
Temporal Verification of Higher-Order
Functional Programs

Akihiro Murase1, Tachio Terauchi2

Naoki Kobayashi3, Ryosuke Sato3, Hiroshi Unno4

1 Nagoya U. / Toshiba
2 JAIST

3 U. Tokyo
4 U. Tsukuba

1

Appeared in POPL 2016

2

Functional program Temporal property

Events

Higher-order

Automata-theoretic approach[Vardi’91]

• Input:

– Program

– -regular temporal property

1. Make -automaton recognizing

2. Make product program

3. Verify that terminates

3

Theorem: iff terminates

Verifying terminates

Instance of “fair termination” problem

Problem Definition:

– Fairness Constraint:

– Infinite sequence is fair wrt if for each

• occurs only finitely often in ; or

• occurs infinitely often in

• is fair terminating wrt if has no infinite
execution trace that is fair wrt

This Paper’s Contribution:

Sound & complete verification method for fair termination of FP
4

Def: Finite sequence is fair wrt if for each

– does not occur in ; or

– occurs in

• For binary relation , let

Theorem[Cook+’07]: is fair terminating wrt iff

is disjunctively well-founded
– = transition relation of

– Disjunctively well-founded = finite union of well-founded relations

Fair termination for imperative programs

5

Intuition: is the subset of that is fair wrt

Why not just apply this to FP?

Just use [Cook+’07] and check is dwf
to verify fair termination of FPs?

• After all, any program (functional, imperative,
concurrent or whatever) can be considered a
transition system…

6

Unfortunately, this turns out to be an awful idea

7

Terminates, but transition relation is quite complex:

NOTE1: This is just 1st-order function! Things get worse with higher-order
NOTE2: This is just plain termination! Things get worse with fair termination

Theorem[Berardi+’14,Yokoyama’14]: [Cook+’07] can only prove termination of
primitive recursive functions (when usable wf relations have height at most)

[Cook+’07] needs to reason about change in calling context / call stack

Our Approach

Check dwf of (transitive closure of fair part of) “calling relation”

• Formally,

Note:

where is set of reachable states and is 1-step reduction

• Theorem[Kuwahara+’14]: (plain) terminates iff is dwf

• ALTERNATIVE

Note: is but with replaced by

• Theorem[this paper]: fair-terminates wrt iff is dwf
8

Q: fair-terminates wrt iff is dwf?
A: Unfortunately, No (cf. paper for counterexample)

Checking is dwf

Algorithm:
1. Initialize candidate disjunctively well-founded rel.

2. Build program that is assertion safe iff

3. Check assertion safety of
– Use reachability checker for FP [Terauchi’10, Kobayashi+’11, etc.]

a. Safe -> done. Output “ fair terminates wrt ”

b. Unsafe ->

• Get c.ex. trace of s.t.

• Infer dwf via rank function inference [Podelski+’04, etc.]

• Repeat from 2. with

9

KEY STEP

This verification style is called Binary Reachability Analysis
• The style itself is not new. E.g., [Cook+’07] also uses it

Rest of the Talk

1. Transforming to

a. Transformation for plain termination

b. Extending to fair termination

2. Experiments

10

Transformation for plain termination

• Recall
Theorem[Kuwahara+’14]: terminates iff is dwf

GOAL: Build that is assertion safe iff

Observation:

is dwf iff is dwf for each

So, we will actually build that is assertion safe

iff for each
11

Informal Overview

Key Observation:

iff is called after is
called but before returns

• so, when is called, record the arguments, and pass
recorded arguments to calls that occur in body
– also make all other functions take and pass the recorded

arguments down

• when is called again, assert

• non-deterministically decide when to record so as to
compare with all possible descendants’ arguments

Transformation Example

• Let

• Check

f x =
if x · 0 then 0

else g (x-1)
g x = f x
main () = g

f x’ x =
assert (x’,x);
let x’ = ?x’:x in
if x · 0 then 0

else g x’ (x-1)
g x’ x = f x’ x
main () = g

• = non-deterministic choice
•

Higher-order is trickier

14

app f x u = f x u
id u = u
g x = if x = 0 then id

else app g (x-1)
main () = g ()

Q: Does this terminate?

Transformation Example (higher-order)

• Let

• Check

app f x u = f x u
id u = u
g x = if x 0 then id

else app g (x-1)
main () = g ()

app _ f _ x (f’,x’,u’) u =
assert ((f’,x’,u’),(f,x,u));
let f’,x’,u’ = ?(f’,x’,u’):(f,x,u) in
f (f’,x’,u’) x (f’,x’,u’) u

id _ u = u
g (f’,x’,u’) x = if x 0 then id

else app (f’,x’,u’) g (f’,x’,u’) (x-1)
main () = g ()

Remark

We pass recorded arguments everywhere
– i.e., at every (possibly partial) function

applications

• Because it is impossible to statically decide
– which calls are to the target function

– which calls are total

Delegate these tasks to backend reachability
checker!

• Previous work make conservative
approximations

Transformation, formally (1/2)

-lifted functional language (with non-determinism)

Transformation, formally (2/2)

Rest of the Talk

1. Transforming to

 Transformation for plain termination

b. Extending to fair termination

2. Experiments

19

Review

GOAL: Check

–

–

Just showed how to check

• Transformation Informal Overview:

– As before, we record arguments of “ancestor” calls and
compare with current arguments

But, only do this for fair traces (i.e., ones that follow)

20

Transformation Example

• Let

– fair terminates wrt iff occurs infinitely often in any
non-terminating execution

21

Rest of the Talk

 Transforming to

 Transformation for plain termination

 Extending to fair termination

2. Experiments

22

Prototype Implementation

• Fair termination verifier for OCaml programs

– MOCHI [1] as backend reachability checker

– Z3 [2] for constraint solving in rank func. inference

Prototype implementation web interface [3]

[1] http://www.kb.is.s.u-tokyo.ac.jp/~ryosuke/mochi/

[2] http://z3.codeplex.com/

[3] http://www-kb.is.s.u-tokyo.ac.jp/~ryosuke/fair_termination/

23

Experiment Result

24

[1] Hoffmann, Chen LICS’14
[2] Koskinen, Terauchi LICS’14
[3] Lester et al. ’11

None of these can be verified automatically by previous methods

Conclusion

Automatic method for temporal property
verification of functional programs

– Based on Binary Reachability Analysis approach

– Supports

• Higher-order functions

• Arbitrary omega-regular properties

– Sound & complete

• relative to soundness & completeness of backend
reachability checker and rank func. inference

25

