iff >% C D
3. Check assertion safety of |FP|p,c KEY STEP

— Use reachability checker for FP [Terauchi’10, Kobayashi+'11, etc.]
-> done. Output “P fair terminates wrt ("
b. Unsafe ->
. Get wof [Plpcst [@] C>6 &€ D
* Infer dwf D’ D [w] via rank function inference [Podelski+04, etc.]
e Repeat from 2. withD «— DU D’

This verification style is called Binary Reachability Analysis
 The style itself is not new. E.g., [Cook+'07] also uses it

9

Rest of the Talk

1. Transforming P to |P|p.c
a. Transformation for plain termination
b. Extending to fair termination

2. Experiments

Transformation for plain termination

e Recall

Theorem[Kuwahara+'14]: P terminates iff Callp™ is dwf
Callp™ = {(f 0,9 @) | E[f 0l € Rp A fT—pT E'lg @]}

GOAL: Build [P] p that is assertion safe iff Callp™ C D

Observation:
Callp™is dwf iff { (7, W) | (f T, f @) € Callp™ }is dwf for each f

4 ™
So, we will actually build | P| b, that is assertion safe

\ﬁ{@ﬂﬂ“f@fﬁhz&WﬁWQJIMthf

11

Informal Overview

Key Observation:

(f U, f @) € Callp™ iff f @ is called after f ¥ is
called but before f ¥ returns
* 5o, when f is called, record the arguments, and pass
recorded arguments to calls that occur in f's body

— also make all other functions take and pass the recorded
arguments down

* when fis called again, assert (recorded, current) € D

* non-deterministically decide when to record so as to
compare with all possible descendants’ arguments

Transformation Example

cletD={(z",2) |2 >0A2 >z}
e Check{(«',2) | (f2',fx) € Callp™} C D

fx' x=
fx= assert D (x,x);
if x <0thenO let x’ = *?x":xin
else g (x-1) ifx <0thenO
gx="fx else g x” (x-1)
main () =g = gx' x=fx'x

main()=g 1 *

e *x =non-deterministic choice
* D, =DU{(L,x) |z eZ}

Higher-order is trickier

Q: Does this terminate?

appfxu=~fxu

idu=u main ()
g x=if x=0thenid g({\g(20
else app g (x-1) B SPPE& ™
main () = g + (TN
g(—2) appg(—3)()

/\

g(—3) :

14

Transformation Example (higher-order)

e Let D={((f",2",u"),(f,z,u)) |z >0A2 >z}

 Check

{((flaxlau,)v (f,.fl?,U)) | (app f/ ' Ul,appfivu) c Callp+} C D

appfxu=~fxu
idu=u
gx=if x <0thenid
else app g (x-1)
main () =g = ()

app _f x(f/,x,u)u=

assert D ((f,x,u’),(f,x,u));

let ', x’,u’” = *?(f' x’,u’):(f,x,u) in

f(f' xu’)x (f,x,u’)u
id u=u
g (f’,x,u’)x=ifx <0thenid
else app (f',x’,u’) g (f',x’,u’) (x-1)

main () =g L *_L ()

Remark

We pass recorded arguments everywhere

— i.e., at every (possibly partial) function
applications

* Because it is impossible to statically decide
— which calls are to the target function
— which calls are total

Delegate these tasks to backend reachability
checker!

* Previous work make conservative
approximations

Transformation, formally (1/2)

P:=0|PU{fr=c¢e}
c=f|x|c|elopes|eres
| letx =e;iney | if ethene; else e

Q

% | true | false |0 | 1| ...
+ | = x |I<|<| A -

C ::
op ::

M-lifted functional language (with non-determinism)

Transformation, formally (2/2)

|Plps=1lgTf=c¢lps|gTf=cc P}

4

g£S1X182%2 ... Sp Ty = if g#f
’76—‘871

assert D (s,, (T));
let s =75, : (Z)in |e]s

where ¥ = x1,29,...,2,

\

cls = ¢ fls =1 x]s =

let £ = e ines|s = let x = [e1]s in [es]s

e1 0p e2]s = [e1]s op [e2]s

if e then ey else e3|s = if [eq|sthen [es]selse |e3]s
e1 ea|s = |e1]s s |e2]s

Rest of the Talk

1. Transforming P to |P|p.c
v' Transformation for plain termination
b. Extending to fair termination

2. Experiments

Review

GOAL: Check{(7,@) | (f,f @) e >} C D

_ S ={(fU,gW) | E[ft)e Rp A f—pTlc E'gd]}
_ Callp™ = (fT,g0) | E[fv] e RpA fT—pT E'lgw]}

Just showed how to check {(#,%) | (f ¥, f @) € CallpT} C D

* Transformation Informal Overview:

— As before, we record arguments of “ancestor” calls and
compare with current arguments

But, only do this for fair traces (i.e., ones that follow — p*/)

20

Transformation Example

* Let C'={(A,false)}

— P fair terminates wrt C iff A occurs infinitely often in any
non-terminating execution

repeat g = let * = *x in g x;repeat g
fax=1if © > 0 then f(r — 1) else event A
main () = repeat f

repeat s ' g = let x = * in
let (s',.) =g s2’ x in repeat s’ 2/ g
f sz’ x =assert(s = false = D, (2',1));
let (s,z') =
| Pl|p,c,t if * then (false,x) else (s,2’) in
if £ >0 then f sa’ (x — 1) else (true,())
main () = repeat false | f 21

Rest of the Talk

v' Transforming P to | P|p.c
v' Transformation for plain termination
v' Extending to fair termination

2. Experiments

Prototype Implementation

* Fair termination verifier for OCaml programs
— MOCHI [1] as backend reachability checker
— Z3 [2] for constraint solving in rank func. inference

Prototype implementation web interface [3]

1] http://www.kb.is.s.u-tokyo.ac.jp/~ryosuke/mochi/
2] http://z3.codeplex.com/

3] http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/fair_termination/

Experiment Result

program cyclel | cycle2 time
intro 3 14 11.492
repeat 4 12 2.276
closure 6 18 9.76
hofmann-1 [1] 2 4 0.232
hofmann-2 [1] 3 8 1.032
koskinen-1 [2] 7 27 43.344
koskinen-2 (2] 5 16 3.412
koskinen-3-1 [2] 6 17 2.752
koskinen-3-2 [2] | 4 14 2.216
koskinen-3-3 2] 6 23 4.964
koskinen-4 (2] 10 35 132.552
lester [3] 8 36 38.356

[1] Hoffmann, Chen LICS'14
[2] Koskinen, Terauchi LICS’14
[3] Lester et al. '11

None of these can be verified automatically by previous methods

24

Conclusion

Automatic method for temporal property
verification of functional programs

— Based on Binary Reachability Analysis approach

— Supports
* Higher-order functions
 Arbitrary omega-regular properties

— Sound & complete

* relative to soundness & completeness of backend
reachability checker and rank func. inference

25

